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1. Introduction

In the paper [6], we proved certain universality theorem for Hecke L-functions over
imaginary quadratic fields. The purpose of this paper is to extend the result for general alge-
braic fields.

The study of universality properties for zeta functions began with S. M. Voronin [17], in
which he proved the universality property for the Riemann zeta function ζ(s). After Voronin’s
work, many mathematicians investigated on the universality property for other zeta functions.
S. M. Gonek [5] and B. Bagchi [1] proved universality theorems for Dirichlet L-functions
and Hurwitz zeta functions in different ways. A. Reich [16] proved universality property
for Dedekind zeta functions. Recently A. Laurinčikas and K. Matsumoto [9] proved it for
automorphic L-functions attatched with Hecke eigen cusp forms. The author proved in [11]
universality theorem for Hecke L-functions associated with Grössencharacters. The result is
the following.

THEOREM 1. Let K be a finite extention of Q, n = [K : Q], and χλm be a Grössen-
character modulo q̃. We set

σK =




1

2
if K = Q ,

1 − 1

n
otherwise .

Let C be a simply connected compact set in the strip σK < �s < 1 and f (s) be a continuous
function on C such that f (s) has no zero on C and is analytic in the interior of C. Then for
any ε > 0 we have

lim inf
T →∞

1

T
µ{t ∈ [0, T ] ∣∣ max

s∈C

∣∣L(s + it, χλm) − f (s)
∣∣ < ε} > 0(1)

where µ is the Lebesgue measure on R.
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Later we explain the definition of the character χλm and the function L(s, χλm).
Roughtly speaking, this result asserts that any analytic function which satisfies the above
conditions can be uniformly approximated on C by vertical translation of L(s, χλm) and the
set of real numbers t which give such approximation has a positive lower density.

The above results are concerned with the behavior of zeta functions with respect to ver-
tical translation, that is, t-aspect. On the other hand there are some results on the behavior
of zeta functions with respect to other parameters. Gonek [5] and Bagchi [1] independently
proved that, varying Dirichlet characters as a parameter, the similar universality property holds
for Dirichlet L-functions. Namely, for given compact set C in the critical strip and an ana-
lytic function f (s) on C, if we choose sufficiently large integer q , there exists a Dirichlet
character χ modulo q such that the associated L-function uniformly approximates f (s) on
C. H. Nagoshi give the similar universality property, in [13] for the parameter of holomor-
phic Hecke eigen cusp forms, and in [14] for the parameter of Maass cusp forms. On the
other hand, Petridis-Sarnak [15] study the mean value estimate for automorphic L-functions
twisted by Grössencharacters.

S. Koyama was inspired by these results, and has conjectured certain universality prop-
erty for Hecke L-functions. To state it, we recall some notion about Grössencharacters. Let K

be a finite extention over Q with degree n, and q be an integral ideal of K . We denote by IK

the set of fractional ideals of K which is coprime to q. If a function λ : IK → C∗ = C − {0}
satisfies the following conditions we call it a Grösseccharacter modulo q̃.

(i) λ(ab) = λ(a)λ(b) (a, b ∈ IK).
(ii) For α ∈ K, α ≡ 1 (mod q̃) we have

λ((α)) =
r1+r2∏
p=1

|α(p)|ivp

r1+r2∏
q=r1+1

(
α(q)

|α(q)|
)uq

where r1 is the number of real embeddings of K, 2r2 is the number of complex embeddings

of K, (α(1), · · · , α(r1), α(r1+1), · · · , α(r1+r2), α(r1+1), · · · , α(r1+r2)) ∈ Rr1 × C2r2 denotes the
set of conjugates of α, vp ∈ R s.t.

∑
p vp = 0 and uq ∈ Z.

