On Generalized Circuit of the Collatz Conjecture

Tomoaki MIMURO

Hosei University
(Communicated by K. Shinoda)

Abstract

The Collatz conjecture is that there exists a positive integer n which satisfies $f^{n}(m)=1$ for any integer $m \geq 3$, where f is the function on the rational number field defined by $f(m)=m / 2$ if the numerator of m is even and $f(m)=(3 m+1) / 2$ if the numerator of m is odd. Let m be a rational number such that $f^{n}(m)=m>1$. Then we show that, if m has some simple sequences, then the total number of positive integer m is finite, by estimating $f(m)-m$.

1. Introduction

We define a function f on the set of the rational numbers by

$$
f(m)= \begin{cases}\frac{m}{2} & \text { if } m \text { is even } \\ \frac{3 m+1}{2} & \text { if } m \text { is odd }\end{cases}
$$

where m is a positeive integer. We denote by $f^{n}=f \circ f^{n-1}$ the n-fold iterate of f, for each positive integer n. The Collatz conjecture is that there exists a positive integer n which satisfies $f^{n}(m)=1$ for any integer $m \geq 2$. We call m the "starting-number" and the smallest n the "total-sequence".

This conjecture is equivalent to the next two conditions for every odd integer $m>1$:
(1) $f^{n}(m) \neq m$ for any $n \geq 1$. (If $f^{n}(m)=m$ holds, then we call m "cycle-number".)
(2) m has total-sequence. $\left(f^{n}(m)\right.$ dose not diverge.)

We consider the condition, (1) and assume that m is odd, since even number is mapped to an odd number by iterating f. We know only one cycle-number: $m=1$. We call it the "trivial-cycle".

Let m be a cycle-number. We define the numbers $l_{i}(i \geq 0)$ and $m_{i}(i \geq 1)$ by the following rules:
(i) We put $l_{0}=-1$ and $m_{1}=m$.
(ii) For $i \geq 1, l_{i}$ is the least positive integer such that $f^{l_{i}+1}\left(m_{i}\right)$ is odd.
(iii) We put $m_{i+1}=f^{l_{i}+1}\left(m_{i}\right)$.

If $m=m_{1}=m_{k+1}$, then we call k "odd-cycle-sequence". We write

$$
m_{1}=\left\langle l_{1}+1, l_{2}+1, \cdots, l_{k}+1\right\rangle \quad\left(l_{i} \geq 0\right)
$$

We can easily see that

$$
m_{i}=\left\langle l_{i}+1, l_{i+1}+1, \cdots, l_{k}+1, l_{1}+1, \cdots, \mathfrak{1}_{i-1}+1\right\rangle . \quad(i=1, \cdots, k)
$$

We can write trivial-cycle

$$
1=\langle 2\rangle .
$$

If m is a cycle-number, and $f^{n}(m)=m$, then we call n a "cycle-sequence". We can easily see that

$$
n=\sum_{i=1}^{k}\left(l_{i}+1\right) .
$$

THEOREM 1.1. Let $m=\left\langle l_{1}+1, l_{2}+1, \cdots, l_{k}+1\right\rangle$ and $l_{0}=-1$. Then we have

$$
m=\frac{\sum_{i=1}^{k} 3^{k-i} \cdot 2^{\sum_{j=0}^{i-1}\left(l_{j}+1\right)}}{2^{n}-3^{k}} .
$$

Theorem 1.1 was proved in [1].
THEOREM 1.2. Suppose $m=\left\langle 1, \cdots, 1, l_{k}+1\right\rangle$ is a cycle-number, then $m=1=\langle 2\rangle$. Theorem 1.2 was proved in [2]. We call $\left\langle 1, \cdots, 1, l_{k}+1\right\rangle$ "circuit".

THEOREM 1.3. The total number of positive integer of $m_{1}=\langle 1, \cdots, 1, l+1, \cdots, l+$ 1) is finite.

Theorem 1.3 was proved in [3]. This theorem has necessary condition $n<22033$, where n is cycle-sequence.

