The Gauss-Bonnet and Chern-Lashof Theorems in a Simply Connected Symmetric Space of Compact Type

Naoyuki KOIKE
Tokyo University of Science
(Communicated by Y. Ohnita)

Abstract

In this paper, we prove the theorems of the Gauss-Bonnet and Chern-Lashof types for low dimensional compact submanifolds in a simply connected symmetric space of compact type. In particular, in the case where the ambient space is a sphere, we need not to give the restriction for the dimension of the submanifold. Those proofs are performed by applying the Morse theory to squared distance functions.

1. Introduction

For an n-dimensional compact immersed submanifold M in the m-dimensional Euclidean space $\mathbf{R}^{m}(m>n)$, it is well-known that the following Gauss-Bonnet and ChernLashof theorems hold:

$$
\begin{equation*}
\frac{(-1)^{n}}{\operatorname{Vol}\left(S^{m-1}(1)\right)} \int_{\xi \in U^{\perp} M} \operatorname{det} A_{\xi} \omega_{U^{\perp} M}=\chi(M), \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{\operatorname{Vol}\left(S^{m-1}(1)\right)} \int_{\xi \in U^{\perp} M}|\operatorname{det} A \xi| \omega_{U^{\perp} M} \geq \sum_{k=0}^{n} b_{k}(M, \mathbf{F}) \tag{1.2}
\end{equation*}
$$

(see [1], [2], [3]), where $\operatorname{Vol}\left(S^{m-1}(1)\right)$ is the volume of the $(m-1)$-dimensional unit sphere, A is the shape tensor of $M, \omega_{U^{\perp} M}$ is the standard volume element on the unit normal bundle $U^{\perp} M$ of $M, \chi(M)$ is the Euler characteristic of M and $b_{k}(M, \mathbf{F})$ is the k-th Betti number of M with respect to an arbitrary coefficient field \mathbf{F}. These relations are proved by applying the Morse theory to height functions $h_{v}\left(v \in \mathbf{R}^{m}\right)$. The topology of a submanifold in a general complete and simply connected Riemannian manifold should be determined by both the extrinsic curvature A of the submanifold and the curvature R of the ambient space. So we [5] proposed the following problem:

[^0]Problem. Find functions $F_{A, R}^{i}(i=1,2)$ on $U^{\perp} M$ determined by both A and R such that

$$
\int_{\xi \in U^{\perp} M} F_{A, R}^{1}(\xi) \omega_{U \perp_{M}}=\chi(M)
$$

and

$$
\int_{\xi \in U^{\perp} M} F_{A, R}^{2}(\xi) \omega_{U \perp_{M}} \geq \sum_{k=0}^{n} b_{k}(M, \mathbf{F})
$$

hold for each n-dimensional compact immersed submanifold M in an arbitrary complete and simply connected Riemannian manifold N.

It is conjectured that the functions $F_{A, R}^{i}(i=1,2)$ are rather complex. Hence we will obtain the equality and the inequality for practical use in some special cases. By applying the Morse theory to squared distance functions, we [5] proved the theorems of Gauss-Bonnet and Chern-Lashof types for a compact immersed submanifold in a simply connected symmetric space of non-positive curvature. As conjectured, the functions corresponding to $F_{A, R}^{i}(i=$ 1,2) were rather complex. In this paper, we prove the theorems of such types for a low dimensional compact immersed submanifold M in a simply connected symmetric space $N=$ G / K of compact type. We prepare to state those theorems. Define the functions \mathfrak{K}_{1} and \mathfrak{K}_{2} on $U^{\perp} M$ as follows:

$$
\begin{equation*}
\mathfrak{K}_{1}(\xi):=\frac{1}{\operatorname{Vol}(N)} \int_{0}^{r_{\xi}} \operatorname{det}\left(\operatorname{pr}_{T} \circ \frac{\sqrt{R_{\xi}}}{\tan \left(s \sqrt{R_{\xi}}\right)}-A_{\xi}\right) \operatorname{det} \frac{\sin \left(s \sqrt{R_{\xi}}\right)}{\sqrt{R_{\xi}}} d s \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
\mathfrak{K}_{2}(\xi):=\frac{1}{\operatorname{Vol}(N)} \int_{0}^{r_{\xi}}\left|\operatorname{det}\left(\operatorname{pr}_{T} \circ \frac{\sqrt{R_{\xi}}}{\tan \left(s \sqrt{R_{\xi}}\right)}-A_{\xi}\right)\right| \operatorname{det} \frac{\sin \left(s \sqrt{R_{\xi}}\right)}{\sqrt{R_{\xi}}} d s \tag{1.4}
\end{equation*}
$$

$\left(\xi \in U^{\perp} M\right)$, where A is the shape tensor of $M, \sqrt{R_{\xi}}$ is the positive operator with $\left(\sqrt{R_{\xi}}\right)^{2}=$ $R(\cdot, \xi) \xi(R:$ the curvature tensor of $N), r_{\xi}$ is the first conjugate radius of direction $\xi, \operatorname{Vol}(N)$ is the volume of N and pr_{T} is the orthogonal projection of $\left.T N\right|_{M}$ onto $T M$.

REMARK 1.1. (i) In case of $N=S^{m}(c)$ (the m-dimensional sphere of constant curvature c), we have

$$
\begin{equation*}
\mathfrak{K}_{1}(\xi):=\frac{1}{\operatorname{Vol}\left(S^{m}(1)\right)} \int_{0}^{\pi} \operatorname{det}\left(\sqrt{c} \cot s \cdot \mathrm{id}-A_{\xi}\right) \sin ^{m-1} s d s \tag{1.5}
\end{equation*}
$$

$$
\begin{equation*}
\mathfrak{K}_{2}(\xi):=\frac{1}{\operatorname{Vol}\left(S^{m}(1)\right)} \int_{0}^{\pi}\left|\operatorname{det}\left(\sqrt{c} \cot s \cdot \mathrm{id}-A_{\xi}\right)\right| \sin ^{m-1} s d s \tag{1.6}
\end{equation*}
$$

where id is the identity transformation of $T M$. Substituting $c=0$ into (1.5) (resp. (1.6)) formally and using $\int_{0}^{\pi} \sin ^{m-1} s d s=\frac{\operatorname{Vol}\left(S^{m}(1)\right)}{\operatorname{Vol}\left(S^{m-1}(1)\right)}$, we have $\mathfrak{K}_{1}(\xi)=\frac{(-1)^{n}}{\operatorname{Vol}\left(S^{m-1}(1)\right)} \operatorname{det} A_{\xi}$ (resp. $\left.\mathfrak{K}_{2}(\xi)=\frac{1}{\operatorname{Vol}\left(S^{m-1}(1)\right)}\left|\operatorname{det} A_{\xi}\right|\right)$.
(ii) The first conjugate radius r_{ξ} is explicitly described as $r_{\xi}=\frac{\pi}{\left|\alpha_{0}\left(g_{*}^{-1} \xi\right)\right|}$ (see Lemma 2.1), where g is a representative element of the base point of ξ and α_{0} is the highest root in the positive root system with respect to a maximal abelian subspace (equipped with some lexicographical ordering) containing $g_{*}^{-1} \xi$.

We prove the following theorems of Gauss-Bonnet and Chern-Lashof types for compact submanifolds in a simply connected symmetric space of compact type.

