Токуо J. Матн. Vol. 28, No. 2, 2005

The Gauss-Bonnet and Chern-Lashof Theorems in a Simply Connected Symmetric Space of Compact Type

Naoyuki KOIKE

Tokyo University of Science

(Communicated by Y. Ohnita)

Abstract. In this paper, we prove the theorems of the Gauss-Bonnet and Chern-Lashof types for low dimensional compact submanifolds in a simply connected symmetric space of compact type. In particular, in the case where the ambient space is a sphere, we need not to give the restriction for the dimension of the submanifold. Those proofs are performed by applying the Morse theory to squared distance functions.

1. Introduction

For an *n*-dimensional compact immersed submanifold M in the *m*-dimensional Euclidean space \mathbb{R}^m (m > n), it is well-known that the following Gauss-Bonnet and Chern-Lashof theorems hold:

(1.1)
$$\frac{(-1)^n}{\operatorname{Vol}(S^{m-1}(1))} \int_{\xi \in U^{\perp}M} \det A_{\xi} \omega_{U^{\perp}M} = \chi(M) \,,$$

(1.2)
$$\frac{1}{\operatorname{Vol}(S^{m-1}(1))} \int_{\xi \in U^{\perp}M} |\det A_{\xi}| \omega_{U^{\perp}M} \ge \sum_{k=0}^{n} b_k(M, \mathbf{F})$$

(see [1], [2], [3]), where Vol($S^{m-1}(1)$) is the volume of the (m-1)-dimensional unit sphere, A is the shape tensor of M, $\omega_{U^{\perp}M}$ is the standard volume element on the unit normal bundle $U^{\perp}M$ of M, $\chi(M)$ is the Euler characteristic of M and $b_k(M, \mathbf{F})$ is the k-th Betti number of M with respect to an arbitrary coefficient field \mathbf{F} . These relations are proved by applying the Morse theory to height functions h_v ($v \in \mathbf{R}^m$). The topology of a submanifold in a general complete and simply connected Riemannian manifold should be determined by both the extrinsic curvature A of the submanifold and the curvature R of the ambient space. So we [5] proposed the following problem:

Received April 5, 2004; revised February 7, 2005

PROBLEM. Find functions $F_{A,R}^i$ (i = 1, 2) on $U^{\perp}M$ determined by both A and R such that

$$\int_{\xi \in U^{\perp}M} F^1_{A,R}(\xi) \omega_{U^{\perp}M} = \chi(M)$$

and

$$\int_{\xi \in U^{\perp}M} F_{A,R}^2(\xi) \omega_{U^{\perp}M} \ge \sum_{k=0}^n b_k(M, \mathbf{F})$$

hold for each n-dimensional compact immersed submanifold M in an arbitrary complete and simply connected Riemannian manifold N.

It is conjectured that the functions $F_{A,R}^i$ (i = 1, 2) are rather complex. Hence we will obtain the equality and the inequality for practical use in some special cases. By applying the Morse theory to squared distance functions, we [5] proved the theorems of Gauss-Bonnet and Chern-Lashof types for a compact immersed submanifold in a simply connected symmetric space of non-positive curvature. As conjectured, the functions corresponding to $F_{A,R}^i$ (i = 1, 2) were rather complex. In this paper, we prove the theorems of such types for a low dimensional compact immersed submanifold M in a simply connected symmetric space N = G/K of compact type. We prepare to state those theorems. Define the functions \Re_1 and \Re_2 on $U^{\perp}M$ as follows:

(1.3)
$$\Re_1(\xi) := \frac{1}{\operatorname{Vol}(N)} \int_0^{r_{\xi}} \det\left(\operatorname{pr}_T \circ \frac{\sqrt{R_{\xi}}}{\tan(s\sqrt{R_{\xi}})} - A_{\xi}\right) \det\frac{\sin(s\sqrt{R_{\xi}})}{\sqrt{R_{\xi}}} ds \,,$$

(1.4)
$$\Re_2(\xi) := \frac{1}{\operatorname{Vol}(N)} \int_0^{r_{\xi}} \left| \det(\operatorname{pr}_T \circ \frac{\sqrt{R_{\xi}}}{\tan(s\sqrt{R_{\xi}})} - A_{\xi}) \right| \det \frac{\sin(s\sqrt{R_{\xi}})}{\sqrt{R_{\xi}}} ds$$

 $(\xi \in U^{\perp}M)$, where *A* is the shape tensor of *M*, $\sqrt{R_{\xi}}$ is the positive operator with $(\sqrt{R_{\xi}})^2 = R(\cdot, \xi)\xi$ (*R* : the curvature tensor of *N*), r_{ξ} is the first conjugate radius of direction ξ , Vol(*N*) is the volume of *N* and pr_T is the orthogonal projection of $TN|_M$ onto TM.

REMARK 1.1. (i) In case of $N = S^m(c)$ (the *m*-dimensional sphere of constant curvature *c*), we have

(1.5)
$$\mathfrak{K}_1(\xi) := \frac{1}{\operatorname{Vol}(S^m(1))} \int_0^\pi \det(\sqrt{c} \cot s \cdot \operatorname{id} - A_\xi) \sin^{m-1} s \, ds$$

(1.6)
$$\Re_2(\xi) := \frac{1}{\operatorname{Vol}(S^m(1))} \int_0^\pi |\det(\sqrt{c} \cot s \cdot \operatorname{id} - A_{\xi})| \sin^{m-1} s ds ,$$

where id is the identity transformation of *TM*. Substituting c = 0 into (1.5) (resp. (1.6)) formally and using $\int_0^{\pi} \sin^{m-1} s ds = \frac{\operatorname{Vol}(S^m(1))}{\operatorname{Vol}(S^{m-1}(1))}$, we have $\Re_1(\xi) = \frac{(-1)^n}{\operatorname{Vol}(S^{m-1}(1))} \operatorname{det} A_{\xi}$ (resp. $\Re_2(\xi) = \frac{1}{\operatorname{Vol}(S^{m-1}(1))} |\operatorname{det} A_{\xi}|$).

(ii) The first conjugate radius r_{ξ} is explicitly described as $r_{\xi} = \frac{\pi}{|\alpha_0(g_*^{-1}\xi)|}$ (see Lemma 2.1), where g is a representative element of the base point of ξ and α_0 is the highest root in the positive root system with respect to a maximal abelian subspace (equipped with some lexicographical ordering) containing $g_*^{-1}\xi$.

We prove the following theorems of Gauss-Bonnet and Chern-Lashof types for compact submanifolds in a simply connected symmetric space of compact type.

