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1. Introduction

Denote by G,(C") the complex Grassmann manifold of r-planes in C", equipped with
the Kéhler metric of maximal holomorphic sectional curvature c.

One of the simplest typical examples of submanifolds of G,(C") is a totally geodesic
submanifold. B. Y. Chen and T. Nagano in [4, 5] determined maximal totally geodesic sub-
manifolds of G,(C™). 1. Satake and S. Thara in [11, 6] determined all (equivariant) holomor-
phic, totally geodesic imbeddings of a symmetric domain into another symmetric domain.
When an ambient symmetric domain is of type (I) , ,, taking a compact dual symmetric space,
we obtain the complete list of maximal totally geodesic Kihler submanifolds of G, (C").

Let M be a maximal totally geodesic Kihler submanifold of G,(C") given by a Kihler
immersion ¢ : M — G,(C"). Since M is a symmetric space, denote by (G, K) the compact
symmetric pair of M. Then there exists a certain unitary representation p : G — G = SU (n),
such that ¢ (M) is given by the orbit of p(G) through the origin in G, (C").

Denote by CP" and Q", an n-dimensional complex projective space and an n-
dimensional complex quadric respectively.

EXAMPLE 1 ([4,5,11,6]). Let M = G/K be aproper maximal totally geodesic Kih-
ler submanifold of G,(C"), p a corresponding unitary representation of G to SU(n). Then,
M and p are one of the following (up to isomorphism).

() M;i=G.(C"H— G (C", 1<r<n-2

2) M2=G,1(C") = G(C"), 2=r<n-—1

() M3 =Gr(C") X G, (C™) = Gy (C1H2), 1< Snp—1,i=1,2

4 Ms= My, =Sp(p)/U(p) = Gp(C*), p=2

(5) Ms=Ms,=S0Q2p)/U(p) = G,(C?), p=4

6) Mom=CPP = G.(C"), r=(") n=("", 2sm<p-1,

pe.m : SU(p+1) = SU(n) : the exterior representation of degree m
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(1) M;=0Q° <= 0% =GaCY,
p7: Spin(5) — SU(4) : spin representation
(8) Mg = Mgy =0 G, (C¥), 123,
pét :Spin(2l +2) - SU (21) : (two) spin representations
Notice that pp, - -, ps5 are the identical representations, and notice that My > = M7 and
Ms 4 = Mg .

A submanifold M of G,(C") is parallel if the second fundamental form of M is parallel.
H. Nakagawa and R. Takagi in [10] classified parallel Kédhler submanifolds of a complex
projective space CP"~! = G1(C"). K. Tsukada in [14] showed that, in parallel Kéhler
submanifolds of G, (C"), the above classification is essential. Moreover, if r # 1, n — 1, then
a parallel Kéhler submanifold M of G, (C") is a parallel Kéhler submanifolds of some totally
geodesic Kéhler submanifold of G,.(C"), i.e, M is a parallel Kéhler submanifold of one of
{M;,i =1,---,8}. Notice that a Hermitian symmetric submanifolds of G,(C") is parallel.

Another one of the simplest typical examples of submanifolds of G, (C") is a homoge-
neous Kéhler hypersurface. K. Konno in [8] determined all Kéhler C-spaces embedded as a
hypersurface into a Kihler C-space with the second Betti number by = 1.

EXAMPLE 2 ([8]). Let M be a compact, simply connected homogeneous Kihler hy-
persurface of G, (C"). Then, M are one of the following (up to isomorphism).

(1) Mg =CP" 2 CP" ! =G (C"

2) Mip=Q"? = CP"!' =G (C")

3) M7 = Q%= 0*=Ga(CH

4 My = My = Sp()/UQ) - Sp(l —2) = G»(C?) : Kihler C-space of type

(Crya2), 122

My and M7 are totally geodesic. Mg, Mo and M7 are symmetric spaces. Mg is not totally
geodesic but parallel. If [ = 2, then M is congruent to M7. If [ > 2, My is neither
symmetric nor parallel.

Notice that all manifolds in Examples 1 and 2 are Einstein manifolds.

The purpose of this paper is, without the assumption of homogeneity, to characterize a
Kaihler hypersurface M.