ThEOREM A. Let M be an n-dimensional compact immersed submanifold in a simply connected symmetric space N of compact type. If $C_{M}:=\bigcup_{x \in M} C_{x}\left(C_{x}\right.$: the cut locus of x in N) is of measure zero, then we have

$$
\begin{gather*}
\int_{\xi \in U^{\perp} M} \mathfrak{K}_{1}(\xi) \omega_{U{ }^{\perp} M}=\chi(M), \tag{1.7}\\
\int_{\xi \in U^{\perp} M} \mathfrak{K}_{2}(\xi) \omega_{U^{\perp} M} \geq \sum_{k=0}^{n} b_{k}(M, \mathbf{F}) . \tag{1.8}
\end{gather*}
$$

In particular, if M is taut in the sense of this paper (see §3), then the equality sign holds in the inequality (1.8).

REMARK 1.2. Let m_{N} be the maximal dimension of the cut locus C_{x} in N. If $\operatorname{dim} M \leq \operatorname{dim} N-m_{N}-1$, then C_{M} is of measure zero. See Table 1 about m_{N} and $\operatorname{dim} N-m_{N}-1$ for irreducible simply connected symmetric space N 's of compact type, where we note that $\operatorname{dim} N-m_{N}-1$ is equal to the multiplicity of the highest root in the root system associated with N (see Lemma 2.1). For the product $N:=N_{1} \times \cdots \times N_{l}$ of

Table 1.

N	m_{N}	$\operatorname{dim} N-m_{N}-1$
$S^{m}(c)$	0	$m-1$
$S p(m) / S p(l) \times S p(m-l)$ $\left(1 \leq l \leq\left[\frac{m}{2}\right]\right)$	$4 l(m-l)-4$	3
$\mathbf{O} P^{2}$		
$S U(2 m) / S p(m)$	$2 m^{2}-m-6$	4
E_{6} / F_{4}	17	8
G	-	2
other	-	1

(G: an irreducible simply connected compact Lie group)
irreducible simply connected symmetric space N_{i} 's $(i=1, \cdots, l)$ of compact type, we have $\operatorname{dim} N-m_{N}-1=\min _{1 \leq i \leq l}\left(\operatorname{dim} N_{i}-m_{N_{i}}-1\right)$.

In the case where the ambient space is the m-dimensional sphere $S^{m}(c)$ of constant curvature c, we obtain the following result.

THEOREM B. (i) Let M be a $2 n$-dimensional compact immersed submanifold in $S^{m}(c)$, where $1 \leq n \leq m-1$. Then we have

$$
\begin{align*}
\frac{1}{v_{m}} \sum_{i=0}^{n}\left(\sum_{k=0}^{n-i}(-1)^{k}\binom{2 n}{2 i}\binom{n-i}{k} \frac{v_{m-2 n+2 i+2 k}}{v_{m-2 n+2 i+2 k-1}}\right) \tag{1.9}\\
\times c^{n-i} \int_{\xi \in U^{\perp} M} H_{2 i}(\xi) \omega_{U \perp_{M}}=\chi(M)
\end{align*}
$$

where $H_{2 i}(\xi)$ is the $2 i$-th mean curvature of direction ξ of M and $v_{i}:=\operatorname{Vol}\left(S^{i}(1)\right)(i \geq 1)$ and $v_{0}=2$.
(ii) Let M be an n-dimensional compact immersed submanifold in $S^{m}(c)$. Then we have

$$
\begin{align*}
& \frac{1}{v_{m}} \sum_{i=0}^{\left[\frac{n}{2}\right]} a_{i} c^{i} \int_{\xi \in U^{\perp} M}\left|H_{n-2 i}(\xi)\right| \omega_{U \perp_{M}} \\
& \quad+\frac{2}{v_{m}} \sum_{i=0}^{\left[\frac{n-1}{2}\right]} b_{i} \sqrt{c}^{2 i+1} \int_{\xi \in U^{\perp} M}\left|H_{n-2 i-1}(\xi)\right| \omega_{U \perp_{M}} \geq \sum_{k=0}^{n} b_{k}(M, \mathbf{F}), \tag{1.10}
\end{align*}
$$

where $H_{n-2 i}(\xi)$ and $H_{n-2 i-1}(\xi)$ are as in (i), $a_{i}=\sum_{k=0}^{i}(-1)^{k}\binom{n}{2 i}\binom{i}{k} \times \frac{v_{m-2 i+2 k}}{v_{m-2 i+2 k-1}}$ and $b_{i}=\sum_{k=0}^{i}(-1)^{k}\binom{n}{2 i+1}\binom{i}{k} \frac{1}{m-2 i+2 k-1}$.

REMARK 1.3. The relation (1.9) for $c=1$ coincides with the relation (1.7) of [4] obtained by T. Ishihara because $v_{i}=\frac{(i+1) \pi}{\Gamma\left(\frac{i+3}{2}\right)}(i \geq 1)$, where Γ is the Gamma function. The proof of T. Ishihara is entirely different from the proof in this paper.

In particular, when $\operatorname{dim} M=2$, we obtain the following relations.
Corollary C. Let M be a 2-dimensional compact immersed submanifold in $S^{m}(c)$.
Then we have

$$
\begin{equation*}
\frac{1}{v_{m-1}} \int_{\xi \in U^{\perp} M} K(\xi) \omega_{U^{\perp} M}+\left(\frac{v_{m-2}}{v_{m}}-\frac{v_{m-3}}{v_{m-1}}\right) c \operatorname{Vol}(M)=2-2 g, \tag{1.11}
\end{equation*}
$$

$$
\begin{gather*}
\frac{1}{v_{m-1}} \int_{\xi \in U^{\perp} M}|K(\xi)| \omega_{U^{\perp} M}+\frac{4 \sqrt{c}}{(m-1) v_{m}} \int_{\xi \in U^{\perp} M}|H(\xi)| \omega_{U^{\perp} M} \tag{1.12}\\
+\left(\frac{v_{m-2}}{v_{m}}-\frac{v_{m-3}}{v_{m-1}}\right) c \operatorname{Vol}(M) \geq 2+2 g
\end{gather*}
$$

where $K(\xi)$ (resp. $H(\xi))$ is the Gaussian curvature (resp. the mean curvature) of direction ξ of M and g is the genus of M.

Also, we have the following inequality for closed curves in $S^{m}(c)$.
Corollary D. Let $\gamma:[0, l] \rightarrow S^{m}(c)$ be a closed curve in $S^{m}(c)(m \geq 2)$ parametrized by the arclength s and $\kappa:[0, l] \rightarrow \mathbf{R}_{+} \cup\{0\}$ be the curvature of γ. Then we have

$$
\frac{v_{m-3}}{(m-2) v_{m-1}} \int_{0}^{l} \kappa d s+\frac{\sqrt{c} v_{m-2} l}{(m-1) v_{m}} \geq 1 \quad(m \geq 3)
$$

and

$$
\frac{1}{v_{m-1}} \int_{0}^{l} \kappa d s+\frac{\sqrt{c} v_{m-2} l}{(m-1) v_{m}} \geq 1 \quad(m=2)
$$

REMARK 1.4. These inequalities are different from the inequality of Proposition 1 in [6] proved by E. Teufel.

Also, we have the following inequality for closed curves in a simply connected rank one symmetric space $\mathbf{F} P^{m}(c)$ of compact type, where \mathbf{F} implies the complex number field \mathbf{C}, the quaternion algebra \mathbf{Q} or the Cayley algebra $\mathbf{O}, m=2$ when $\mathbf{F}=\mathbf{O}$ and c is the maximal sectional curvature of the space.