THEOREM A. Let M be an n-dimensional compact immersed submanifold in a simply connected symmetric space N of compact type. If $C_M := \bigcup_{x \in M} C_x$ (C_x : the cut locus of x in N) is of measure zero, then we have

(1.7)
$$\int_{\xi \in U^{\perp}M} \mathfrak{K}_1(\xi) \omega_{U^{\perp}M} = \chi(M) \,,$$

(1.8)
$$\int_{\xi \in U^{\perp}M} \mathfrak{K}_2(\xi) \omega_{U^{\perp}M} \ge \sum_{k=0}^n b_k(M, \mathbf{F}).$$

In particular, if M is taut in the sense of this paper (see §3), then the equality sign holds in the inequality (1.8).

REMARK 1.2. Let m_N be the maximal dimension of the cut locus C_x in N. If $\dim M \leq \dim N - m_N - 1$, then C_M is of measure zero. See Table 1 about m_N and $\dim N - m_N - 1$ for irreducible simply connected symmetric space N's of compact type, where we note that $\dim N - m_N - 1$ is equal to the multiplicity of the highest root in the root system associated with N (see Lemma 2.1). For the product $N := N_1 \times \cdots \times N_l$ of

N	m_N	$\dim N - m_N - 1$
$S^m(c)$	0	m - 1
$Sp(m)/Sp(l) \times Sp(m-l)$	4l(m - l) - 4	3
$(1 \le l \le [\frac{m}{2}])$		
$\mathbf{O}P^2$	8	7
SU(2m)/Sp(m)	$2m^2 - m - 6$	4
E_{6}/F_{4}	17	8
G	_	2
other	_	1

TABLE 1.

(G: an irreducible simply connected compact Lie group)

irreducible simply connected symmetric space N_i 's $(i = 1, \dots, l)$ of compact type, we have $\dim N - m_N - 1 = \min_{1 \le i \le l} (\dim N_i - m_{N_i} - 1)$.

In the case where the ambient space is the *m*-dimensional sphere $S^m(c)$ of constant curvature *c*, we obtain the following result.

THEOREM B. (i) Let M be a 2n-dimensional compact immersed submanifold in $S^m(c)$, where $1 \le n \le m - 1$. Then we have

(1.9)
$$\frac{1}{v_m} \sum_{i=0}^n \left(\sum_{k=0}^{n-i} (-1)^k \binom{2n}{2i} \binom{n-i}{k} \frac{v_{m-2n+2i+2k}}{v_{m-2n+2i+2k-1}} \right) \\ \times c^{n-i} \int_{\xi \in U^{\perp}M} H_{2i}(\xi) \omega_{U^{\perp}M} = \chi(M)$$

where $H_{2i}(\xi)$ is the 2*i*-th mean curvature of direction ξ of M and $v_i := \text{Vol}(S^i(1))$ $(i \ge 1)$ and $v_0 = 2$.

(ii) Let M be an n-dimensional compact immersed submanifold in $S^m(c)$. Then we have

(1.10)
$$\frac{1}{v_m} \sum_{i=0}^{\left[\frac{n}{2}\right]} a_i c^i \int_{\xi \in U^{\perp}M} |H_{n-2i}(\xi)| \omega_{U^{\perp}M} + \frac{2}{v_m} \sum_{i=0}^{\left[\frac{n-1}{2}\right]} b_i \sqrt{c}^{2i+1} \int_{\xi \in U^{\perp}M} |H_{n-2i-1}(\xi)| \omega_{U^{\perp}M} \ge \sum_{k=0}^{n} b_k(M, \mathbf{F}),$$

where $H_{n-2i}(\xi)$ and $H_{n-2i-1}(\xi)$ are as in (i), $a_i = \sum_{k=0}^{i} (-1)^k \binom{n}{2i} \binom{i}{k} \times \frac{v_{m-2i+2k}}{v_{m-2i+2k-1}}$ and

$$b_{i} = \sum_{k=0}^{i} (-1)^{k} {n \choose 2i+1} {i \choose k} \frac{1}{m-2i+2k-1}.$$

REMARK 1.3. The relation (1.9) for c = 1 coincides with the relation (1.7) of [4] obtained by T. Ishihara because $v_i = \frac{(i+1)\pi^{\frac{i+1}{2}}}{\Gamma(\frac{i+3}{2})}$ $(i \ge 1)$, where Γ is the Gamma function. The proof of T. Ishihara is entirely different from the proof in this paper.

In particular, when $\dim M = 2$, we obtain the following relations.

COROLLARY C. Let M be a 2-dimensional compact immersed submanifold in $S^m(c)$. Then we have

(1.11)
$$\frac{1}{v_{m-1}} \int_{\xi \in U^{\perp}M} K(\xi) \omega_{U^{\perp}M} + \left(\frac{v_{m-2}}{v_m} - \frac{v_{m-3}}{v_{m-1}}\right) c \operatorname{Vol}(M) = 2 - 2g,$$

THE GAUSS-BONNET AND CHERN-LASHOF THEOREMS

(1.12)
$$\frac{1}{v_{m-1}} \int_{\xi \in U^{\perp}M} |K(\xi)| \omega_{U^{\perp}M} + \frac{4\sqrt{c}}{(m-1)v_m} \int_{\xi \in U^{\perp}M} |H(\xi)| \omega_{U^{\perp}M} + \left(\frac{v_{m-2}}{v_m} - \frac{v_{m-3}}{v_{m-1}}\right) c \operatorname{Vol}(M) \ge 2 + 2g ,$$

where $K(\xi)$ (resp. $H(\xi)$) is the Gaussian curvature (resp. the mean curvature) of direction ξ of M and g is the genus of M.

Also, we have the following inequality for closed curves in $S^m(c)$.

COROLLARY D. Let $\gamma : [0, l] \to S^m(c)$ be a closed curve in $S^m(c)$ $(m \ge 2)$ parametrized by the arclength s and $\kappa : [0, l] \to \mathbf{R}_+ \cup \{0\}$ be the curvature of γ . Then we have

$$\frac{v_{m-3}}{(m-2)v_{m-1}} \int_0^l \kappa \, ds + \frac{\sqrt{c}v_{m-2}l}{(m-1)v_m} \ge 1 \quad (m \ge 3)$$

and

$$\frac{1}{v_{m-1}} \int_0^l \kappa \, ds + \frac{\sqrt{c} v_{m-2} l}{(m-1) v_m} \ge 1 \quad (m=2) \, .$$

REMARK 1.4. These inequalities are different from the inequality of Proposition 1 in [6] proved by E. Teufel.