It is known that any Grössencharacter λ (mod q̃) can be uniquely represented

λ = χλm = χλ
m1
1 · · · λmn−1

n−1

where χ is a narrow class group character modulo q̃, λ1, · · · , λn−1 is a basis of a torsion-free

group generated by Grössencharacter modulo q̃ and m = (m1, · · · ,mn−1) ∈ Zn−1. For
�s > 1 we define Hecke L-function associated with χλm by the Dirichlet series

L(s, χλm) =
∑
�

χλm(a)

Nas

where a runs through all integral ideals in K without 0 and Na is a norm of a. Now we state
Koyama’s conjecture.
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CONJECTURE. Let K be a finite extention of Q such that n = [K : Q] ≥ 2, χ be a
narrow class group character modulo q̃ and λ1, · · · , λn−1 be a basis of Grössencharacters
modulo q̃. Let C be a simply connected compact set in the strip σK < �s < 1 and f (s) be a
continuous function on C which has non-zero on C and is analytic in the interior of C. Then
for any ε > 0, we will have

lim inf
T →∞

1

T n−1 �

{
m ∈ Zn−1

∣∣∣∣ |m| ≤ T , max
s∈C

|L(s, χλm) − f (s)| < ε

}
> 0

where |m| = max1≤i≤n−1 |mi |.
Now we consider what is essential to obtain universality properties. In the case of t-

aspect, there are two important properties on the behavior of n−it (t ∈ R). One is a square-
mean value estimate for Dirichlet polynomial, such as the Montgomery-Vaughn estimate

∫ T

0

∣∣∣∣
∑
n≤x

an

nit

∣∣∣∣
2

dt = T
∑
n≤x

|an|2 + O

( ∑
n≤x

n|an|2
)

(2)

for any an ∈ C. The other is uniformly distribution of the set

{(pit
1 , · · · , pit

r ) ∈ (S1)r
∣∣ t ∈ R}

where p1, · · · , pr are arbitrary prime numbers relatively prime. In the case of Dirichlet char-

acter aspect, χ(n) plays an important role instead of n−it and similar properties are easily
obtained by using orthogonality of Dirichlet characters. In the case of automorphic forms,

n-th Fourier coefficient takes place of n−it . The mean value estimate can be obtained by the
well-known Petterson’s formula for Fourier coefficients and the uniformly distribution of the
set of Fourier coefficients can be induced from a trace formula.

Concerning Grössencharacters, while the result on uniformly distribution has been
proved in [12], the necessary large sieve type inequality

1

T n−1

∑
|m|≤T

∣∣∣∣
∑

N�≤x

a(a)χλm(a)

∣∣∣∣
2

=
∑

N�≤x

|a(a)|2 + O

( ∑
N�≤x

n|a(a)|2
)

(3)

that is conjectured by Duke [4], is unsolved unfortunately.
In this paper, we apply the Montgomery-Vaughn estimate instead of (3) and obtain uni-

versality property with respect to m and t aspects simultaneously. The main result is the
following.

THEOREM 2. We assume the same notation as in Conjecture. Then for any ε > 0 we
have

lim inf
T →∞

1

T n
µ′

{
(m, t) ∈ [0, T ]n

∣∣∣∣ max
s∈C

∣∣L(s + it, χλm) − f (s)
∣∣ < ε

}
> 0

where µ′ is the product measure on Zn−1 × R.
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We may say that this theorem supports Koyama’s conjecture when we take an average it
on t . On the other hand, since this theorem has the same form as Theorem 1 if we average
it on m, Theorem 2 seems easily reduced from Theorem 1. However the estimate (1) in
Theorem 1 depends on m unexplicitly, we can not obtain Theorem 2 from Theorem1 directly.
Conversely, from Theorem 2, the estimate (1) seems to hold uniformly for m.

REMARK. H. Bohr investigated the value distribution of ζ(s), in the halfplane �s > 1

in [2] and in the strip 1
2 < �s < 1 in [3] respectively. He showed that for any 1

2 < σ < 1
fix, the set of ζ(σ + it) (t ∈ R) is dense in C. The universality property can be regarded an
extention of Bohr’s result in functional space. We consider the value distribution of Hecke
L-functions in the m-aspect. For σK < σ < 1 we need the Duke’s inequality but for σ > 1
we only need the result on uniformly distribution and obtain the similar result in [12]. We
consider this result assures that Koyama’s conjecture is true.