M satisfies another interesting, extrinsic property as follows. It is known that G, (C")
admits the quaternionic Kihler structure J. For the normal bundle 7M of a Kihler hyper-
surface M in Go(C"), JTM is a vector bundle of real rank 6 over M. We consider a Kihler
hypersurface M of G,(C") satisfying the property that 3T M is a subbundle of the tangent
bundle TM of M, i.e, JT+M C T M. The Kihler hypersurface M ; satisfies this condition.
In [9], the author showed that if M is compact, then the first eigenvalue A of the Laplacian

n—1

satisfies A1 = c(n — 5,—5). The equality holds if and only if n = 4 and M is congruent to
Mo = Q.
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One of the simplest questions is as follows: What is M satisfying JT-M C T M? With-
out the assumption of homogeneity, we shall show the following result.

THEOREM 1.1. If an Einstein Kdihler hypersurface M of Go(C") satisfies the condi-
tion JTEM C TM, then n is even and M is locally congruent to M11, /2.

The author wishes to thank Professors K. Ogiue and Y. Ohnita for many valuable com-
ments and suggestions.

NOTATIONS. M, <(C) denotes the set of all r x s matrices with entries in C, and M, (C)
stands for M, ,(C). I, and O, denote the identity r-matrix and the zero r-matrix.

2. Preliminaries

In this section, we review well-known geometries of complex Grassmann manifolds of
2-planes. For details, see [7] and [2].

Let M>(C") be the complex Stiefel manifold which is the set of all unitary 2-systems of
C", ie.,

My(C") ={Z e My2(C) | Z*Z = I}
The complex 2-plane Grassmann manifold G2(C") is defined by

G2(C") = My (CY)/U(2).

. . D) .
The origin o of G(C") is defined by 7 (Zy), where Zy = (02) is an element of M»(C™), and

7w My(C") — G2(C") is the natural projection.
The left action of the unitary group G = SU (n) on G2 (C") is transitive, and the isotropy
subgroup at the origin o is

K=S(UQ2)-Un-2))

= {(l(])l l(]))‘ Uy eUR), U eUm—2), detU;detU; = 1},
2

so that G»(C") is identified with a homogeneous space M = G /K .
Set g = su(n) and

tE=R@su) ®sun—2)

6 (0 )

up € su(2)
T ur € su(n —2)
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Then § and ¢ are the Lie algebras of G and K, respectively. Define a linear subspace fi of §

by
a={(¢ ) Jeemaso)]

Then m is identified with the tangent space T;5(G2(C")). The G-invariant complex structure
J of G2(C") and the G-invariant Kihler metric . of G2(C") of the maximal holomorphic
sectional curvature ¢ are given by

()= (A )

2
2.1 ge(X,Y)=——trXy, X,Y em.
c
Notice that g, satisfies
- 21 2 L(9)
2.2 —_Z__p.=—_-*p.
2.2 Je c2n ? c 2 ¢

on m, where B is the Killing form of g, and L(g) is the squared length of the longest root of
g relative to the Killing form.
We denote by X* an vector field on M generated by X € §, i.e.,

d ~ ~
(X*)pz[aexth-p} , p=goeM, geG.
t=0

The Riemannian connection V is described in terms of the Lie derivative as follows:

—ad(X)Y;, if X €€,

2.3 Lyx — Vy+)sY =
(2.3) (Lx X*)5 {0’ it X e,

where Y is a vector field on M.
The complex 2-plane Grassmann manifold G (C”") admits another geometric structure

named the quaternionic Kahler structure Jj. J is a G-invariant subbundle of End (T(GL(CYH))

of rank 3, where End(T(G»(C"))) is the G-invariant vector bundle of all linear endmor-
phisms of the tangent bundle 7'(G2(C")). Under the identification with 7;(G,(C")) and m,
the fiber J; at the origin o is given by

J5=1{J: =ad(®)|& € k),

where Eq is an ideal of ¢ defined by

{5 %)

Ll

Uy € 5u(2)} =~ 5u(2).
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Define a basis {¢1, €2, €3} of su(2) by
e — v —1 0 o — 0 1 o — 0 /—1
"o -—v=1)° 27 \-10) 2" \v=1 o )"
Then €1, &7 and &3 satisfy

[e1, 2] =2e3, &2, &3] =2¢1, [e3, 1] =2e2.