Also, we have the following inequality for closed curves in a simply connected rank one symmetric space $\mathbf{F}P^m(c)$ of compact type, where \mathbf{F} implies the complex number field \mathbf{C} , the quaternion algebra \mathbf{Q} or the Cayley algebra \mathbf{O} , m = 2 when $\mathbf{F} = \mathbf{O}$ and c is the maximal sectional curvature of the space.

COROLLARY E. Let $\gamma : [0, l] \to \mathbf{F}P^m(c)$ be a closed curve in $\mathbf{F}P^m(c)$ parametrized by the arclength s and $\kappa : [0, l] \to \mathbf{R}_+ \cup \{0\}$ be the curvature of γ . Then we have

$$\frac{4\alpha_{qm-1,q-1}v_{qm-1}v_{qm-3}}{v_{qm-2}} \int_0^l \kappa ds + \sqrt{c}v_{q-2}v_{qm-q-1}(a\beta_{m,q} + b\alpha_{qm-2,q})l \geq \frac{1}{2^{qm-2}} \operatorname{Vol}(\mathbf{F}P^m(c))\sqrt{c}^{qm+1},$$

where q = 2 (when $\mathbf{F} = \mathbf{C}$), 4 (when $\mathbf{F} = \mathbf{Q}$) or 8 (when $\mathbf{F} = \mathbf{O}$), $\alpha_{i,j} = \int_0^{\frac{\pi}{2}} t \sin^i t \cos^j t dt$, $\beta_{m,q} = \int_0^{\frac{\pi}{2}} t |\cos 2t| \sin^{qm-2} t \cos^{q-2} t dt$, $a = \sum_{k=0}^{\frac{q}{2}} (-1)^k {\binom{q}{2}} \frac{v_{qm-q+2k}}{v_{qm-q+2k-1}}$, $b = \sum_{k=0}^{q-2} (-1)^k {\binom{q-2}{2}} \frac{v_{qm-q+2k+2}}{v_{qm-q+2k+1}}$ and v_i is as in Theorem B.

2. Basic notions and facts

In this section, we recall the basic notions and facts. Let N = G/K be a simply connected symmetric space of compact type. Let $w \in U_pN$, where U_pN is the unit tangent sphere of N at p. Denote by γ_w the (non-extendable) geodesic in N with $\dot{\gamma}_w(0) = w$ and denote by exp the exponential map of N. If there exists a non-zero Jacobi field J along γ_w with J(0) = 0 and $J(s_0) = 0$ ($s_0 > 0$), then we call s_0 a *conjugate radius of direction* w and call $\exp(s_0w) (= \gamma_w(s_0))$ a *conjugate point of direction* w. Also, we call the minimum of conjugate radii of direction w the first conjugate point of direction w and denote it by r_w . We call $\exp(r_ww)$ the first conjugate point of direction w. Set $\tilde{C}_p := \{r_ww \mid w \in U_pN\}$ and $C_p := \exp(\tilde{C}_p)$. This set C_p is called the first conjugate locus of p, which coincides with the cut locus of p because N is a simply connected symmetric space of compact type. For $w \in TN$ with $||w|| < r_w$, we set

$$D_w^{co} := \cos\sqrt{R_w} , \quad D_w^{si} := \frac{\sin\sqrt{R_w}}{\sqrt{R_w}} , \quad D_w^{ct} := \frac{\sqrt{R_w}}{\tan\sqrt{R_w}}$$

for simplicity, where $\sqrt{R_w}$ is the positive operator with $\sqrt{R_w}^2 = R(\cdot, w)w$ (R: the curvature tensor of N). Note that $D_0^{si} = D_0^{ct}$ = id. A Jacobi field J along a geodesic γ in N is described as

(2.1)
$$J(s) = P_{\gamma|_{[0,s]}}(D_{s\dot{\gamma}(0)}^{co}J(0) + sD_{s\dot{\gamma}(0)}^{si}J'(0)),$$

where $P_{\gamma|_{[0,s]}}$ is the parallel translation along $\gamma|_{[0,s]}$ with respect to the Levi-Civita connection $\tilde{\nabla}$ of N, $\dot{\gamma}(0)$ is the velocity vector of γ at 0 and $J'(0) = \tilde{\nabla}_{\dot{\gamma}(0)}J$. Let \mathfrak{g} (resp. \mathfrak{f}) be the Lie algebra of G (resp. K) and $\mathfrak{g} = \mathfrak{f} + \mathfrak{p}$ be the Cartan decomposition. The subspace \mathfrak{p} is identified with the tangent space $T_{eK}N$ of N at eK, where e is the identity element of G. Denote by ad the adjoint representation of \mathfrak{g} . Take a maximal abelian subspace \mathfrak{h} of \mathfrak{p} . For each $\alpha \in \mathfrak{h}^*$ (the dual space of \mathfrak{h}), we set $\mathfrak{p}_{\alpha} := \{X \in \mathfrak{p} \mid \mathrm{ad}(a)^2(X) = -\alpha(a)^2 X$ for all $a \in \mathfrak{h}\}$. If $\mathfrak{p}_{\alpha} \neq \{0\}$, then the linear function α is called a *root for* \mathfrak{h} . Let Δ_+ be the positive root system with respect to some lexicographical ordering of \mathfrak{h} . Then we have $\mathfrak{p} = \mathfrak{h} + \sum_{\alpha \in \Delta_+} \mathfrak{p}_{\alpha}$. Note that $D_w^{co} = g_* \circ \cosh(\mathrm{ad}(g_*^{-1}w)) \circ g_*^{-1}$, $D_w^{si} = g_* \circ \frac{\sinh(\mathrm{ad}(g_*^{-1}w))}{\mathrm{ad}(g_*^{-1}w)} \circ g_*^{-1}$ and $D_w^{ct} = g_* \circ \frac{\mathrm{ad}(g_*^{-1}w)}{\mathrm{tanh}(\mathrm{ad}(g_*^{-1}w))} \circ g_*^{-1}$. From (2.1), we can show the following fact for the first conjugate radius.

LEMMA 2.1. Take $w \in U_{gK}N$, Δ_+ be the positive root system with respect to a maximal abelian subspace \mathfrak{h} (equipped with some lexicographical ordering) containing $g_*^{-1}w$ and α_0 be the highest root in Δ_+ . Then we have $r_w = \frac{\pi}{|\alpha_0(g_*^{-1}w)|}$ and $\operatorname{rank}(\exp|_{T_{gK}N})_{*r_ww} = \dim N - \sum_{\alpha \in \Delta_w} \dim \mathfrak{p}_{\alpha}$, where $\Delta_w := \{\alpha \in \Delta_+ \mid |\alpha(g_*^{-1}w)| = \frac{\pi}{r_w}\}$. In particular, if w is a point of a Weyl chamber, then we have $\operatorname{rank}(\exp|_{T_{gK}N})_{*r_ww} = \dim N - \dim \mathfrak{p}_{\alpha_0}$.