The author would like to express his sincere gratitude to Professor Shinya Koyama for
his advice and encouragement. He would also like to express his sincere thanks to the referee
for his helpful comment.

2. Outline of proof

We assume next lemmas.

LEMMA 1. For z > 0 we define

Lz(s, χλm) =
∏
p≤z

∏
�|p

(
1 − χλm(p)

Nps

)−1

where p denotes a prime number and p denotes a prime ideal in K . For any ε > 0 and
0 < δ′ < 1 there exists z0 > 0 such that if we set

AT,z =
{
(m, t) ∈ [0, T ]n

∣∣∣∣ max
s∈C

| log L(s + it, χλm) − log Lz(s + it, χλm)| < ε

}

where the branch of log L(s + it, χλm) is taken by the Taylar expansion

∑
�

∞∑
k=1

χλm(pk)

kNpks

on the line �s = 2 and is extended analytically along the interval [2 + i
s + it, s + it], then
for any z > z0 we have

lim inf
T →∞

µ′(AT,z)

T n
> δ′ .
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LEMMA 2. Let g(s) be a continuous function on C which is analytic in the interior of
C. For any ε > 0 there exist 0 < δ < 1 and z1 > 0 such that if we set

BT,z =
{
(m, t) ∈ [0, T ]n

∣∣∣∣ max
s∈C

| log Lz(s + it, χλm) − g(s)| < ε

}

then for any z > z1 we have

lim inf
T →∞

µ′(BT,z)

T n
> δ .

Let f (s) be a function which satisfies conditions in Theorem 2 and g(s) = log f (s). For

any ε > 0 we take z1 > 0 and 0 < δ < 1 in Lemma 2. For ε and δ′ = 1 − δ
2 we take z0 > 0

in Lemma 1. If we choose z > max(z0, z1), then we have

max
s∈C

| log L(s + it, χλm) − g(s)|
≤ max

s∈C
| log L(s + it, χλm) − log Lz(s + it, χλm)|

+ max
s∈C

| log Lz(s + it, χλm) − g(s)| < 2ε

for any (m, t) ∈ AT,z ∩ BT,z, and see that AT,z ∩ BT,z has the positive lower density

lim inf
T →∞

1

T n
µ′(AT,z ∩ BT,z) > δ − δ

2
= δ

2
> 0 .

Therefore we obtain Theorem 2 from Lemma 1 and Lemma 2.

3. The proof of Lemma 1

To prove Lemma 1, we need to calculate a mean square estimate for L(s, χλm). First we
obtain an approximate functional equation for L(s, χλm). If a character χ is primitive, then
L(s, χλm) satisfies the following functional equation

L(s, χλm) = H(s, χλm)L(1 − s, χ̄λ−m)

where

H(s, χλm) = W(χλm)A(q)1−2s

r1∏
p=1

Γ
( 1−s+ap−ibp

2

)
Γ

( s+ap+ibp

2

)
r1+r2∏

q=r1+1

Γ
(
1 − s + aq

2 − ibq

)
Γ

(
s + aq

2 + ibq

) ,

the numbers a1, · · · , ar1 ∈ {0, 1}, ar1+1, · · · , ar1+r2 ∈ Z, b1, · · · , br1+r2 ∈ R depend on m

and |W(χλm)| = 1. We could derive from it the following appoximate functional equation.

LEMMA 3. Let x, y > 0, 0 < β < α < 2, 0 < γ < 2. We denote n-th Dirichlet co-
efficient of L(s, χλm) by am(n) i.e. L(s, χλm) = ∑

am(n)n−s . If a character χ is primitive,
then for β < �s < α it holds that

L(s, χλm) = J1 + J2 + J3 + J4 − J5 − J6
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where

J1 =
∑
n≤x

am(n)

ns
, J2 = H(s, χλm)

∑
n≤y

am(n)

n1−s

J3 =
∑
n>x

am(n)

ns
e−( n

x )2
, J4 = 1

2πi

∫
(−γ )

xw
Γ

(
1 + w

2

)
w

∑
n≤x

am(n)

ns+w
dw

J5 = 1

2πi

∫
(β)

H (s + w,χλm)xw
Γ

(
1 + w

2

)
w

∑
n≤y

am(n)

n1−s−w
dw

J6 = 1

2πi

∫
(−α)

H(s + w,χλm)xw
Γ

(
1 + w

2

)
w

∑
n>y

am(n)

n1−s−w
dw .