The conjectuer has been verified with a computer up to $m=2^{40} \simeq 1.1 \times 10^{12}$ by N . Yoneda (Stated in [7]).

THEOREM 1.4. Let m be a positive cycle-number, $\min \left\{m_{1}, m_{2}, \cdots m_{k}\right\}>2^{40}, n$ be cycle-sequence of m_{1}. We have

$$
n=301994 a+17087915 b+85137581 c,
$$

where a, b, c are nonnegative integers, $b>0, a c=0$. In particular, the smallest admissible values for n is 17087915 .

Combining Theorem 1.3, Theorem 1.4 and computing check, we have
COROLLARY 1.5. $l \geq 1, m_{1}=\langle 1, \cdots, 1, l+1, \cdots, l+1\rangle$ is not a positive integer.
We shall prove the next theorem in Section 3.

THEOREM 1.6. $l \geq 1, m=\left\langle 1, \cdots, 1, l_{1}+1,1, \cdots, 1, l_{2}+1\right\rangle$ is not a positive integer.
This theorem is a generalization of Theorem 1.2.
We call $m=\left\langle 1, \cdots, 1, l_{1}+1,1, \cdots, 1, l_{2}+1\right\rangle$ "crossing-circuit".

2. Some lemmas

Let $1 / 2<3^{k} / 2^{n}<1$, then we have

$$
\begin{aligned}
(n-1) \log _{3} 2 & <k<n \log _{3} 2 \\
k \log _{2} 3 & <n<k \log _{2} 3+1 .
\end{aligned}
$$

LEMMA 2.1. Let $1 / 2<3^{k} / 2^{n}<1$, then

$$
\begin{aligned}
& k=\left\lfloor n \log _{3} 2\right\rfloor=n \log _{3} 2+c_{1} \quad\left(-\log _{3} 2<c_{1}<0\right) \\
& n=\left\lceil k \log _{2} 3\right\rceil=k \log _{2} 3+c_{2} \quad\left(0<c_{2}<1\right)
\end{aligned}
$$

$\lfloor x\rfloor$ means the greatest integer not exceeding x, and $\lceil x\rceil$ means the smallest integer exceeding x.

THEOREM 2.2. Let $\alpha_{1}, \alpha_{2}>1$ be multiplicatively independent real algebraic numbers, and $D=\left[\mathbf{Q}\left(\alpha_{1}, \alpha_{2}\right): \mathbf{Q}\right]$. Let A_{1}, A_{2} denote real numbers >1 such that

$$
\log A_{j} \geq \max \left\{h\left(\alpha_{j}\right), \frac{\log \alpha_{j}}{D}, \frac{1}{D}\right\}, \quad(j=1,2)
$$

where $h(\alpha)$ is absolute logarithmic height of α. Let b_{1}, b_{2} be positive integers, and put

$$
\Lambda=b_{1} \log \alpha_{1}-b_{2} \log \alpha_{2}
$$

Then

$$
\log |\Lambda| \geq-32.31 D^{4}\left(\max \left\{\log B+0.18, \frac{10}{D}, \frac{1}{2}\right\}\right)^{2}\left(\log A_{1}\right)\left(\log A_{2}\right)
$$

where

$$
B=\frac{b_{1}}{D \log A_{2}}+\frac{b_{2}}{D \log A_{1}}
$$

Theorem 2.2 was proved in [6]. Let $1 / 2<3^{k} / 2^{n}<1$, then

$$
\Lambda=b_{1} \log \alpha_{1}-b_{2} \log \alpha_{2}=n \log 2-k \log 3,
$$

by putting $\alpha_{1}=2, \alpha_{2}=3, b_{1}=n, b_{2}=k$. Using the inequality

$$
\frac{|\log x|}{2}<1-x
$$

for $1 / 2<x<1$, we have

$$
\frac{|\Lambda|}{2}=\frac{1}{2}|k \log 3-n \log 2|=\frac{1}{2}\left|\log \frac{3^{k}}{2^{n}}\right|<1-\frac{3^{k}}{2^{n}} .
$$