PROOF. Let s_0 be a conjugate radius of direction w. Then there exists a non-trivial Jacobi field J along γ_w with J(0) = 0 and $J(s_0) = 0$. From (2.1), we have $s_0 D_{s_0w}^{si} J'(0) = 0$. On the other hand, we have $s_0 D_{s_0w}^{si} J'(0) = s_0 J'(0)_{\mathfrak{h}} + \sum_{\alpha \in \Delta_+} \frac{\sin(s_0 \alpha (g_*^{-1}w))}{\alpha (g_*^{-1}w)} J'(0)_{\alpha} = 0$, where $J'(0)_{\mathfrak{h}}$ (resp. $J'(0)_{\alpha}$) is the $g_*\mathfrak{h}$ -component (resp. $g_*\mathfrak{p}_{\alpha}$ -component of J'(0)). Hence we see that $s_0\alpha_0(g_*^{-1}w) \equiv 0 \pmod{\pi}$ and $J'(0)_{\alpha_0} \neq 0$ for some $\alpha_0 \in \Delta_+$ because $J'(0)_{\alpha}$ vanishes for each $\alpha \in \Delta_+$ with $s_0\alpha(g_*^{-1}w) \neq 0 \pmod{\pi}$ and $J'(0)_{\mathfrak{h}} = 0$. It follows from this fact that $r_w = \frac{\pi}{\max_{\alpha \in \Delta_+} |\alpha(g_*^{-1}w)|} = \frac{\pi}{|\alpha_0(g_*^{-1}w)|}$ and that $\operatorname{rank}(\exp|_{T_gKN})_{*r_ww} = \dim N - \sum_{\alpha \in \Delta_w} \dim \mathfrak{p}_{\alpha}$. In particular, if w is a point of a Weyl chamber, then we have $\Delta_w = \{\alpha_0\}$. Hence the last part of the statement follows.

From this lemma, the fact of Table 1 is deduced.

3. Squared distance functions

In this section, we prepare some lemmas for squared distance functions. Let M be an n-dimensional compact immersed submanifold in an m-dimensional symmetric space N = G/K of compact type. We omit the notation of the immersion. For two points p and q of N with $q \notin C_p$, we denote the shortest geodesic from p to q by γ_{pq} (i.e., $\gamma_{pq}(0) = p$, $\gamma_{pq}(1) = q$, $\|\dot{\gamma}_{pq}\| = d(p,q)$). Also, we denote $\dot{\gamma}_{pq}(0)$ by \overrightarrow{pq} . For the squared distance function $d_p^2 (x \in M \rightarrow d(p,x)^2) (p \in N)$, we have the following fact.

LEMMA 3.1. Let x be a critical point of d_p^2 with $x \notin C_p$. Then the following statements (i) and (ii) hold:

- (i) \overrightarrow{xp} is normal to M,
- (ii) The Hessian (Hess d_p^2)_x of d_p^2 at x is given by

(3.1)
$$(\operatorname{Hess} d_p^2)_X(X, Y) = 2\langle X, (\operatorname{pr}_T \circ D_{\overrightarrow{xp}}^{ct} - A_{\overrightarrow{xp}})Y \rangle,$$

where $X, Y \in T_x M$.

PROOF. The statement (i) is trivial. We shall show the statement (ii). Take tangent vectors X and Y to M at x. Take a two-parameter map $\overline{\delta}$ to M with $\overline{\delta}_*(\frac{\partial}{\partial u}|_{u=t=0}) = X$ and $\overline{\delta}_*(\frac{\partial}{\partial t}|_{u=t=0}) = Y$, where u (resp. t) is the first (resp. the second) parameter of $\overline{\delta}$. We may assume that $\operatorname{Im} \overline{\delta} \cap C_p = \emptyset$ by restricting the domain of $\overline{\delta}$ to a neighborhood of (0, 0) if necessary. Define a three-parameter map δ into N by $\delta(u, t, s) = \gamma_{\overline{\delta}(u,t)p}(s)$. For simplicity, we denote $\delta_*(\frac{\partial}{\partial u})$, $\delta_*(\frac{\partial}{\partial t})$ and $\delta_*(\frac{\partial}{\partial s})$ by $\frac{\partial}{\partial u}$, $\frac{\partial}{\partial t}$ and $\frac{\partial}{\partial s}$, respectively. Set $J_t(s) := \frac{\partial}{\partial u}|_{u=0}$, which is a Jacobi field along $\gamma_{\overline{\delta}(0,t,0)p}$. From (2.1), we have $J_t(s) = P_{\gamma_{\overline{\delta}(0,t,0)p}}|_{[0,s]}(D_{s\cdot\overline{\delta}(0,t,0)p}^{co}J_t(0)+sD_{s\cdot\overline{\delta}(0,t,0)p}^{si}J_t'(0))$. This together with $J_t(1) = 0$ deduces $D_{\overline{\delta}(0,t,0)p}^{co}J_t(0) + D_{\overline{\delta}(0,t,0)p}^{si}J_t'(0) = 0$. Since $\delta(0,t,0) \notin C_p$ (i.e., $||\overline{\delta(0,t,0)p}|| < D_{s}^{si}(0,t,0)p}$.

 $r_{\overline{\delta(0,t,0)p/||\overline{\delta(0,t,0)p}||}}$, we have $\max_{\alpha \in \Delta_+} |\alpha(g_*^{-1}\overline{\delta(0,t,0)p})| < \pi$ in terms of Lemma 2.1, where $\delta(0,t,0) = gK$. This implies that $D_{\overline{\delta(0,t,0)p}}^{si}$ is non-singular. Hence we obtain $J'_t(0) = -D_{\overline{\delta(0,t,0)p}}^{ct} J_t(0)$. Also, since x is a critical point of d_p^2 , $\frac{\partial}{\partial s}|_{u=t=s=0}$ is normal to M. These facts deduce

$$(\operatorname{Hess} d_p^2)_X(X, Y) = -2 \left\langle X, \nabla_Y \left(\frac{\partial}{\partial s} |_{u=s=0} \right)_T \right\rangle,$$

where ∇ is the Levi-Civita connection of M and $(\cdot)_T$ is the tangent component of \cdot (see the proof of Lemma 3.1 in [5]). On the other hand, we can show $\nabla_Y(\frac{\partial}{\partial s}|_{u=s=0})_T = -(\text{pr}_T \circ D_{\overrightarrow{xp}}^{ct} - A_{\overrightarrow{xp}})Y$ (see the proof of Lemma 3.1 in [5]). Therefore, we obtain the relation (3.1). q.e.d.