Corollary E. Let $\gamma:[0, l] \rightarrow \mathbf{F} P^{m}(c)$ be a closed curve in $\mathbf{F} P^{m}(c)$ parametrized by the arclength s and $\kappa:[0, l] \rightarrow \mathbf{R}_{+} \cup\{0\}$ be the curvature of γ. Then we have

$$
\begin{aligned}
& \frac{4 \alpha_{q m-1, q-1} v_{q m-1} v_{q m-3}}{v_{q m-2}} \int_{0}^{l} \kappa d s+\sqrt{c} v_{q-2} v_{q m-q-1}\left(a \beta_{m, q}+b \alpha_{q m-2, q}\right) l \\
& \geq \frac{1}{2^{q m-2}} \operatorname{Vol}\left(\mathbf{F} P^{m}(c)\right) \sqrt{c}^{q m+1}
\end{aligned}
$$

where $q=2($ when $\mathbf{F}=\mathbf{C}), 4($ when $\mathbf{F}=\mathbf{Q})$ or $8($ when $\mathbf{F}=\mathbf{O}), \alpha_{i, j}=\int_{0}^{\frac{\pi}{2}} t \sin ^{i} t \cos ^{j} t d t$, $\beta_{m, q}=\int_{0}^{\frac{\pi}{2}} t|\cos 2 t| \sin ^{q m-2} t \cos ^{q-2} t d t, \quad a=\sum_{k=0}^{\frac{q}{2}}(-1)^{k}\binom{\frac{q}{2}}{k} \frac{v_{q m-q+2 k}}{v_{q m-q+2 k-1}}, \quad b=$ $\sum_{k=0}^{q-2}(-1)^{k}\binom{\frac{q-2}{2}}{k} \frac{v_{q m-q+2 k+2}}{v_{q m-q+2 k+1}}$ and v_{i} is as in Theorem B.

2. Basic notions and facts

In this section, we recall the basic notions and facts. Let $N=G / K$ be a simply connected symmetric space of compact type. Let $w \in U_{p} N$, where $U_{p} N$ is the unit tangent sphere of N at p. Denote by γ_{w} the (non-extendable) geodesic in N with $\dot{\gamma}_{w}(0)=w$ and denote by \exp the exponential map of N. If there exists a non-zero Jacobi field J along γ_{w} with $J(0)=0$ and $J\left(s_{0}\right)=0\left(s_{0}>0\right)$, then we call s_{0} a conjugate radius of direction w and call $\exp \left(s_{0} w\right)\left(=\gamma_{w}\left(s_{0}\right)\right)$ a conjugate point of direction w. Also, we call the minimum of conjugate radii of direction w the first conjugate radius of direction w and denote it by r_{w}. We call $\exp \left(r_{w} w\right)$ the first conjugate point of direction w. Set $\tilde{C}_{p}:=\left\{r_{w} w \mid w \in U_{p} N\right\}$ and $C_{p}:=\exp \left(\tilde{C}_{p}\right)$. This set C_{p} is called the first conjugate locus of p, which coincides with the cut locus of p because N is a simply connected symmetric space of compact type. For $w \in T N$ with $\|w\|<r_{w}$, we set

$$
D_{w}^{c o}:=\cos \sqrt{R_{w}}, \quad D_{w}^{s i}:=\frac{\sin \sqrt{R_{w}}}{\sqrt{R_{w}}}, \quad D_{w}^{c t}:=\frac{\sqrt{R_{w}}}{\tan \sqrt{R_{w}}}
$$

for simplicity, where $\sqrt{R_{w}}$ is the positive operator with ${\sqrt{R_{w}}}^{2}=R(\cdot, w) w(R$: the curvature tensor of N). Note that $D_{0}^{s i}=D_{0}^{c t}=$ id. A Jacobi field J along a geodesic γ in N is described as

$$
\begin{equation*}
J(s)=P_{\left.\gamma\right|_{[0, s]}}\left(D_{s \dot{\gamma}(0)}^{c o} J(0)+s D_{s \dot{\gamma}(0)}^{s i} J^{\prime}(0)\right), \tag{2.1}
\end{equation*}
$$

where $P_{\left.\gamma\right|_{[0, s]}}$ is the parallel translation along $\left.\gamma\right|_{[0, s]}$ with respect to the Levi-Civita connection $\tilde{\nabla}$ of $N, \dot{\gamma}(0)$ is the velocity vector of γ at 0 and $J^{\prime}(0)=\tilde{\nabla}_{\dot{\gamma}(0)} J$. Let \mathfrak{g} (resp. f) be the Lie algebra of G (resp. K) and $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$ be the Cartan decomposition. The subspace \mathfrak{p} is identified with the tangent space $T_{e K} N$ of N at $e K$, where e is the identity element of G. Denote by ad the adjoint representation of \mathfrak{g}. Take a maximal abelian subspace \mathfrak{h} of \mathfrak{p}. For each $\alpha \in \mathfrak{h}^{*}$ (the dual space of \mathfrak{h}), we set $\mathfrak{p}_{\alpha}:=\left\{X \in \mathfrak{p} \mid \operatorname{ad}(a)^{2}(X)=-\alpha(a)^{2} X\right.$ for all $\left.a \in \mathfrak{h}\right\}$. If $\mathfrak{p}_{\alpha} \neq\{0\}$, then the linear function α is called a root for \mathfrak{h}. Let Δ_{+}be the positive root system with respect to some lexicographical ordering of \mathfrak{h}. Then we have $\mathfrak{p}=\mathfrak{h}+\sum_{\alpha \in \Delta_{+}} \mathfrak{p}_{\alpha}$. Note that $D_{w}^{c o}=$ $g_{*} \circ \cosh \left(\operatorname{ad}\left(g_{*}^{-1} w\right)\right) \circ g_{*}^{-1}, D_{w}^{s i}=g_{*} \circ \frac{\sinh \left(\operatorname{ad}\left(g_{*}^{-1} w\right)\right)}{\operatorname{ad}\left(g_{*}^{-1} w\right)} \circ g_{*}^{-1}$ and $D_{w}^{c t}=g_{*} \circ \frac{\operatorname{ad}\left(g_{*}^{-1} w\right)}{\tanh \left(\operatorname{ad}\left(g_{*}^{-1} w\right)\right)} \circ g_{*}^{-1}$ $\left(w \in T_{g K} N\right)$ because of ${\sqrt{R_{w}}}^{2}=-g_{*} \circ \operatorname{ad}\left(g_{*}^{-1} w\right)^{2} \circ g_{*}^{-1}$. From (2.1), we can show the following fact for the first conjugate radius.

Lemma 2.1. Take $w \in U_{g K} N, \Delta_{+}$be the positive root system with respect to a maximal abelian subspace \mathfrak{h} (equipped with some lexicographical ordering) containing $g_{*}^{-1} w$ and α_{0} be the highest root in Δ_{+}. Then we have $r_{w}=\frac{\pi}{\left|\alpha_{0}\left(g_{*}^{-1} w\right)\right|}$ and $\operatorname{rank}\left(\left.\exp \right|_{T_{g K} N}\right)_{* r_{w} w}=$ $\operatorname{dim} N-\sum_{\alpha \in \Delta_{w}} \operatorname{dimp}_{\alpha}$, where $\Delta_{w}:=\left\{\alpha \in \Delta_{+}| | \alpha\left(g_{*}^{-1} w\right) \left\lvert\,=\frac{\pi}{r_{w}}\right.\right\}$. In particular, if w is a point of a Weyl chamber, then we have $\operatorname{rank}\left(\left.\exp \right|_{T_{g K} N}\right)_{* r_{w} w}=\operatorname{dim} N-\operatorname{dimp} \alpha_{\alpha_{0}}$.