PROOF. For X > 0 we have

e−X2 = 1

2πi

∫
(1)

X−w
Γ

(
1 + w

2

)
w

dw .(4)

We take X = n
x

in (4) for each n and combine them, then

∞∑
n=1

am(n)

ns
e−( n

x )2 =
∞∑

n=1

am(n)

ns
· 1

2πi

∫
(1)

(x

n

)w Γ
(
1 + w

2

)
w

dw

= 1

2πi

∫
(1)

L(s + w,χλm)xw
Γ

(
1 + w

2

)
w

dw

where interchange of integral and series is permitted because of absolute convergence of the
series

∑
am(n)n−s in the halfplane �s > 1. We move contour from �w = 1 to �w = −α.

Since the integrand has a pole at w = 0 with a residue L(s, χλm), we have

L(s, χλm)

=
∑
n≤x

am(n)

ns
e−( n

x )2 + J3 − 1

2πi

∫
(−α)

L(s + w,χλm)xw
Γ

(
1 + w

2

)
w

dw .

(5)

We apply the functional equation to the third term. Since �(1 − s − w) > 1 − α + α = 1 we
have

1

2πi

∫
(−α)

L(s + w,χλm)xw
Γ

(
1 + w

2

)
w

dw

= 1

2πi

∫
(−α)

H(s + w,χλm)L(1 − s − w, χ̄λ−m)xw
Γ

(
1 + w

2

)
w

dw

= J6 + 1

2πi

∫
(−α)

H(s + w,χλm)xw
Γ

(
1 + w

2

)
w

∑
n≤y

am(n)

n1−s−w
dw .
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We move a contour from �w = −α to �w = β. Since the integrand has a pole at w = 0 with

residue H(s, χλm)
∑

n≤y am(n)ns−1, the third term in (5) is equal to J2 − J5 − J6. We return

to the equality (4). If we move a contour from �w = 1 to �w = −γ then we have

e−X2 = 1 + 1

2πi

∫
(−γ )

X−w
Γ

(
1 + w

2

)
w

dw .

We put X = n
x

for each n ≤ x and combine them, then

∑
n≤x

am(n)

ns
e−( n

x
)2 = J1 + J4 .

Therefore we have the approximate functional equation. �

Now we prove Lemma 1. First we assume that χ is primitive. Instead of the inequality
in the statement, it is enough to consider the inequality

max
s∈C

|L−1
z (s + it, χλm) · L(s + it, χλm) − 1| < ε .

We take a compact set C1 in the strip σK < �s < 1 such that C ⊂ C1. From elementaly
functional theory (refer to Appendix of [7], for example), if the inequality

∫∫
C1

|L−1
z (s + it, χλm) · L(s + it, χλm) − 1|2dσdτ < ε2 (s = σ + iτ )

holds, then we have

max
s∈C

|L−1
z (s + it, χλm) · L(s + it, χλm) − 1| < c(C,C1)ε .

Therefore we will prove the positive density of the set

B ′
T ,z =

{
(m, t) ∈ [0, T ]n

∣∣∣∣
∫∫

C1

|L−1
z (s + it, χλm) · L(s + it, χλm) − 1|2dσdτ < ε2

}
.

We calculate the second moment

∑
T <mi≤2T

(1≤i≤n−1)

∫ 2T

T

∫∫
C1

|L−1
z (s + it, χλm) · L(s + it, χλm) − 1|2dσdτdt .(6)
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Let s = σ + iτ ∈ C1 fix. By using Lemma 3 we have

∑
T <mi≤2T

(1≤i≤n−1)

∫ 2T

T

|L−1
z (s + it, χλm) · L(s + it, χλm) − 1|2dt


∑

T <mi≤2T

∫ 2T

T

|L−1
z (s + it, χλm) · J1 − 1|2dt

+
6∑

j=2

∑
T <mi≤2T

∫ 2T

T

|L−1
z (s + it, χλm) · Jj |2dt

= I1 +
6∑

j=2

Ij .