Let $B := \bigcup_{\xi \in U^{\perp}M} \{s\xi \mid s \in [0, r_{\xi})\}$, which is an open potion of $T^{\perp}M$. Denote by \exp_B^{\perp} the restriction of the normal exponential map \exp^{\perp} of M to B. Also, denote by $\tilde{\omega}$ (resp. ω_B) the volume element of N (resp. B induced from the volume element of $T^{\perp}M$). Then we have the following relation.

LEMMA 3.2. For each $\xi \in B$, the following relation holds:

$$((\exp_B^{\perp})^* \tilde{\omega})_{\xi} = \det(\operatorname{pr}_T \circ D_{\xi}^{ct}|_{T_{\pi(\xi)}M} - A_{\xi}) \det D_{\xi}^{si}(\omega_B)_{\xi},$$

where π is the bundle projection of *B*.

PROOF. From $\xi \in B$ (i.e., $\|\xi\| < r_{\xi/\|\xi\|}$), we see that D_{ξ}^{si} is non-singular. By noticing this fact and imitating the proof of Lemma 3.2 in [5], we obtain the desired relation. q.e.d.

Denote by $\beta(\phi)$ the number of non-degenerate critical points of a function ϕ and by $\beta_{even}(\phi)$ (resp. $\beta_{odd}(\phi)$) the number of non-degenerate critical points of even (resp. odd) index of a function ϕ . Denote by *F* the focal set of *M*. For $p \in N \setminus F$, we set

$$(\exp_B^{\perp})^{-1}(p)_+ := \{\xi \in (\exp_B^{\perp})^{-1}(p) \mid (\exp_B^{\perp})_{*\xi} \text{ preserves the orientation} \}$$

 $(\exp_B^{\perp})^{-1}(p)_{-} := \{ \xi \in (\exp_B^{\perp})^{-1}(p) \mid (\exp_B^{\perp})_{*\xi} \text{ reverses the orientation} \}.$

Further we prepare the following lemma.

LEMMA 3.3. Let $p \in N \setminus (F \cup C_M)$. Then we have the following relations:

(3.2) $\beta(d_p^2) = \sharp(\exp_B^{\perp})^{-1}(p),$

(3.3)
$$\beta_{even}(d_p^2) = \sharp(\exp_B^{\perp})^{-1}(p)_+,$$

(3.4)
$$\beta_{odd}(d_p^2) = \sharp(\exp_B^{\perp})^{-1}(p)_{-1}$$

where $\sharp(*)$ is the number of elements of a set *.

PROOF. The relation (3.2) is directly deduced from (i) of Lemma 3.1. The relations (3.3) and (3.4) are directly deduced from (3.1) and Lemma 3.2, where we use det $D_{\xi}^{si} > 0$ ($\xi \in B$). q.e.d.

At the end of this section, we define the tautness of a compact submanifold M with $N \setminus (F \cup C_M) \neq \emptyset$ in a complete Riemannian manifold N, where F is the focal set of M and $C_M := \bigcup_{x \in M} C_x$ (C_x : the cut locus of x). If d_p^2 is a perfect Morse function for each $p \in N \setminus (F \cup C_M)$, then we say that M is *taut*.

4. Proofs of Theorems A, B and Corollaries

In this section, we first prove Theorem A in terms of Lemmas 3.2 and 3.3.

PROOF OF THEOREM A. First we prove the relation (1.7) in Theorem A. According to Lemma 3.2, we have

$$(4.1) \qquad \int_{\xi \in B} ((\exp_B^{\perp})^* \tilde{\omega})_{\xi} = \int_{\xi \in B} \det(\operatorname{pr}_T \circ D_{\xi}^{ct}|_{T_{\pi(\xi)}M} - A_{\xi}) \det D_{\xi}^{si} \omega_B$$
$$= \int_{\xi \in U^{\perp}M} \left(\int_0^{r_{\xi}} \det\left(\operatorname{pr}_T \circ \frac{1}{s} D_{s\xi}^{ct}|_{T_{\pi(\xi)}M} - A_{\xi} \right) \det D_{s\xi}^{si} \cdot s^{m-1} ds \right) \omega_{U^{\perp}M}$$
$$= \frac{\operatorname{Vol}(N)}{\operatorname{Vol}(S^{m-1}(1))} \int_{\xi \in U^{\perp}M} \mathfrak{K}_1(\xi) \omega_{U^{\perp}M}.$$

On the other hand, since C_M is of measure zero, we have

(4.2)

$$\int_{\xi \in B} ((\exp_B^{\perp})^* \tilde{\omega})_{\xi} = \int_{\xi \in B \setminus \exp_B^{\perp - 1}(F)} ((\exp_B^{\perp})^* \tilde{\omega})_{\xi} \\
= \int_{p \in N \setminus F} (\sharp(\exp_B^{\perp})^{-1}(p)_+ - \sharp(\exp_B^{\perp})^{-1}(p)_-) \tilde{\omega}_p \\
= \int_{p \in N \setminus (F \cup C_M)} (\sharp(\exp_B^{\perp})^{-1}(p)_+ - \sharp(\exp_B^{\perp})^{-1}(p)_-) \tilde{\omega}_p \\
= \int_{p \in N \setminus (F \cup C_M)} (\beta_{even}(d_p^2) - \beta_{odd}(d_p^2)) \tilde{\omega}_p \\
= \chi(M) \operatorname{Vol}(N).$$

Therefore, we obtain the equality (1.7). In similar to (4.1) and (4.2), we can show

$$\begin{split} &\int_{\xi \in B} |((\exp_B^{\perp})^* \tilde{\omega})_{\xi}| \\ &= \int_{\xi \in U^{\perp}M} \left(\int_0^{r_{\xi}} |\det\left(\operatorname{pr}_T \circ \frac{1}{s} D_{s\xi}^{ct}|_{T_{\pi(\xi)}M} - A_{\xi} \right) |\det D_{s\xi}^{si} \cdot s^{m-1} ds \right) \omega_{U^{\perp}M} \end{split}$$

$$= \frac{\operatorname{Vol}(N)}{\operatorname{Vol}(S^{m-1}(1))} \int_{\xi \in U^{\perp}M} \mathfrak{K}_2(\xi) \omega_{U^{\perp}M}$$

and

$$\int_{\xi \in B} |((\exp_B^{\perp})^* \tilde{\omega})_{\xi}| = \int_{p \in N \setminus (F \cup C_M)} \beta(d_p^2) \tilde{\omega}_p \ge \sum_{k=0}^n b_k(M, \mathbf{F}) \operatorname{Vol}(N) \,.$$

Therefore, we obtain the inequality (1.8). In particular, if M is taut, then we have $\int_{p \in N \setminus (F \cup C_M)} \beta(d_p^2) \tilde{\omega}_p = \sum_{k=0}^n b_k(M, \mathbf{F}) \operatorname{Vol}(N)$. Hence the equality sign holds in (1.8). q.e.d.