0
basis of J; satisfying

- i 0 . . .
Set &; = (i; ) and J; = J; fori = 1,2, 3. Then the basis {J1, J2, J3} is a canonical

J} = —idg fori=1,2,3,
Nhh=-hhi=Jh, hiz=-Ih=J, Ikh=-NIJ5=/],
9(JiX, JiY)=g.(X, Y), for X, Yemand i=1,2,3.
Since J is given by

J=ad(Ec), éc

_20-2) (-3V=1h 0
N n 0 ﬁ«/—llnfz

on m, and since £¢ is an element of the center of E, J is commutable with J. Moreover, the
property
2.4 trJJ =0

holds for any J' € J.
In [2], J. Berndt showed that the curvature tensor R of M is given by

25) R(X.Y)Z= %[gc(y, DX — §o(X, 2)Y

+9:(JY, Z2)JX —g.(UX,Z)JY +2g.(X,JY)]Z

3
+ 3 {5 U DI = G X, ZVIY + 250X, i) Z)
k=1
3
+ > {3 (TIY, 2)T Ik X — §e(J T X, Z)JJkY}:|
k=1

for any vector fields X, Y and Z of M.

Let (M, g) be a Riemannian submanifold of M. Denote by V the Riemannian con-
nection of M, and by o, A and V< the second fundamental form, the Weingarten map and
the normal connection of M in G»(C?) respectively. We have the Gauss’ formula and the
Weingarten’s formula are:

(2.6) VxY =VxY +0(X,Y), Vxé=—A:X+Vy&,
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where X, Y and Z are tangent vector fields and £ is a normal vector field. Moreover, we see
9(Ae X, Y) = g (0(X,Y), §).

If M is a Kihler submanifold of M , then the following hold.
2.7 oX,JY)=0(JX,Y)=Jo(X,Y),
(2.8) AeJ = —JAs = —Ayg.

M is called a quaternionic submanifold, if the tangent space T, M is invariant under the
action of J for each p in M. M is called a totally real submanifold, if JT,M is a subspace of

the normal space T;-M for each p in M.

3. The second fundamental form of Sp(1)/U (2) - Sp(l — 2) in G,(C%)

In this section, we will consider a Kihler C-space M11,; = Sp(l)/U2) - Sp(l —2) asa

Kihler submanifold of G (C?) (cf. [3], [12]).
First, we study an intrinsic geometry of M1 ;. Let us set

G =SpW)
+ (0 =1 (0 —1I
g I, 0 §= I, 0

A —-C
:{(C ;)eSU(Zl) A,CGMI(C)}

= {g e SUQI)

and

K=UQ)-Spd —2)

A 0 O 0

o 4 o0 _o|lAcvD. AL C e Mi5(0),
_ 0 AT

0 0/ A g <C' ? ) [S Sp(l -2)

0o Cc 0 A

Then K is a closed subgroup of G. The Lie algebra g, the complexification g€ and the Lie
algebra ¢ are given by

g=sp()
B A —6 A,CGMI(C)v
“l\c A A*=—A 'C=C]|’
g€ =sp(1,C)

c -4 'B=B,'C=C

_ {(A B) A,B,CeM,(C),}
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and

E=u() +sp(l —2)

A 0 O 0
0 A 0 —-C 4 € M (C),
= 0o 0 A 0 A, C' e M;_»(C),
O C/ O W A*Z—A, A/*I—A/, tc/:C/

g is a compact semisimple Lie algebra of type C;.
Forx, y € M;_52(C) and z € M(C) with 'z = z, define

0 0 0 O
( )= x 0 0 O
nx,y,z) = p ’y 0 —
y 0 0 O
and
X(x,y,2) =n(x,y,2) —nx,y,2".
Define a subspace m of g by

m={X(x,y,2)},
then m is an ad (£)-invariant subspace and
g=t+m.
m is identified with the tangent space 7,(M11,). Set

mt ={nix,y, 2}, m ={nEx,y 2},

then m€

449

=m*t 4+ m~ and m* are ++/—1-eigenspaces of the complex structure J of M ;.