Proof. Let s_{0} be a conjugate radius of direction w. Then there exists a non-trivial Jacobi field J along γ_{w} with $J(0)=0$ and $J\left(s_{0}\right)=0$. From (2.1), we have $s_{0} D_{s_{0} w}^{s i} J^{\prime}(0)=0$. On the other hand, we have $s_{0} D_{s_{0} w}^{s i} J^{\prime}(0)=s_{0} J^{\prime}(0)_{\mathfrak{h}}+\sum_{\alpha \in \Delta_{+}} \frac{\sin \left(s_{0} \alpha\left(g_{*}^{-1} w\right)\right)}{\alpha\left(g_{*}^{-1} w\right)} J^{\prime}(0)_{\alpha}=0$, where $J^{\prime}(0)_{\mathfrak{h}}$ (resp. $J^{\prime}(0)_{\alpha}$) is the $g_{*} \mathfrak{h}$-component (resp. $g_{*} \mathfrak{p}_{\alpha}$-component of $J^{\prime}(0)$). Hence we see that $s_{0} \alpha_{0}\left(g_{*}^{-1} w\right) \equiv 0(\bmod \pi)$ and $J^{\prime}(0)_{\alpha_{0}} \neq 0$ for some $\alpha_{0} \in \Delta_{+}$because $J^{\prime}(0)_{\alpha}$ vanishes for each $\alpha \in \Delta_{+}$with $s_{0} \alpha\left(g_{*}^{-1} w\right) \not \equiv 0(\bmod \pi)$ and $J^{\prime}(0)_{\mathfrak{h}}=0$. It follows from this fact that $r_{w}=\frac{\pi}{\max _{\alpha \in \Delta_{+}}\left|\alpha\left(g_{*}^{-1} w\right)\right|}=\frac{\pi}{\left|\alpha_{0}\left(g_{*}^{-1} w\right)\right|}$ and that $\operatorname{rank}\left(\exp \mid T_{g K} N\right)_{* r_{w} w}=\operatorname{dim} N-$ $\sum_{\alpha \in \Delta_{w}} \operatorname{dim} \mathfrak{p}_{\alpha}$. In particular, if w is a point of a Weyl chamber, then we have $\Delta_{w}=\left\{\alpha_{0}\right\}$. Hence the last part of the statement follows.

From this lemma, the fact of Table 1 is deduced.

3. Squared distance functions

In this section, we prepare some lemmas for squared distance functions. Let M be an n-dimensional compact immersed submanifold in an m-dimensional symmetric space $N=$ G / K of compact type. We omit the notation of the immersion. For two points p and q of N with $q \notin C_{p}$, we denote the shortest geodesic from p to q by $\gamma_{p q}$ (i.e., $\gamma_{p q}(0)=$ $\left.p, \gamma_{p q}(1)=q,\left\|\dot{\gamma}_{p q}\right\|=d(p, q)\right)$. Also, we denote $\dot{\gamma}_{p q}(0)$ by $\overrightarrow{p q}$. For the squared distance function $d_{p}^{2}\left(x \in M \rightarrow d(p, x)^{2}\right)(p \in N)$, we have the following fact.

Lemma 3.1. Let x be a critical point of d_{p}^{2} with $x \notin C_{p}$. Then the following statements (i) and (ii) hold:
(i) $\overrightarrow{x p}$ is normal to M,
(ii) The Hessian $\left(\operatorname{Hess} d_{p}^{2}\right)_{x}$ of d_{p}^{2} at x is given by

$$
\begin{equation*}
\left(\operatorname{Hess} d_{p}^{2}\right)_{x}(X, Y)=2\left\langle X,\left(\operatorname{pr}_{T} \circ D_{\overrightarrow{x p}}^{c t}-A_{\overrightarrow{x p}}\right) Y\right\rangle \tag{3.1}
\end{equation*}
$$

where $X, Y \in T_{x} M$.
Proof. The statement (i) is trivial. We shall show the statement (ii). Take tangent vectors X and Y to M at x. Take a two-parameter map $\bar{\delta}$ to M with $\bar{\delta}_{*}\left(\left.\frac{\partial}{\partial u}\right|_{u=t=0}\right)=X$ and $\bar{\delta}_{*}\left(\left.\frac{\partial}{\partial t}\right|_{u=t=0}\right)=Y$, where u (resp. t) is the first (resp. the second) parameter of $\bar{\delta}$. We may assume that $\operatorname{Im} \bar{\delta} \cap C_{p}=\emptyset$ by restricting the domain of $\bar{\delta}$ to a neighborhood of $(0,0)$ if necessary. Define a three-parameter map δ into N by $\delta(u, t, s)=\gamma_{\overline{\bar{\delta}(u, t) p}}(s)$. For simplicity, we denote $\delta_{*}\left(\frac{\partial}{\partial u}\right), \delta_{*}\left(\frac{\partial}{\partial t}\right)$ and $\delta_{*}\left(\frac{\partial}{\partial s}\right)$ by $\frac{\partial}{\partial u}$, $\frac{\partial}{\partial t}$ and $\frac{\partial}{\partial s}$, respectively. Set $J_{t}(s):=\left.\frac{\partial}{\partial u}\right|_{u=0}$, which is a Jacobi field along $\gamma_{\overline{\delta(0, t, 0) p}}$. From (2.1), we have $J_{t}(s)=$ $P_{\left.\gamma_{\overrightarrow{\delta(0, t, 0) p} \mid} \mid 0, s\right]}\left(D_{s \cdot \overrightarrow{\delta(0, t, 0) p}}^{c o} J_{t}(0)+s D_{s \cdot \overrightarrow{\delta(0, t, 0) p}}^{s i} J_{t}^{\prime}(0)\right)$. This together with $J_{t}(1)=0$ deduces $D_{\overrightarrow{\delta(0, t, 0) p}}^{c o} J_{t}(0)+D_{\overrightarrow{\delta(0, t, 0) p}}^{s i} J_{t}^{\prime}(0)=0 . \quad$ Since $\delta(0, t, 0) \notin C_{p}$ (i.e., $\|\overrightarrow{\delta(0, t, 0) p}\|<$
$r_{\overrightarrow{\delta(0, t, 0) p} /\|\overrightarrow{\delta(0, t, 0)}\| \|}$, we have $\max _{\alpha \in \Delta_{+}}\left|\alpha\left(g_{*}^{-1} \overrightarrow{\delta(0, t, 0) p}\right)\right|<\pi$ in terms of Lemma 2.1, where $\delta(0, t, 0)=g K$. This implies that $D_{\delta(0, t, 0) p}^{s i}$ is non-singular. Hence we obtain $J_{t}^{\prime}(0)=$ $-D \xrightarrow[\delta(0, t, 0) p]{c t} J_{t}(0)$. Also, since x is a critical point of $d_{p}^{2},\left.\frac{\partial}{\partial s}\right|_{u=t=s=0}$ is normal to M. These facts deduce

$$
\left(\operatorname{Hess} d_{p}^{2}\right)_{x}(X, Y)=-2\left\langle X, \nabla_{Y}\left(\left.\frac{\partial}{\partial s}\right|_{u=s=0}\right)_{T}\right\rangle
$$

where ∇ is the Levi-Civita connection of M and $(\cdot)_{T}$ is the tangent component of \cdot (see the proof of Lemma 3.1 in [5]). On the other hand, we can show $\nabla_{Y}\left(\left.\frac{\partial}{\partial s}\right|_{u=s=0}\right)_{T}=-\left(\mathrm{pr}_{T} \circ\right.$ $\left.D_{\overrightarrow{x p}}^{c t}-A_{\overrightarrow{x p}}\right) Y$ (see the proof of Lemma 3.1 in [5]). Therefore, we obtain the relation (3.1).
q.e.d.