Next we prove Theorem B.

PROOF OF THEOREM B. Since the ambient space is $S^m(c)$, we have $r_{\xi} = \frac{\pi}{\sqrt{c}}$, $D_{s\xi}^{ct} = \sqrt{cs} \cot(\sqrt{cs})$ id and $D_{s\xi}^{si} = \frac{\sin(\sqrt{cs})}{\sqrt{cs}}$ id. Also, since the cut locus C_x consists of one point for each $x \in M$ and dim $M \leq m - 1$, the set C_M is of measure zero. Hence the relations (1.7) and (1.8) in Theorem A hold. The left-hand side of the relation (1.7) in Theorem 1 is written as

$$\frac{1}{\operatorname{Vol}(S^m(c))} \int_{\xi \in U^{\perp}M} \left(\int_0^{\frac{\pi}{\sqrt{c}}} \det(\sqrt{c}\cot(\sqrt{c}s)\mathrm{id} - A_{\xi}) \left(\frac{\sin(\sqrt{c}s)}{\sqrt{c}} \right)^{m-1} ds \right) \omega_{U^{\perp}M} \,,$$

which is further written as

$$\frac{1}{\operatorname{Vol}(S^m(1))}\int_{\xi\in U^{\perp}M}\left(\int_0^{\pi}\det(\sqrt{c}\cot s\cdot \mathrm{id}-A_{\xi})\sin^{m-1}sds\right)\omega_{U^{\perp}M}.$$

Hence we have

(4.3)
$$\frac{1}{\operatorname{Vol}(S^m(1))} \int_{\xi \in U^{\perp}M} \left(\int_0^{\pi} \det(\sqrt{c} \cot s \cdot \operatorname{id} - A_{\xi}) \sin^{m-1} s ds \right) \omega_{U^{\perp}M} = \chi(M) \,.$$

Similarly we have

(4.4)
$$\frac{1}{\operatorname{Vol}(S^{m}(1))} \int_{\xi \in U^{\perp}M} \left(\int_{0}^{\pi} |\det(\sqrt{c} \cot s \cdot \operatorname{id} - A_{\xi})| \sin^{m-1} s ds \right) \omega_{U^{\perp}M}$$
$$\geq \sum_{k=0}^{n} b_{k}(M, \mathbf{F}).$$

Let ξ be the fixed unit normal vector field of M. First we show the statement (i). From the definitions of the *i*-th mean curvature $H_i(\xi)$ of direction ξ ($i = 0, \dots, 2n$), we have

$$\det(\sqrt{c}\cot s \cdot \mathrm{id} - A_{\xi}) = \sum_{i=0}^{2n} (-1)^i (\sqrt{c}\cot s)^{2n-i} {2n \choose i} H_i(\xi) \, .$$

Hence we have

(4.5)

$$\int_{0}^{\pi} \left(\det(\sqrt{c} \cot s \cdot \mathrm{id} - A_{\xi}) + \det(\sqrt{c} \cot s \cdot \mathrm{id} - A_{(-\xi)}) \right) \sin^{m-1} s ds$$

$$= 2 \sum_{i=0}^{n} {\binom{2n}{2i}} H_{2i}(\xi) c^{n-i} \int_{0}^{\pi} \sin^{m-n+2i-1} s \cos^{2n-2i} s ds$$

$$= 2 \sum_{i=0}^{n} {\binom{2n}{2i}} H_{2i}(\xi) c^{n-i} \left(\sum_{k=0}^{n-i} (-1)^{k} {\binom{n-i}{k}} \frac{v_{m-n+2i+2k-1}}{v_{m-n+2i+2k-1}} \right)$$

where we also use $\int_0^{\pi} \sin^j s ds = \frac{v_{j+1}}{v_j}$. From this relation and (4.3), we obtain (1.9). Next we show the statement (ii). In similar way to get (4.5), we have

$$\int_{0}^{n} \left(|\det(\sqrt{c} \cot s \cdot \mathrm{id} - A_{\xi})| + |\det(\sqrt{c} \cot s \cdot \mathrm{id} - A_{(-\xi)})| \right) \sin^{m-1} s \, ds$$

$$\leq 4 \sum_{i=0}^{n} \binom{n}{i} |H_{i}(\xi)| \sqrt{c}^{n-i} \int_{0}^{\frac{\pi}{2}} \sin^{m-n+i-1} s \cos^{n-i} s \, ds$$

$$= 4 \sum_{i=0}^{n} \binom{n}{i} |H_{n-i}(\xi)| \sqrt{c}^{i} \int_{0}^{\frac{\pi}{2}} \sin^{m-i-1} s \cos^{i} s \, ds$$

$$= 2 \sum_{i=0}^{\left\lfloor \frac{n}{2} \right\rfloor} a_{i} c^{i} |H_{n-2i}(\xi)| + 4 \sum_{i=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} b_{i} \sqrt{c}^{2i+1} |H_{n-2i-1}(\xi)|,$$

where we use $\int_0^{\frac{\pi}{2}} \sin^i s \cos^{2j} s ds = \frac{1}{2} \sum_{k=0}^j (-1)^k {j \choose k} \frac{v_{i+2k+1}}{v_{i+2k}}$ and $\int_0^{\frac{\pi}{2}} \sin^i s \cos^{2j+1} s ds = \sum_{k=0}^j (-1)^k {j \choose k} \frac{1}{i+2k+1}$. From this relation and (4.4), we obtain (1.10). q.e.d.

Next we prove Corollary C in terms of Theorem B.