For X = X(x,y,z), X' = X(x',y’,7/) € m, define a Hermitian inner product g, on m

by

4 _
g (X, X)) = ;Re r(xx +y*y +772),

then g, is ad(®)-invariant, so that g, induces a G-invariant Kdhler metric g on My .

(My1,, J, g) is an Einstein Kéhler manifold.

The natural inclusion G — G defines a G-equivariant Kihler immersion ¢ of M into

M = G,(C%), by ¢(g - K) = ¢ - K, g € G. The complex codimension of ¢ is 1, so that

Mi, ; is a complex hypersurface of G,(C?).
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For X = X (x, y, z) € m, let’s set

0 0 O 0 0 —x* —zF —y*
0 -5 0 x 0 0 0
X = X =
E(x»)’,Z) O ty O _[x kl m(x:YsZ) z 0 O 0
0 0 x 0 y O 0 0

Denote by ¢, the differential of ¢. Then, the image of the tangent space 7,,(M11 ) is given
by

(3.1 OxoTo(M111) = @xom = {Xa(x, ¥, 2)} C = T5(G2(C")).
For z € M>(C) with 'z = —z, set
0 0 —z* O
0 0 0O O
5@=1.09 o o
0 0 0O O

Thus, we can identify the normal space Tol(M 11,7) with the subspace
(3.2) m* = {£(2))
of m. Since ¢ is G-equivariant, the normal space at g - o is given by

é}emL}.

For X = X(x,y,2) € T,(M11,), the curve c(¢) = exp(tX) - 0 is a curve in My, so
that the vector field X* generated by X is tangent to M1 ;. Define a unit normal vector field

along c(¢) by
= X). ~ c (0 —1
§() = (exptX)wsbo. So=£6ko). 20=\/c|; ]

Ty =12 5
goMi1) = {[EQ exp(t§) - 0i|

t=0

(2.3) implies
(Lx=£(t) — Vx+£(1); = —[X;(x, ¥, 2), &.

By the definition of the Lie derivative,
N d d
(Lx+£(); = [X", §(D]5 = n exp(—1X)xen§ (1) =50 =0,
t t=0 dt t=0

so that we obtain

0 —zo'y 0 zo'x
= v . yz0 0 0 0 -
V(P*OX‘S:(I) - [Xé(xa Y, Z)a SO] - 0 0 0 0 em.
Xz0 0 0 O
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From (3.1) and (3.2), we obtain the following.

PROPOSITION 3.1. @%UXS(I) is tangent to M11,. Moreover, the unit normal vector
field £(¢) is parallel at o, and the Weingarten map satisfies

(3.3) Agy X (x,y,2) = X(¥z0, —X20,0)

forany X (x,y,z) € m.
Define three subspaces of 7, (M) by
Vo(o, &) = {X(0,0,2) |z =z, z € M2(C)},
Vi(o, &) = {X(x,y,0)[x = (x1,x2), y = (=X2,X1), i € M;—21(C)}

and
V_(0, &) = {X(x,y,0) | x = (x1,x2), y = (32, =X1), x; € M; 2 1(C)}.

We have the eigenspace decomposition of the tangent space T, (M11,;) as follows.

PROPOSITION 3.2. For any point p € M1, and any unit normal vector § €
TpL (M11,1), there exist three subspaces Vo, Vi and V_ of T,(Mi1,1), such that the follow-
ing properties hold.

(1) Wy is a J-invariant 0-eigenspace of Ag satisfying

Vo =3,T, (M)
(2) Vi are J-invariant +,/§-eigenspaces of Ag satisfying
JVi=V_.
(3) The eigenspace decomposition

Ty(Mi1)) =Vo® Vi ® V-

holds.
PROOF. In the case that p = o0 and & = &, put Vo = Vi(o, &) and Vi = Vi(o, &).
By simple calculation of matrices, we can easily see that V, V, and V_ satisfy the properties

of this proposition.
In the case that p = o and £ is arbitrary, (2.8) implies this proposition.