Let $B:=\bigcup_{\xi \in U^{\perp} M}\left\{s \xi \mid s \in\left[0, r_{\xi}\right)\right\}$, which is an open potion of $T^{\perp} M$. Denote by $\exp _{B}^{\perp}$ the restriction of the normal exponential map $\exp ^{\perp}$ of M to B. Also, denote by $\tilde{\omega}$ (resp. ω_{B}) the volume element of N (resp. B induced from the volume element of $T^{\perp} M$). Then we have the following relation.

Lemma 3.2. For each $\xi \in B$, the following relation holds:

$$
\left(\left(\exp _{B}^{\perp}\right)^{*} \tilde{\omega}\right)_{\xi}=\operatorname{det}\left(\left.\operatorname{pr}_{T} \circ D_{\xi}^{c t}\right|_{T_{\pi(\xi)} M}-A_{\xi}\right) \operatorname{det} D_{\xi}^{s i}\left(\omega_{B}\right)_{\xi}
$$

where π is the bundle projection of B.
Proof. From $\xi \in B$ (i.e., $\|\xi\|<r_{\xi /\|\xi\|}$), we see that $D_{\xi}^{s i}$ is non-singular. By noticing this fact and imitating the proof of Lemma 3.2 in [5], we obtain the desired relation. q.e.d.

Denote by $\beta(\phi)$ the number of non-degenerate critical points of a function ϕ and by $\beta_{\text {even }}(\phi)$ (resp. $\left.\beta_{\text {odd }}(\phi)\right)$ the number of non-degenerate critical points of even (resp. odd) index of a function ϕ. Denote by F the focal set of M. For $p \in N \backslash F$, we set

$$
\begin{aligned}
& \left(\exp _{B}^{\perp}\right)^{-1}(p)_{+}:=\left\{\xi \in\left(\exp _{B}^{\perp}\right)^{-1}(p) \mid\left(\exp _{B}^{\perp}\right)_{* \xi} \text { preserves the orientation }\right\}, \\
& \left(\exp _{B}^{\perp}\right)^{-1}(p)_{-}:=\left\{\xi \in\left(\exp _{B}^{\perp}\right)^{-1}(p) \mid\left(\exp _{B}^{\perp}\right)_{* \xi} \text { reverses the orientation }\right\} .
\end{aligned}
$$

Further we prepare the following lemma.
Lemma 3.3. Let $p \in N \backslash\left(F \cup C_{M}\right)$. Then we have the following relations:

$$
\begin{align*}
\beta\left(d_{p}^{2}\right) & =\sharp\left(\exp _{B}^{\perp}\right)^{-1}(p), \tag{3.2}\\
\beta_{\text {even }}\left(d_{p}^{2}\right) & =\sharp\left(\exp _{B}^{\perp}\right)^{-1}(p)_{+}, \tag{3.3}\\
\beta_{\text {odd }}\left(d_{p}^{2}\right) & =\sharp\left(\exp _{B}^{\perp}\right)^{-1}(p)_{-}, \tag{3.4}
\end{align*}
$$

where $\sharp(*)$ is the number of elements of a set $*$.
Proof. The relation (3.2) is directly deduced from (i) of Lemma 3.1. The relations (3.3) and (3.4) are directly deduced from (3.1) and Lemma 3.2, where we use $\operatorname{det} D_{\xi}^{s i}>0$ $(\xi \in B)$. q.e.d.

At the end of this section, we define the tautness of a compact submanifold M with $N \backslash\left(F \cup C_{M}\right) \neq \emptyset$ in a complete Riemannian manifold N, where F is the focal set of M and $C_{M}:=\bigcup_{x \in M} C_{x}\left(C_{x}\right.$: the cut locus of $\left.x\right)$. If d_{p}^{2} is a perfect Morse function for each $p \in N \backslash\left(F \cup C_{M}\right)$, then we say that M is taut.

4. Proofs of Theorems A, B and Corollaries

In this section, we first prove Theorem A in terms of Lemmas 3.2 and 3.3.
Proof of Theorem A. First we prove the relation (1.7) in Theorem A. According to Lemma 3.2, we have

$$
\begin{align*}
\int_{\xi \in B} & \left(\left(\exp _{B}^{\perp}\right)^{*} \tilde{\omega}\right)_{\xi}=\int_{\xi \in B} \operatorname{det}\left(\operatorname{pr}_{T} \circ D_{\xi}^{c t} \mid T_{\pi(\xi)^{M}}-A_{\xi}\right) \operatorname{det} D_{\xi}^{s i} \omega_{B} \\
& =\int_{\xi \in U^{\perp} M}\left(\int_{0}^{r_{\xi}} \operatorname{det}\left(\left.\operatorname{pr}_{T} \circ \frac{1}{s} D_{s \xi}^{c t} \right\rvert\, T_{\pi(\xi)} M-A_{\xi}\right) \operatorname{det} D_{s \xi}^{s i} \cdot s^{m-1} d s\right) \omega_{U} \perp_{M} \tag{4.1}\\
& =\frac{\operatorname{Vol}(N)}{\operatorname{Vol}\left(S^{m-1}(1)\right)} \int_{\xi \in U^{\perp} M} \mathfrak{K}_{1}(\xi) \omega_{U \perp_{M}}
\end{align*}
$$

On the other hand, since C_{M} is of measure zero, we have

$$
\begin{align*}
\int_{\xi \in B}\left(\left(\exp _{B}^{\perp}\right)^{*} \tilde{\omega}\right)_{\xi} & =\int_{\xi \in B \backslash \exp _{B}^{\perp-1}(F)}\left(\left(\exp _{B}^{\perp}\right)^{*} \tilde{\omega}\right)_{\xi} \\
& =\int_{p \in N \backslash F}\left(\sharp\left(\exp _{B}^{\perp}\right)^{-1}(p)_{+}-\sharp\left(\exp _{B}^{\perp}\right)^{-1}(p)_{-}\right) \tilde{\omega}_{p} \\
& =\int_{p \in N \backslash\left(F \cup C_{M}\right)}\left(\sharp\left(\exp _{B}^{\perp}\right)^{-1}(p)_{+}-\sharp\left(\exp _{B}^{\perp}\right)^{-1}(p)_{-}\right) \tilde{\omega}_{p} \tag{4.2}\\
& =\int_{p \in N \backslash\left(F \cup C_{M}\right)}\left(\beta_{\text {even }}\left(d_{p}^{2}\right)-\beta_{\text {odd }}\left(d_{p}^{2}\right)\right) \tilde{\omega}_{p} \\
& =\chi(M) \operatorname{Vol}(N)
\end{align*}
$$