(7)

First we consider the integral I1. It holds that

∏
p≤z

∏
�|p

(
1 − χλm(p)

Nps

)−1

·
∑

N�≤x

χλm(a)

Nas
= 1 +

∑
z<n≤xz′

bn(m)

ns

where z′ only depends on z and bm(n)  nε uniformly in m. Taking x = T
n
2 and applying

the Montgomery-Vaughn estimate (2), we have

I1 =
∑

T <mi≤2T

∫ 2T

T

∣∣∣∣
∑

z<n≤xz′

bm(n)

ns+it

∣∣∣∣
2

dt

 T n−1
{
T

∑
z<n≤xz′

1

n2σ−ε
+

∑
z<n≤xz′

1

n2σ−ε−1

}

 T n(z1−2σ+ε + z′′T −1+n−nσ+ε) ,

(8)

where z′′ depends on z and σ . Next we consider the integrals I2, I4 and I5. By using Stirling
formul

log Γ (s) =
(

s − 1

2

)
log s − s + log

√
2π + O(|s|−1) ,

the following estimates

H(s + it, χλm)  T n( 1
2 −σ) ,

∫
(−γ )

∣∣∣∣Γ
(
1 + w

2

)
w

∣∣∣∣dw  1 ,

∫
(β)

∣∣∣∣H(s + w,χλm)
Γ

(
1 + w

2

)
w

∣∣∣∣dw  T
n
2 (1−2σ−2β)
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hold for T < mi ≤ 2T (1 ≤ i ≤ n − 1) and T < t < 2T uniformly. Therefore, taking

y = T
n
2 , we have

I2 =
∑

|m|≤T

∫ 2T

T

∣∣∣∣H(s + it, χλm)
∑
n≤y

am(n)

n1−s

∣∣∣∣
2

· |L−1
z (s + it, χλm)|2dt

 c(z)T n−1T n(1−2σ)

{
T

∑
n≤y

1

n2−2σ−ε
+

∑
n≤y

1

n1−2σ−ε

}

 c(z)T n · T n−nσ−1+ε .

(9)

Similarly we also have

I4 , I5 z T n · T n−nσ−1+ε(10)

By Cauchy-Schwarz inequality
∣∣∣∣

∑
n>x

an

∣∣∣∣
2

=
∣∣∣∣

∞∑
j=1

∑
jx<n≤(j+1)x

an

∣∣∣∣
2

=
∣∣∣∣

∞∑
j=1

j− 1+ε
2 j

1+ε
2

∑
jx<n≤(j+1)x

an

∣∣∣∣
2


( ∑

j

j−1−ε

)( ∑
j

j1+ε

∣∣∣∣
∑

jx<n≤(j+1)x

an

∣∣∣∣
2)

ε

( ∞∑
j=1

j1+ε

∣∣∣∣
∑

jx<n≤(j+1)x

an

∣∣∣∣
2)

.

We apply this inequality to the integral I3, then

I3 =
∑

|m|≤T

∫ 2T

T

∣∣∣∣
∑
n>x

am(n)

ns+it
e−( n

x )2
∣∣∣∣
2

· |L−1
z (s + it, χλm)|2dt

z

∞∑
j=1

j1+ε
∑

|m|≤T

∫ 2T

T

∣∣∣∣
∑

jx<n≤(j+1)x

am(n)

ns+it
e−( n

x )2
∣∣∣∣
2

dt

z T n−1
∞∑

j=1

j1+εe−j2
∫ 2T

T

∣∣∣∣
∑

jx<n≤(J+1)x

am(n)

ns+it

∣∣∣∣
2

dt

z T n−1
∞∑

j=1

j1+εe−j2{T (jT
n
2 )1−2σ+ε + (jT

n
2 )2−2σ+ε}

z T n · T n−nσ−1+ε .