PROOF OF COROLLARY C. From dimM = 2, the relations (1.9) (resp. (1.10)) of Theorem B is as follows:

$$\frac{1}{v_{m-1}} \int_{\xi \in U^{\perp}M} K(\xi) \omega_{U^{\perp}M} + \frac{c}{v_m} \left(\frac{v_{m-2}}{v_{m-3}} - \frac{v_m}{v_{m-1}} \right) \operatorname{Vol}(U^{\perp}M) = \chi(M)$$

$$\left(\operatorname{resp.} \frac{1}{v_{m-1}} \int_{\xi \in U^{\perp}M} |K(\xi)| \omega_{U^{\perp}M} + \frac{4\sqrt{c}}{(m-1)v_m} \int_{\xi \in U^{\perp}M} |H_1(\xi)| \omega_{U^{\perp}M} + \frac{c}{v_m} \left(\frac{v_{m-2}}{v_{m-3}} - \frac{v_m}{v_{m-1}} \right) \operatorname{Vol}(U^{\perp}M) \ge \sum_{k=0}^2 b_k(M, \mathbf{F}) \right).$$

Hence we obtain the relations (1.11) and (1.12) in terms of $\operatorname{Vol}(U^{\perp}M) = v_{m-3}\operatorname{Vol}(M), \ \chi(M) = 2 - 2g \text{ and } \sum_{k=0}^{2} b_k(M, \mathbf{F}) = 2 + 2g.$ q.e.d.

Next we prove Corollary D in terms of Theorem B.

PROOF OF COROLLARY D. We show the statement in the case where κ has no zero point. Let v be the unit principal normal vector of γ . Clearly we have $A_{\xi}\dot{\gamma} = \kappa(\pi(\xi))\langle v, \xi \rangle \dot{\gamma}$ for $\xi \in U^{\perp}\gamma$, where $\dot{\gamma} = \frac{d\gamma}{ds}$ and π is the projection of the unit normal bundle $U^{\perp}\gamma$ of γ . So we have $|H_1(\xi)| = \kappa(\pi(\xi))|\langle v, \xi \rangle|$. Hence, from (1.10) of Theorem B, we have

(4.6)
$$\frac{1}{2v_{m-1}} \int_{\xi \in U^{\perp}\gamma} \kappa(\pi(\xi)) |\langle v, \xi \rangle| \omega_{U^{\perp}\gamma} + \frac{\sqrt{c}v_{m-2}l}{(m-1)v_m} \ge 1,$$

where we also use $Vol(U^{\perp}\gamma) = v_{m-2}l$. The first term of the left-hand side of (4.6) is rewritten as

$$\begin{aligned} \frac{1}{2v_{m-1}} \int_{\xi \in U^{\perp}\gamma} \kappa(\pi(\xi)) |\langle v, \xi \rangle| \omega_{U^{\perp}\gamma} &= \frac{1}{2v_{m-1}} \int_0^l \left(\kappa(s) \int_{\xi \in U_s^{\perp}\gamma} |\langle v, \xi \rangle| \omega_{U_s^{\perp}\gamma}\right) ds \\ &= \begin{cases} \frac{v_{m-3}}{(m-2)v_{m-1}} \int_0^l \kappa(s) ds & (m \ge 3) \\ \frac{1}{v_{m-1}} \int_0^l \kappa(s) ds & (m = 2) \,. \end{cases} \end{aligned}$$

Hence we obtain the desired relations. Similarly we can show the statement in the case where κ has zero points. q.e.d.

Next we prove Corollary E.

PROOF OF COROLLARY E. We show the statement in the case where κ has no zero point. Let v be the unit principal normal vector of γ . Clearly we have

(4.7)
$$A_{\xi}\dot{\gamma} = \kappa(\pi(\xi))\langle v, \xi\rangle\dot{\gamma} \quad (\xi \in U^{\perp}\gamma),$$

where $\dot{\gamma} = \frac{d\gamma}{ds}$ and π is the projection of the unit normal bundle $U^{\perp}\gamma$ of γ . Fix $\xi \in U_{s_0}^{\perp}\gamma$. Let $W_{\xi} := \operatorname{Span}\{J_1\xi, \cdots, J_{q-1}\xi\}$ and $W'_{\xi} := \operatorname{Span}\{\xi, J_1\xi, \cdots, J_{q-1}\xi\}^{\perp}$, where $\{J_1, \cdots, J_{q-1}\}$ is the complex structure of $\mathbb{C}P^m(c)$, the quaternionic structure of $\mathbb{Q}P^m(c)$ or the Cayley structure of $\mathbb{O}P^2(c)$. Denote by pr_{ξ} , $\operatorname{pr}_{W_{\xi}}$ and $\operatorname{pr}_{W'_{\xi}}$ the orthogonal projection of $T_{\gamma(s_0)}\mathbf{F}P^m(c)$ onto $\operatorname{Span}\{\xi\}$, W_{ξ} and W'_{ξ} , respectively. Since $\frac{\sqrt{R_{\xi}}}{\tan(s\sqrt{R_{\xi}})} = \frac{1}{s}\operatorname{pr}_{\xi} + \frac{\sqrt{c}}{\tan(s\sqrt{c})}\operatorname{pr}_{W_{\xi}} + \frac{\sqrt{c}}{2\tan\frac{s\sqrt{c}}{2}}\operatorname{pr}_{W'_{\xi}}$ and $\dot{\gamma}(s_0) \in W_{\xi} \oplus W'_{\xi}$, we have

$$\left(\mathrm{pr}_T \circ \frac{\sqrt{R_{\xi}}}{\tan(s\sqrt{R_{\xi}})}\right)(\dot{\gamma}(s_0)) = \frac{\sqrt{c}}{\tan(s\sqrt{c})}(\mathrm{pr}_T \circ \mathrm{pr}_{W_{\xi}})(\dot{\gamma}(s_0))$$

$$+\frac{\sqrt{c}}{2\tan\frac{s\sqrt{c}}{2}}(\mathrm{pr}_T\circ\mathrm{pr}_{W'_{\xi}})(\dot{\gamma}(s_0))\,.$$

Denote by θ_{ξ} the angle between $\dot{\gamma}(s_0)$ and $\operatorname{pr}_{W_{\xi}}(\dot{\gamma}(s_0))$. Then we have

(4.8)
$$\left(\operatorname{pr}_T \circ \frac{\sqrt{R_{\xi}}}{\tan(s\sqrt{R_{\xi}})} \right) (\dot{\gamma}(s_0)) = \left(\frac{\sqrt{c}}{\tan(s\sqrt{c})} \cos^2 \theta_{\xi} + \frac{\sqrt{c}}{2 \tan \frac{s\sqrt{c}}{2}} \sin^2 \theta_{\xi} \right) \dot{\gamma}(s_0) \, .$$