Therefore, we obtain the equality (1.7). In similar to (4.1) and (4.2), we can show

$$
\begin{aligned}
\int_{\xi \in B} & \left|\left(\left(\exp _{B}^{\perp}\right)^{*} \tilde{\omega}\right)_{\xi}\right| \\
& =\int_{\xi \in U^{\perp} M}\left(\int_{0}^{r_{\xi}}\left|\operatorname{det}\left(\left.\operatorname{pr}_{T} \circ \frac{1}{s} D_{s \xi}^{c t}\right|_{T_{\pi(\xi)} M}-A_{\xi}\right)\right| \operatorname{det} D_{s \xi}^{s i} \cdot s^{m-1} d s\right) \omega_{U^{\perp} M}
\end{aligned}
$$

$$
=\frac{\operatorname{Vol}(N)}{\operatorname{Vol}\left(S^{m-1}(1)\right)} \int_{\xi \in U^{\perp} M} \mathfrak{K}_{2}(\xi) \omega_{U^{\perp} M}
$$

and

$$
\int_{\xi \in B}\left|\left(\left(\exp _{B}^{\perp}\right)^{*} \tilde{\omega}\right)_{\xi}\right|=\int_{p \in N \backslash\left(F \cup C_{M}\right)} \beta\left(d_{p}^{2}\right) \tilde{\omega}_{p} \geq \sum_{k=0}^{n} b_{k}(M, \mathbf{F}) \operatorname{Vol}(N)
$$

Therefore, we obtain the inequality (1.8). In particular, if M is taut, then we have $\int_{p \in N \backslash\left(F \cup C_{M}\right)} \beta\left(d_{p}^{2}\right) \tilde{\omega}_{p}=\sum_{k=0}^{n} b_{k}(M, \mathbf{F}) \operatorname{Vol}(N)$. Hence the equality sign holds in (1.8).

> q.e.d.

Next we prove Theorem B.

Proof of Theorem B. Since the ambient space is $S^{m}(c)$, we have $r_{\xi}=\frac{\pi}{\sqrt{c}}, D_{s \xi}^{c t}=$ $\sqrt{c} s \cot (\sqrt{c} s)$ id and $D_{s \xi}^{s i}=\frac{\sin (\sqrt{c} s)}{\sqrt{c} s}$ id. Also, since the cut locus C_{x} consists of one point for each $x \in M$ and $\operatorname{dim} M \leq m-1$, the set C_{M} is of measure zero. Hence the relations (1.7) and (1.8) in Theorem A hold. The left-hand side of the relation (1.7) in Theorem 1 is written as

$$
\frac{1}{\operatorname{Vol}\left(S^{m}(c)\right)} \int_{\xi \in U^{\perp} M}\left(\int_{0}^{\frac{\pi}{\sqrt{c}}} \operatorname{det}\left(\sqrt{c} \cot (\sqrt{c} s) \operatorname{id}-A_{\xi}\right)\left(\frac{\sin (\sqrt{c} s)}{\sqrt{c}}\right)^{m-1} d s\right) \omega_{U^{\perp} M}
$$

which is further written as

$$
\frac{1}{\operatorname{Vol}\left(S^{m}(1)\right)} \int_{\xi \in U^{\perp} M}\left(\int_{0}^{\pi} \operatorname{det}\left(\sqrt{c} \cot s \cdot \mathrm{id}-A_{\xi}\right) \sin ^{m-1} s d s\right) \omega_{U}{ }^{\perp} M
$$

Hence we have

$$
\begin{equation*}
\frac{1}{\operatorname{Vol}\left(S^{m}(1)\right)} \int_{\xi \in U^{\perp} M}\left(\int_{0}^{\pi} \operatorname{det}\left(\sqrt{c} \cot s \cdot \mathrm{id}-A_{\xi}\right) \sin ^{m-1} s d s\right) \omega_{U^{\perp} M}=\chi(M) \tag{4.3}
\end{equation*}
$$

Similarly we have

$$
\begin{align*}
& \frac{1}{\operatorname{Vol}\left(S^{m}(1)\right)} \int_{\xi \in U^{\perp} M}\left(\int_{0}^{\pi}\left|\operatorname{det}\left(\sqrt{c} \cot s \cdot \mathrm{id}-A_{\xi}\right)\right| \sin ^{m-1} s d s\right) \omega_{U^{\perp} M} \\
& \quad \geq \sum_{k=0}^{n} b_{k}(M, \mathbf{F}) \tag{4.4}
\end{align*}
$$

Let ξ be the fixed unit normal vector field of M. First we show the statement (i). From the definitions of the i-th mean curvature $H_{i}(\xi)$ of direction $\xi(i=0, \cdots, 2 n)$, we have

$$
\operatorname{det}\left(\sqrt{c} \cot s \cdot \mathrm{id}-A_{\xi}\right)=\sum_{i=0}^{2 n}(-1)^{i}(\sqrt{c} \cot s)^{2 n-i}\binom{2 n}{i} H_{i}(\xi)
$$

Hence we have

$$
\begin{align*}
\int_{0}^{\pi} & \left(\operatorname{det}\left(\sqrt{c} \cot s \cdot \mathrm{id}-A_{\xi}\right)+\operatorname{det}\left(\sqrt{c} \cot s \cdot \mathrm{id}-A_{(-\xi)}\right)\right) \sin ^{m-1} s d s \\
& =2 \sum_{i=0}^{n}\binom{2 n}{2 i} H_{2 i}(\xi) c^{n-i} \int_{0}^{\pi} \sin ^{m-n+2 i-1} s \cos ^{2 n-2 i} s d s \tag{4.5}\\
& =2 \sum_{i=0}^{n}\binom{2 n}{2 i} H_{2 i}(\xi) c^{n-i}\left(\sum_{k=0}^{n-i}(-1)^{k}\binom{n-i}{k} \frac{v_{m-n+2 i+2 k}}{v_{m-n+2 i+2 k-1}}\right)
\end{align*}
$$

where we also use $\int_{0}^{\pi} \sin ^{j} s d s=\frac{v_{j+1}}{v_{j}}$. From this relation and (4.3), we obtain (1.9). Next we show the statement (ii). In similar way to get (4.5), we have

$$
\begin{aligned}
\int_{0}^{\pi} & \left(\left|\operatorname{det}\left(\sqrt{c} \cot s \cdot \mathrm{id}-A_{\xi}\right)\right|+\left|\operatorname{det}\left(\sqrt{c} \cot s \cdot \mathrm{id}-A_{(-\xi)}\right)\right|\right) \sin ^{m-1} s d s \\
& \leq 4 \sum_{i=0}^{n}\binom{n}{i}\left|H_{i}(\xi)\right| \sqrt{c}^{n-i} \int_{0}^{\frac{\pi}{2}} \sin ^{m-n+i-1} s \cos ^{n-i} s d s \\
& =4 \sum_{i=0}^{n}\binom{n}{i}\left|H_{n-i}(\xi)\right| \sqrt{c}^{i} \int_{0}^{\frac{\pi}{2}} \sin ^{m-i-1} s \cos ^{i} s d s \\
& =2 \sum_{i=0}^{\left[\frac{n}{2}\right]} a_{i} c^{i}\left|H_{n-2 i}(\xi)\right|+4 \sum_{i=0}^{\left[\frac{n-1}{2}\right]} b_{i} \sqrt{c}^{2 i+1}\left|H_{n-2 i-1}(\xi)\right|
\end{aligned}
$$

where we use $\int_{0}^{\frac{\pi}{2}} \sin ^{i} s \cos ^{2 j} s d s=\frac{1}{2} \sum_{k=0}^{j}(-1)^{k}\binom{j}{k} \frac{v_{i+2 k+1}}{v_{i+2 k}}$ and $\int_{0}^{\frac{\pi}{2}} \sin ^{i} s \cos ^{2 j+1} s d s=$ $\sum_{k=0}^{j}(-1)^{k}\binom{j}{k} \frac{1}{i+2 k+1}$. From this relation and (4.4), we obtain (1.10). q.e.d.