(11)

Similarly we obtain

I6 z T n · T n−nσ−1+ε(12)
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From (7), (8), (9), (10), (11) and (12), we have

∑
T <mi≤2T

∫ 2T

T

∫∫
C1

|L−1
z (s + it, χλm) · L(s + it, χλm) − 1|2dσdτdt

C1 T n(z1−2σ1+ε + c(z)T n−nσ1−1+ε)

where σ1 = maxs∈C1 σ . Since σ1 > 1 − 1
n

, if we take z0 > 0 sufficiently large, then for any
z > z0 and T > T (z) we have

1

T n

∑
T <mi≤2T

∫ 2T

T

∫∫
C1

|L−1
z (s + it, χλm) · L(s + it, χλm) − 1|2dσdτdt

< ε3(1 − δ′) .

(13)

We assume that the measure of the set B ′
T ,z is smaller than δ′T n. It implis that

1

T n
µ′

{
(m, t) ∈ [0, T ]n

∣∣∣∣
∫∫

C1

× |L−1
z (s + it, χλm) · L(s + it, χλm) − 1|2dσdτ ≥ ε2

}
> 1 − δ′ .

It contradicts (12) clearly. Hence we obtain Lemma 1 when χ is primitive. In general case,
let χ1 (mod q̃1) be a primitive character induced by χ , then it holds that

L(s, χλm) =
∏
�|�

(
1 − χ1λ

m(p)

Nps

)
L(s, χ1λ

m) .

For sufficiently large z, we have the similar formula between Lz(s, χλm) and Lz(s, χ1λ
m).

By these formula, we have

log L(s, χλm) − log Lz(s, χλm) = log L(s, χ1λ
m) − log Lz(s, χ1λ

m) .

Therefore we complete the proof of Lemma 1.

4. The proof of Lemma 2

The next result plays an essencial role in the study of value distribution of zeta functions
with respect to t-aspect.

LEMMA 4. Let p1, · · · , pr be prime numbers relatively prime. Then a
r-dimention curve

γ (t) = (t log p1, · · · , t log pr) (t ∈ R)

is uniformly distributed (mod 1). More precisely, we have the following two properties.
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(i) For every Jordan measurable set A of the unit cube in Rr , it holds that

lim
T →∞

1

T
µ{t ∈ [0, T ] | γ (t) ∈ A (mod 1)} = m(A)

where m(A) is the volume of A.
(ii) Let D be a closed and Jordan measurable subregion of the unit cube in Rr and Ω

be a set of complex valued functions on D. If Ω is uniformly bounded and equicontinuous,
then the following relation holds uniformly with respect to f ∈ Ω

lim
T →∞

1

T

∫ ′
f ({γ (t)})dt =

∫
D

f (x)dx1 · · · dxr

where
∫ ′ denotes the integral over t ∈ (0, T ) for which γ (t) ∈ D (mod 1).

This lemma is easily obtained by the fact that log pi are linearly independent over Q and
the Kronecker-Weyl theorem. We refer to Appendix of [7] in detail.

For a prime number p, we denote by xp the number of different prime factors of p in K

and pp,1, · · · , pp,xp such prime factors. We define the set

P = {pp,i

∣∣ (q, p) = 1, 1 ≤ i ≤ xp − 1} ∪ {pp,i | (q, p) �= 1, (q, pp,i) = 1} .

It means that for any p1, · · · , pr ∈ P, there is no prime number p which divides any ideals
generated by pi . We quote Lemma 2 in [12].

LEMMA 5. Let θ̄ = (θ�)�∈P, θ� ∈ R and 0 < δ < 1
2 . For any finite subset A of P we

have

lim
T →∞

1

(2T )n−1 �

{
|m| ≤ T

∣∣∣∣
∥∥∥∥θ� − 1

2π
arg λm(p)

∥∥∥∥ < δ (p ∈ A)

}
= (2δ)�A

where ‖y‖ = minn∈Z |y − n|.
This lemma is an analogue of Lemma 4 with respect to m-aspect. It is proved by using

the uniqueness of the factorization into prime ideals and the definition of Grössencharacters.
Now we prove Lemma 2. We denote the decomposition of a prime number p in K

p = p
y1
p,1 · · · pyxp

p,xp
, Npp,i = pzi .