And, it follows from Theorem 2.2 that

$$
\log |\Lambda| \geq-32.31 H^{2} \log 3
$$

Hence we have

$$
\left|1-\frac{3^{k}}{2^{n}}\right|>2^{-32.31 H^{2} \log _{2} 3-1}
$$

where $H=\max \{\log B+0.18,10\}$, and

$$
B=\frac{n}{\log 3}+k>\frac{n}{\log 3}+(n-1) \log _{3} 2=n \frac{1+\log 2}{\log 3}-\log _{3} 2
$$

for Lemma 2.1. We assume $H=10$. Then $9.82>\log B$. The inequality

$$
9.82>\log B>\log \left(n \frac{1+\log 2}{\log 3}-\log _{3} 2\right)
$$

says

$$
n \leq 11938 .
$$

Lemma 2.3. Let $1 / 2<3^{k} / 2^{n}<1, n>11938$. Then,

$$
2^{-51.2102 H^{2}-1}<\left|1-\frac{3^{k}}{2^{n}}\right|
$$

where H is $\log B+0.18$.
We consider the denominator of Theorem 1.1. Let $n \geq 3$, then $2^{n}-3^{k} \equiv-3^{k} \equiv$ -3 or $-1 \not \equiv 1$ (mod.8). It follows that;

LEMMA 2.4. The exponential indeterminate equation $2^{n}-3^{k}=1$ has only one positive integral solution $(n, k)=(2,1)$.
$(n, k)=(2,1)$ means trivial-cycle $m=1=\langle 2\rangle$.

3. Proof of Theorem 1.6

Let $m_{1}=\left\langle 1, \cdots, 1, l_{1}+1,1, \cdots, 1, l_{2}+1\right\rangle$ be positive crossing-circuit, $m_{2}=$ $f\left(m_{1}\right)=\left\langle 1, \cdots, 1, l_{1}+1,1, \cdots, 1, l_{2}+1,1\right\rangle . x_{1}, x_{2}$ satisfy $f^{x_{1}+l_{1}}\left(m_{1}\right)=\left\langle 1, \cdots, 1, l_{2}+\right.$ $\left.1,1, \cdots, 1, l_{1}+1\right\rangle, x_{2}=k-x_{1}$. Hence we have $n=x_{1}+l_{1}+x_{2}+l_{2}$. Let $l_{1} \geq 1, l_{2} \geq 1$ for corollary 1.5, and without loss of generality, $x_{1} \geq x_{2}$. Let $n \geq 8$. Then, since Theorem 1.1,

$$
\left\langle l_{1}+1, l_{2}+1\right\rangle=\frac{3+2^{n-l_{2}-1}}{2^{n}-9}, \quad\left\langle 1, l_{1}+1,1, l_{2}+1\right\rangle=\frac{5 \cdot 2^{n-l_{2}-2}+45}{2^{n}-81},
$$

$$
\left\langle 1, l_{1}+1, l_{2}+1\right\rangle=\frac{2^{n-l_{2}-1}+15}{2^{n}-27}
$$

are not positive integers. Hence we have $x_{1} \geq 3$, and

$$
m_{1}=
$$

$$
\frac{3^{k-1}+\cdots+2^{x_{1}-2} \cdot 3^{k-x_{1}+1}+2^{x_{1}-1} \cdot 3^{k-x_{1}}+2^{x_{1}+l_{1}} \cdot 3^{k-x_{1}-1}+\cdots+2^{x_{1}+x_{2}+l_{1}-1}}{2^{n}-3^{k}}
$$

$$
m_{2}=
$$

$$
\frac{3^{k-1}+\cdots+2^{x_{1}-2} \cdot 3^{k-x_{1}+1}+2^{x_{1}+l_{1}-1} \cdot 3^{k-x_{1}}+2^{x_{1}+l_{1}} \cdot 3^{k-x_{1}-1}+\cdots+2^{x_{1}+x_{2}+l_{1}+l_{2}-1}}{2^{n}-3^{k}}
$$

for Theorem 1.1. Since $m_{2}>m_{1}$,

$$
m_{2}-m_{1}=\frac{2^{x_{1}-1}\left\{3^{k-x_{1}}\left(2^{l_{1}}-1\right)+2^{x_{2}+l_{1}}\left(2^{l_{2}}-1\right)\right\}}{2^{n}-3^{k}}
$$