Next we prove Corollary C in terms of Theorem B.
Proof of Corollary C. From $\operatorname{dim} M=2$, the relations (1.9) (resp. (1.10)) of Theorem B is as follows:

$$
\begin{gathered}
\frac{1}{v_{m-1}} \int_{\xi \in U^{\perp} M} K(\xi) \omega_{U^{\perp} M}+\frac{c}{v_{m}}\left(\frac{v_{m-2}}{v_{m-3}}-\frac{v_{m}}{v_{m-1}}\right) \operatorname{Vol}\left(U^{\perp} M\right)=\chi(M) \\
\left(\text { resp. } \frac{1}{v_{m-1}} \int_{\xi \in U^{\perp_{M}}}|K(\xi)| \omega_{U^{\perp} M}+\frac{4 \sqrt{c}}{(m-1) v_{m}} \int_{\xi \in U^{\perp^{\perp}}}\left|H_{1}(\xi)\right| \omega_{U^{\perp} M}\right. \\
\left.+\frac{c}{v_{m}}\left(\frac{v_{m-2}}{v_{m-3}}-\frac{v_{m}}{v_{m-1}}\right) \operatorname{Vol}\left(U^{\perp} M\right) \geq \sum_{k=0}^{2} b_{k}(M, \mathbf{F})\right)
\end{gathered}
$$

Hence we obtain the relations (1.11) and (1.12) in terms of $\operatorname{Vol}\left(U^{\perp} M\right)=$ $v_{m-3} \operatorname{Vol}(M), \chi(M)=2-2 g$ and $\sum_{k=0}^{2} b_{k}(M, \mathbf{F})=2+2 g$. q.e.d.

Next we prove Corollary D in terms of Theorem B.
Proof of Corollary D. We show the statement in the case where κ has no zero point. Let v be the unit principal normal vector of γ. Clearly we have $A_{\xi} \dot{\gamma}=\kappa(\pi(\xi))\langle v, \xi\rangle \dot{\gamma}$ for $\xi \in U^{\perp} \gamma$, where $\dot{\gamma}=\frac{d \gamma}{d s}$ and π is the projection of the unit normal bundle $U^{\perp} \gamma$ of γ. So we have $\left|H_{1}(\xi)\right|=\kappa(\pi(\xi))|\langle v, \xi\rangle|$. Hence, from (1.10) of Theorem B, we have

$$
\begin{equation*}
\frac{1}{2 v_{m-1}} \int_{\xi \in U^{\perp} \gamma} \kappa(\pi(\xi))|\langle v, \xi\rangle| \omega_{U^{\perp} \gamma}+\frac{\sqrt{c} v_{m-2} l}{(m-1) v_{m}} \geq 1 \tag{4.6}
\end{equation*}
$$

where we also use $\operatorname{Vol}\left(U^{\perp} \gamma\right)=v_{m-2} l$. The first term of the left-hand side of (4.6) is rewritten as

$$
\begin{aligned}
\frac{1}{2 v_{m-1}} \int_{\xi \in U^{\perp} \gamma} \kappa(\pi(\xi))|\langle v, \xi\rangle| \omega_{U^{\perp} \gamma} & =\frac{1}{2 v_{m-1}} \int_{0}^{l}\left(\kappa(s) \int_{\xi \in U_{s}^{\perp} \gamma}|\langle v, \xi\rangle| \omega_{U_{s}^{\perp} \gamma}\right) d s \\
& = \begin{cases}\frac{v_{m-3}}{(m-2) v_{m-1}} \int_{0}^{l} \kappa(s) d s & (m \geq 3) \\
\frac{1}{v_{m-1}} \int_{0}^{l} \kappa(s) d s & (m=2)\end{cases}
\end{aligned}
$$

Hence we obtain the desired relations. Similarly we can show the statement in the case where κ has zero points.
q.e.d.

Next we prove Corollary E.
Proof of Corollary E. We show the statement in the case where κ has no zero point. Let v be the unit principal normal vector of γ. Clearly we have

$$
\begin{equation*}
A_{\xi} \dot{\gamma}=\kappa(\pi(\xi))\langle v, \xi\rangle \dot{\gamma} \quad\left(\xi \in U^{\perp} \gamma\right) \tag{4.7}
\end{equation*}
$$

where $\dot{\gamma}=\frac{d \gamma}{d s}$ and π is the projection of the unit normal bundle $U^{\perp} \gamma$ of γ. Fix $\xi \in U_{s_{0}}^{\perp} \gamma$. Let $W_{\xi}:=\operatorname{Span}\left\{J_{1} \xi, \cdots, J_{q-1} \xi\right\}$ and $W_{\xi}^{\prime}:=\operatorname{Span}\left\{\xi, J_{1} \xi, \cdots, J_{q-1} \xi\right\}^{\perp}$, where $\left\{J_{1}, \cdots, J_{q-1}\right\}$ is the complex structure of $\mathbf{C} P^{m}(c)$, the quaternionic structure of $\mathbf{Q} P^{m}(c)$ or the Cayley structure of $\mathbf{O} P^{2}(c)$. Denote by $\mathrm{pr}_{\xi}, \mathrm{pr}_{W_{\xi}}$ and $\mathrm{pr}_{W_{\xi}^{\prime}}$ the orthogonal projection of $T_{\gamma\left(s_{0}\right)} \mathbf{F} P^{m}(c)$ onto $\operatorname{Span}\{\xi\}, W_{\xi}$ and W_{ξ}^{\prime}, respectively. Since $\frac{\sqrt{R_{\xi}}}{\tan \left(s \sqrt{R_{\xi}}\right)}=\frac{1}{s} \mathrm{pr}_{\xi}+\frac{\sqrt{c}}{\tan (s \sqrt{c})} \mathrm{pr}_{W_{\xi}}+\frac{\sqrt{c}}{2 \tan \frac{s \sqrt{c}}{2}} \mathrm{pr}_{W_{\xi}^{\prime}}$ and $\dot{\gamma}\left(s_{0}\right) \in W_{\xi} \oplus W_{\xi}^{\prime}$, we have

$$
\left(\operatorname{pr}_{T} \circ \frac{\sqrt{R_{\xi}}}{\tan \left(s \sqrt{R_{\xi}}\right)}\right)\left(\dot{\gamma}\left(s_{0}\right)\right)=\frac{\sqrt{c}}{\tan (s \sqrt{c})}\left(\operatorname{pr}_{T} \circ \operatorname{pr}_{W_{\xi}}\right)\left(\dot{\gamma}\left(s_{0}\right)\right)
$$

$$
+\frac{\sqrt{c}}{2 \tan \frac{s \sqrt{c}}{2}}\left(\mathrm{pr}_{T} \circ \operatorname{pr}_{W_{\xi}^{\prime}}\right)\left(\dot{\gamma}\left(s_{0}\right)\right)
$$

Denote by θ_{ξ} the angle between $\dot{\gamma}\left(s_{0}\right)$ and $\operatorname{pr}_{W_{\xi}}\left(\dot{\gamma}\left(s_{0}\right)\right)$. Then we have

$$
\begin{equation*}
\left(\operatorname{pr}_{T} \circ \frac{\sqrt{R_{\xi}}}{\tan \left(s \sqrt{R_{\xi}}\right)}\right)\left(\dot{\gamma}\left(s_{0}\right)\right)=\left(\frac{\sqrt{c}}{\tan (s \sqrt{c})} \cos ^{2} \theta_{\xi}+\frac{\sqrt{c}}{2 \tan \frac{s \sqrt{c}}{2}} \sin ^{2} \theta_{\xi}\right) \dot{\gamma}\left(s_{0}\right) . \tag{4.8}
\end{equation*}
$$