Then we have

log Lz(s, χλm) =
∑
p≤z

xp∑
i=1

log

(
1 − χλm(pp,i)

pzi s

)−1

=
∑
p≤z

xp∑
i=1

∞∑
k=1

χλm(pk
p,i)

kpkzis
.
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We take sufficiently large y > 0 and split the sum over p ≤ z into the ones over p ≤ y and
y < p ≤ z. Let N = [2 log y] and divide the sum over k into three parts, k = 1, 2 ≤ k ≤ N

and k > N . For partial sums, we have the estimates

∑
y<p≤z

xp∑
i=1

∞∑
k=2

χλm(pk
p,i)

kpkzi s
K

∑
y<p

1

p2σ
 y1−2σ ,

∑
p≤y

xp∑
i=1

∑
k>N

χλm(pk
p,i)

kpkzis
K y2−Nσ  y1−2σ .

Hence

log Lz(s, χλm) =
∑

y<p≤z

xp∑
i=1

χλm(pp,i)

pzi s
+ l(s, y,m) + O(y1−2σ )(14)

where

l(s, y,m) =
∑
p≤y

xp∑
i=1

∑
k≤N

χλm(pk
p,i)

kpkzis
.

Now we introduce the denseness lemma.

LEMMA 6. Let y > 0, C be a simply connected compact set in the critical strip 1
2 <

�s < 1 and h(s) be a continuous function on C which is analytic in the interior of C. Then
there exists ν0 = ν0(C, h, y) > 0 such that for any ν > ν0 we can choose θp ∈ [0, 1) (y <

p ≤ ν) for which

max
s∈C

∣∣∣∣
∑

y<p≤ν

xp∑
i=1

χ(pp,i)e(ziθp)

pzi s
− h(s)

∣∣∣∣  y− 1
2

holds.

PROOF. By applying the general denseness lemma in [8], it is enough to prove a positive
density of the set

{
p :prime number

∣∣∣∣
∣∣∣∣

xp∑
i=1

χ(pp,i)

∣∣∣∣ > η

}

for some η > 0. It is assured by the decomposition theorem of class field theory. We refer to
section 4 in [10] in detail. �

For sufficiently large y > 0 we set

h(s) = g(s) − l(s, y, 0)
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and take ν > ν0(y, C, h) such that

ν1−2σ <
1

2
ε3 .

We choose θp ∈ [0, 1) for h(s) and ν. Then by (14) and Lemma 6 we have

max
s∈C

∣∣∣∣ log Lz(s + it, χλm) − g(s)

∣∣∣∣

≤ max
s∈C

∣∣∣∣
∑

y<p≤z

xp∑
i=1

χλm(pp,i)

pzi (s+it )
+ l(s + it, y,m) − g(s)

∣∣∣∣ + ε

≤ max
s∈C

∣∣∣∣
∑

y<p≤z

xp∑
i=1

χλm(pp,i)

pzi (s+it )
−

∑
y<p≤z

xp∑
i=1

χ(pp,i)e(ziθp)

pzi s

∣∣∣∣

+ max
s∈C

∣∣∣∣l(s + it, y,m) − l(s, y, 0)

∣∣∣∣ + max
s∈C

∣∣∣∣
∑

ν<p≤z

xp∑
i=1

χλm(pp,i)

pzi s

∣∣∣∣ + ε .