From (4.7) and (4.8), we have

$$\left| \det \left(\operatorname{pr}_{T} \circ \frac{\sqrt{R_{\xi}}}{\tan(s\sqrt{R_{\xi}})} |_{T_{s_{0}}\gamma} - A_{\xi} \right) \right|$$

$$\leq \left| \frac{\sqrt{c}}{\tan(s\sqrt{c})} \right| \cos^{2}\theta_{\xi} + \left| \frac{\sqrt{c}}{2\tan\frac{s\sqrt{c}}{2}} \right| \sin^{2}\theta_{\xi} + \kappa |\langle v, \xi \rangle|.$$

On the other hand, we have

$$\frac{\sin(s\sqrt{R_{\xi}})}{\sqrt{R_{\xi}}} = s \operatorname{pr}_{\xi} + \frac{\sin(s\sqrt{c})}{\sqrt{c}} \operatorname{pr}_{W_{\xi}} + \frac{2\sin\frac{s\sqrt{c}}{2}}{\sqrt{c}} \operatorname{pr}_{W'_{\xi}}$$

and hence

$$\det \frac{\sin(s\sqrt{R_{\xi}})}{\sqrt{R_{\xi}}} = s \left(\frac{\sin(s\sqrt{c})}{\sqrt{c}}\right)^{q-1} \left(\frac{2\sin\frac{s\sqrt{c}}{2}}{\sqrt{c}}\right)^{qm-q}$$
$$= \left(\frac{2}{\sqrt{c}}\right)^{qm-1} s \sin^{qm-1}\frac{s\sqrt{c}}{2} \cos^{q-1}\frac{s\sqrt{c}}{2}.$$

Also, the first conjugate radius r_{ξ} of direction ξ is equal to $\frac{\pi}{\sqrt{c}}$. Hence we have

$$\begin{aligned} \mathfrak{K}_{2}(\xi) &\leq \frac{v_{qm-1}}{\operatorname{Vol}(\mathbf{F}P^{m}(c))} \left(\frac{2}{\sqrt{c}}\right)^{qm-1} \left\{\frac{2\beta_{m,q}}{\sqrt{c}}\cos^{2}\theta_{\xi} + \frac{2\alpha_{qm-2,q}}{\sqrt{c}}\sin^{2}\theta_{\xi} \right. \\ &+ \kappa |\langle v, \xi \rangle| \frac{4\alpha_{qm-1,q-1}}{c} \right\}. \end{aligned}$$

Therefore, from (1.8) of Theorem A, we obtain

(4.9)
$$\frac{1}{\operatorname{Vol}(\mathbf{F}P^{m}(c))} \left(\frac{2}{\sqrt{c}}\right)^{qm-1} \left\{ \frac{2\beta_{m,q}}{\sqrt{c}} \int_{\xi \in U^{\perp}\gamma} \cos^{2}\theta_{\xi}\omega_{U^{\perp}\gamma} + \frac{4\alpha_{qm-1,q-1}}{c} \int_{\xi \in U^{\perp}\gamma} \kappa |\langle v, \xi \rangle| \omega_{U^{\perp}\gamma} \right\}$$
$$\stackrel{(4.9)}{=} b_{0}(S^{1}, \mathbf{F}) + b_{1}(S^{1}, \mathbf{F}) = 2.$$

On the other hand, we have

$$\begin{split} \int_{\xi \in U^{\perp}\gamma} \cos^2 \theta_{\xi} \omega_{U^{\perp}\gamma} &= \int_0^l \left(\int_{\xi \in U_s^{\perp}\gamma} \cos^2 \theta_{\xi} \omega_{U_s^{\perp}\gamma} \right) ds \\ &= l \int_{[0,\frac{\pi}{2}] \times S^{qm-q-1}(1) \times S^{q-2}(1)} \sin^{qm-q-1} \theta \cos^q \theta \, d\theta \\ &\wedge \omega_{Sqm-q-1}(1) \wedge \omega_{Sq-2}(1) \\ &= l v_{qm-q-1} v_{q-2} \int_0^{\frac{\pi}{2}} \sin^{qm-q-1} \theta \cos^q \theta \, d\theta \\ &= \frac{l v_{qm-q-1} v_{q-2}}{2} \sum_{k=0}^{\frac{q}{2}} (-1)^k \binom{q}{2} \frac{v_{qm-q+2k}}{v_{qm-q+2k-1}}, \\ \int_{\xi \in U^{\perp}\gamma} \sin^2 \theta_{\xi} \omega_{U^{\perp}\gamma} &= l v_{qm-q-1} v_{q-2} \int_0^{\frac{\pi}{2}} \sin^{qm-q+1} \theta \cos^{q-2} \theta \, d\theta \\ &= \frac{l v_{qm-q-1} v_{q-2}}{2} \sum_{k=0}^{\frac{q}{2}} (-1)^k \binom{\frac{q-2}{2}}{k} \frac{v_{qm-q+2k+2}}{v_{qm-q+2k+1}} \end{split}$$

and

$$\int_{\xi \in U^{\perp} \gamma} \kappa |\langle v, \xi \rangle| \omega_{U^{\perp} \gamma} = \frac{v_{qm-1} v_{qm-3}}{v_{qm-2}} \int_0^l \kappa(s) ds \,.$$

By substituting these relations into (4.9), we obtain the desired relation. Similarly we can show the statement in the case where κ has zero points. q.e.d.

References

- S. S. CHERN and R. K. LASHOF, On the total curvature of immersed manifolds I, Amer. J. Math. 79 (1957), 306–318.
- [2] S. S. CHERN and R. K. LASHOF, On the total curvature of immersed manifolds II, Michigan Math. J. 5 (1958), 5–12.
- [3] D. FERUS, *Totale Absolutkrümmung in Differentialgeometrie undtopologie*, Lecture Notes 66, Springer-Verlag (1968).
- [4] ISHIHARA, T., The Euler characteristics and Weyl's curvature invariants of submanifolds in spheres, J. Math. Soc. Japan 39 (1987), 247–256.
- [5] N. KOIKE, The Gauss-Bonnet and Chern-Lashof theorems in simply connected symmetric space of nonpositive curvature, Tokyo J. Math. 26 (2003), 527–539.
- [6] E. TEUFEL, On the total absolute curvature of closed curves in spheres, manuscripta math. 57 (1986), 101–108.

THE GAUSS-BONNET AND CHERN-LASHOF THEOREMS

Present Address: DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, TOKYO UNIVERSITY OF SCIENCE, WAKAMIYA, SHINJUKU-KU, TOKYO, 162–8601 JAPAN. *e-mail*: koike@ma.kagu.sut.ac.jp