From (4.7) and (4.8), we have

$$
\begin{aligned}
& \left.\operatorname{det}\left(\left.\operatorname{pr}_{T} \circ \frac{\sqrt{R_{\xi}}}{\tan \left(s \sqrt{R_{\xi}}\right)}\right|_{s_{s_{0}} \gamma}-A_{\xi}\right) \right\rvert\, \\
& \quad \leq\left|\frac{\sqrt{c}}{\tan (s \sqrt{c})}\right| \cos ^{2} \theta_{\xi}+\left|\frac{\sqrt{c}}{2 \tan \frac{s \sqrt{c}}{2}}\right| \sin ^{2} \theta_{\xi}+\kappa|\langle v, \xi\rangle| .
\end{aligned}
$$

On the other hand, we have

$$
\frac{\sin \left(s \sqrt{R_{\xi}}\right)}{\sqrt{R_{\xi}}}=s \operatorname{pr}_{\xi}+\frac{\sin (s \sqrt{c})}{\sqrt{c}} \mathrm{pr}_{W_{\xi}}+\frac{2 \sin \frac{s \sqrt{c}}{2}}{\sqrt{c}} \mathrm{pr}_{W_{\xi}^{\prime}}
$$

and hence

$$
\begin{aligned}
\operatorname{det} \frac{\sin \left(s \sqrt{R_{\xi}}\right)}{\sqrt{R_{\xi}}} & =s\left(\frac{\sin (s \sqrt{c})}{\sqrt{c}}\right)^{q-1}\left(\frac{2 \sin \frac{s \sqrt{c}}{2}}{\sqrt{c}}\right)^{q m-q} \\
& =\left(\frac{2}{\sqrt{c}}\right)^{q m-1} s \sin ^{q m-1} \frac{s \sqrt{c}}{2} \cos ^{q-1} \frac{s \sqrt{c}}{2} .
\end{aligned}
$$

Also, the first conjugate radius r_{ξ} of direction ξ is equal to $\frac{\pi}{\sqrt{c}}$. Hence we have

$$
\begin{aligned}
\mathfrak{K}_{2}(\xi) \leq & \frac{v_{q m-1}}{\operatorname{Vol}\left(\mathbf{F} P^{m}(c)\right)}\left(\frac{2}{\sqrt{c}}\right)^{q m-1}\left\{\frac{2 \beta_{m, q}}{\sqrt{c}} \cos ^{2} \theta_{\xi}+\frac{2 \alpha_{q m-2, q}}{\sqrt{c}} \sin ^{2} \theta_{\xi}\right. \\
& \left.+\kappa|\langle v, \xi\rangle| \frac{4 \alpha_{q m-1, q-1}}{c}\right\} .
\end{aligned}
$$

Therefore, from (1.8) of Theorem A, we obtain

$$
\begin{align*}
& \frac{1}{\operatorname{Vol}\left(\mathbf{F} P^{m}(c)\right)}\left(\frac{2}{\sqrt{c}}\right)^{q m-1}\left\{\frac{2 \beta_{m, q}}{\sqrt{c}} \int_{\xi \in U^{\perp} \gamma} \cos ^{2} \theta_{\xi} \omega_{U^{\perp} \gamma}\right. \\
& \left.\quad+\frac{2 \alpha_{q m-2, q}}{\sqrt{c}} \int_{\xi \in U^{\perp} \gamma} \sin ^{2} \theta_{\xi} \omega_{U^{\perp} \gamma}+\frac{4 \alpha_{q m-1, q-1}}{c} \int_{\xi \in U^{\perp} \gamma} \kappa|\langle v, \xi\rangle| \omega_{U^{\perp} \gamma}\right\} \tag{4.9}\\
& \quad \geq b_{0}\left(S^{1}, \mathbf{F}\right)+b_{1}\left(S^{1}, \mathbf{F}\right)=2 .
\end{align*}
$$

On the other hand, we have

$$
\begin{aligned}
\int_{\xi \in U^{\perp} \gamma} \cos ^{2} \theta_{\xi} \omega_{U^{\perp} \gamma}= & \int_{0}^{l}\left(\int_{\xi \in U_{s}^{\perp} \gamma} \cos ^{2} \theta_{\xi} \omega_{U_{s}^{\perp} \gamma}\right) d s \\
= & l \int_{\left[0, \frac{\pi}{2}\right] \times S^{q m-q-1}(1) \times S^{q-2}(1)} \sin ^{q m-q-1} \theta \cos ^{q} \theta d \theta \\
& \wedge \omega_{S^{q m-q-1}(1)} \wedge \omega_{S^{q-2}(1)} \\
= & l v_{q m-q-1} v_{q-2} \int_{0}^{\frac{\pi}{2}} \sin ^{q m-q-1} \theta \cos ^{q} \theta d \theta \\
= & \frac{l v_{q m-q-1} v_{q-2}}{2} \sum_{k=0}^{\frac{q}{2}}(-1)^{k}\binom{\frac{q}{2}}{k} \frac{v_{q m-q+2 k}}{v_{q m-q+2 k-1}} \\
\int_{\xi \in U^{\perp} \gamma} \sin ^{2} \theta_{\xi} \omega_{U^{\perp} \gamma}= & l v_{q m-q-1} v_{q-2} \int_{0}^{\frac{\pi}{2}} \sin ^{q m-q+1} \theta \cos ^{q-2} \theta d \theta \\
= & \frac{l v_{q m-q-1} v_{q-2}}{2} \sum_{k=0}^{\frac{q-2}{2}}(-1)^{k}\binom{\frac{q-2}{2}}{k} \frac{v_{q m-q+2 k+2}}{v_{q m-q+2 k+1}}
\end{aligned}
$$

and

$$
\int_{\xi \in U^{\perp} \gamma} \kappa|\langle v, \xi\rangle| \omega_{U^{\perp} \gamma}=\frac{v_{q m-1} v_{q m-3}}{v_{q m-2}} \int_{0}^{l} \kappa(s) d s
$$

By substituting these relations into (4.9), we obtain the desired relation. Similarly we can show the statement in the case where κ has zero points.

References

[1] S. S. CHERN and R. K. Lashof, On the total curvature of immersed manifolds I, Amer. J. Math. 79 (1957), 306-318.
[2] S. S. Chern and R. K. Lashof, On the total curvature of immersed manifolds II, Michigan Math. J. 5 (1958), 5-12.
[3] D. Ferus, Totale Absolutkrümmung in Differentialgeometrie undtopologie, Lecture Notes 66, Springer-Verlag (1968).
[4] Ishihara, T., The Euler characteristics and Weyl's curvature invariants of submanifolds in spheres, J. Math. Soc. Japan 39 (1987), 247-256.
[5] N. Koike, The Gauss-Bonnet and Chern-Lashof theorems in simply connected symmetric space of nonpositive curvature, Tokyo J. Math. 26 (2003), 527-539.
[6] E. Teufel, On the total absolute curvature of closed curves in spheres, manuscripta math. 57 (1986), 101-108.

Present Address:
Department of Mathematics, Faculty of Science,
Tokyo University of Science,
Wakamiya, Shinjuku-ku, Tokyo, 162-8601 Japan.
e-mail: koike@ma.kagu.sut.ac.jp

[^0]: Received April 5, 2004; revised February 7, 2005