(15)

Let h(q̃) be the ray class number modulo q̃. Then for any m ∈ Zn−1, (λm)h(�̃) is trivial on Q.
For a prime number p

0 =
∥∥∥∥ 1

2π
arg λh(�̃)m(p)

∥∥∥∥ =
∥∥∥∥

xp∑
i=1

1

2π
arg λh(�̃)m(p

yi

p,i)

∥∥∥∥
where h(q̃)m = (h(q̃)m1, · · · , h(q̃)mn−1). Hence if we assume

∥∥∥∥ 1

2π
arg λh(�̃)m(pp,i)

∥∥∥∥ <
δ

n
(1 ≤ i ≤ xp − 1)

for sufficiently small δ > 0, it follows that
∥∥∥∥ 1

2π
arg λh(�̃)m(pp,xp )

∥∥∥∥ < δ .

Therefore if we choose sufficiently small δ > 0 against ε′ > 0 and define the sets

VT =
{
t ∈ [0, T ]

∣∣∣∣ ‖t 1
2π

log p‖ < δ (p ≤ y)

‖t 1
2π

log p − θp‖ < δ (y < p ≤ ν)

}
,

UT =
{
|m| ≤ T

∣∣∣∣
∥∥∥∥ 1

2π
arg λh(�̃)m(pp,i)

∥∥∥∥ < δ

(
p ≤ ν

1 ≤ i ≤ xp − 1

)}
,

then for any (t,m) ∈ VT × UT we have
∣∣∣∣χλm(pp,i)

pzi (s+it )
− χ(pp,i)

pzi s

∣∣∣∣ < ε′ (p ≤ y)
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and ∣∣∣∣χλm(pp,i)

pzi (s+it )
− χ(pp,i)e(ziθp)

pzi s

∣∣∣∣ < ε′ (y < p ≤ ν) .

Further if we take sufficiently small ε′ for ε, then the left-hand side of (14) is

< ε + max
s∈C

∣∣∣∣
∑

ν<p≤z

xp∑
i=1

χλm(pp,i)

pzi (s+it )

∣∣∣∣
for (t,m) ∈ VT × UT . According to Lemma 4(i) and Lemma 5, we have the positive density

lim
T →∞

µ′(VT × UT )

T n
= β > 0

where we note that β does not depend on z.
Lastly we show that the third term of the right-hand side of (14) is small enough for

almost all (t,m) ∈ VT × UT . We consider the second moment

∑
m∈UT

∫
VT

∫∫
C

∣∣∣∣
∑

ν<p≤z

xp∑
i=1

χλm(pp,i)

pzi (s+it )

∣∣∣∣
2

dσdτdt

and the set

Ω =
{
f (u) =

∑
ν<p≤z

xp∑
i=1

χλm(pp,i)e(ziup)

pzi s

∣∣∣∣ m ∈ UT , s ∈ C

}

where u = (up), up ∈ R. Because of |χλm(pp,i)| = 1, the set Ω is uniformly bounded and
equicontinuous. Hence we apply Lemma 4(ii) and have

∫ ′ ∣∣∣∣
∑

ν<p≤z

xp∑
i=1

χλm(pp,i)

pzi (s+it )

∣∣∣∣
2

dt = µ(VT ) ×
∫ 1

0
· · ·

∫ 1

0

∣∣∣∣
∑

ν<p≤z

xp∑
i=1

χλm(pp,i)e(ziup)

pzi s

∣∣∣∣
2

du

 µ(VT ) ×
∑
ν<p

1

p2σ
 µ(VT )ν1−2σ

for m ∈ UT uniformly. Hence we have

∑
m∈UT

∫
VT

∫∫
C

∣∣∣∣
∑

ν<p≤z

xp∑
i=1

χλm(pp,i)

pzi (s+it )

∣∣∣∣
2

dσdτdt < µ′(UT × VT )
ε3

2
.

By the similar argument in the proof of Lemma 1, there exist subsets U ′
T ⊂ UT and V ′

T ⊂ VT

which have the positive density

lim
T →∞

µ′(V ′
T × U ′

T )

T n
>

β

2
> 0 .
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For any (m, t) ∈ U ′
T × V ′

T and z > z1 we have

max
s∈C

∣∣∣∣
∑

ν<p≤z

xp∑
i=1

χλm(pp,i)

pzi (s+it )

∣∣∣∣ < ε .

Therefore the proof of Lemma 2 is completed.
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