Now, $m_{2}-m_{1}$ is integral, $2^{n}-3^{k}>1$ and $\left(2^{n}-3^{k}, 2^{x_{1}-1}\right)=1$. It follows that

$$
\left(2^{n}-3^{k}\right) \mid\left\{3^{k-x_{1}}\left(2^{l_{1}}-1\right)+2^{x_{2}+l_{1}}\left(2^{l_{2}}-1\right)\right\} .
$$

We consider the right hand. Since $n=x_{1}+l_{1}+x_{2}+l_{2}, k-x_{1}=x_{2}, x_{1} \geq x_{2}$,

$$
\begin{equation*}
1 \leq \frac{3^{k-x_{1}}\left(2^{l_{1}}-1\right)+2^{x_{2}+l_{1}}\left(2^{l_{2}}-1\right)}{2^{n}-3^{k}}<\frac{2^{-x_{1} \log _{2}(4 / 3)-l_{2}}+2^{-x_{1}}}{1-3^{k} / 2^{n}}<\frac{2^{-x_{1} \log _{2}(4 / 3)}}{1-3^{k} / 2^{n}} \tag{*}
\end{equation*}
$$

First, we assume $3^{k} / 2^{n} \leq 1 / 2$. Then, $m_{2}-m_{1}$ is not a positive integer for $(*)$ and $x_{1} \geq 3$.

Next, we assume $1 / 2<3^{k} / 2^{n}<1$. Since Lemma 2.1 and $x_{1} \geq k / 2$ (for $x_{1} \geq x_{2}$ and $\left.k=x_{1}+x_{2}\right)$, then $x_{1}>(n-1)\left(\log _{3} 2\right) / 2$. It follows that

$$
2^{-x_{1} \log _{2}(4 / 3)}<2^{-(n-1) \log _{3}(2 / \sqrt{3})} .
$$

Hence we have

$$
2^{-51.2102 H^{2}-1}<2^{-(n-1) \log _{3}(2 / \sqrt{3})}
$$

for (*) and Lemma 2.3. It means

$$
n<51371
$$

It is a contradiction to Theorem 1.4.

References

[1] C. Bohm and G. Sontacchi, On the existence of cycles of given length in integer sequence like $x_{n+1}=$ $x_{n} / 2$ if x_{n} even, and $x_{n+1}=3 x_{n}+1$ otherwise, Atti Accad. Naz Lincei Rend. Sci. Fis. Mat. Natur. (8) 64 (1978), 260-264.
[2] R. P. Steiner, A Thorem on the Syracuse Problem, Proc. 7th Manitoba Conf. Numerical Mathematics and Computing 1977 Winnipeg (1978), 553-559.
[3] T. Mimuro, On certain simple cycles of the Collatz conjecture, SUT. J. Math. 37 (2001), 79-89.
[4] S. Eliahou, The $3 x+1$ problem: new lower bounds on nontrivial cycle lengths, Discrete Math. 118 (1993), 45-56.
[5] M. Laurent, M. Mignotte et Y. Nesterenko, Formes linéairies en deux logarithmes et déterminante d'interpolation, J. Number Theory 55 (1995), 258-321.
[6] G. J. Wirsching, The Dynamical System Generated by the $3 n+1$ Function, Lecture Notes in Mathematics 1681, Springer-Verlag (1998).
[7] S. WAGON, The Collatz Problem, Math. Intelligencer 7 (1985) 72-76.

Present Address:
Department of System Engineering, Hosei University,
Koganei, Tokyo, 184-8584 Japan.
e-mail: mimuro@cc9.ne.jp