Since the structures J and J are G—invariant, and since the immersion ¢ is G-equivariant,
this proposition holds for arbitrary p and &. g
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4. A second fundamental form of an Einstein Kéhler hypersurface

In this section, we study an Einstein Kéhler hypersurface of G2(C"), and under some
assumption, determine its second fundamental form.

Let M be a Kihler hypersurface of M = G,(C"). The complex dimension m of M is
equal to 2n — 5. Let p be any fixed point of M, and £ be a local unit normal vector field
around p, and set &1 = &, & = J&, so that {£1, &} is a local orthonormal frame field of the

normal bundle T+ M.
Denote by R the curvature tensor field of M. Then we have the Gauss equation

2
@D gRX, NZ, W) =) {g(Ae, X, Wg(As,Y, Z) — g(Ag, X, Z)g(As, Y, W)}

a=1
+Je(R(X, Y)Z, W)
for any tangent vector fields X, Y, Z and W of M.

For any vector field X along M, denote by X7 and X, the tangential part of X and the
normal part of X, respectively. Then, we obtain the following.

LEMMA 4.1. The Ricci curvature tensor Ric satisfies
(4.2)  Ric(Y, Z) =—2g(A}Y, Z)

3

+ %{(m +2)g(Y, Z) +3 ; g, (2T

3 3
=Y g(INT, TR2D))+2) " Ge(JE, &) Ge(J Y, Z)}
k=1 k=1

for any tangent vector fields Y and Z.
PROOF. Let {ey, -, ez} be alocal orthonormal basis of 7M. Note that Ag, is sym-
metric. Moreover, from (2.8), tr Ag, = 0 and A?l = Aé = Ag. So we get, from (4.1),

2m
4.3) Ric(Y, Z) = Zg(R(ei, Y)Z, e)

i=1

]

m 2
= {9(Ag,ei, e)g(As,Y, Z) — g(Agein Z2)g(AgY, i)}

=1 a=1

2m
+ Y Ge(R(ei, Y)Z. ei)
i=1
2m
{(rAe) 9(Ae, Y, 2) = 9(Ae,Y, A, D)} + ) Gc(R(ei, Y)Z, €)
1 i=1

Il
e

R
Il
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2m

= —29(A}Y, Z)+ Y _ Ge(R(ei, Y)Z, ei).

i=1
From (2.5), we can see that

“4.4)

2m

> Ge(R(ei, Y)Z, ei)
i=1

2m
&

= § I:gc(eiv ei)gc(yv Z) - gc(eis Z)gc(yv ei)
i=1
+gc(Jei, e)ge(JY, Z) — ge(Jei, Z2)ge(JY, e;) +2gc(ei, JY)g-(JZ, e;)
3
+ Y Gelrei, e)Ge(kY. 2) = je(Jrei. 2)Ge(kY. €) + 2je(ei. kY)Ge(Z, ei)}
k=1
3
+ Y G Jrei, €)Ge(JIkY, Z) — Ge(J Jeei, Z)Ge(J kY, ei)}j|
k=1
c 3 2m
= g[(zm +2)g(Y, Z)+3 Z@(Zﬁcmz, eiei, JkY>
k=1 i=1
3 2m 3 2m
+ YD Gl Jeis e)Ge(JIY, Z) — Z@(Z@(MZ eei, JJkYﬂ
k=1 i=1 k=1 i=1
c 3
- g[(zm +29(¥. 243 5K D) Y)
k=1

3 2m 3
+ )Y G dkei, e)Ge(JIY, Z) =Y G((J R 2)T, me} :

k=1 i=1 k=1
Since {eq, - - - , eom &, JE}is a local orthonormal frame of ™, (2.4) implies
2m
4.5) Zéc(JJkEi, ei) = —gc(JJkE, §) — gc(J Ik (JE), JE) =2g9.(J§&, Ji§) .
i=1
Combining (4.3), (4.4) and (4.5), we see that (4.2) holds. O

From now on, we assume that JTM is a vector subbundle of the tangent bundle T M,
i.e,

(4.6) JT*M CcTM.
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This condition is equivalent to the condition that J,v L J,v, where p is any point of M and
v is any normal vector at p.

Set Vo = 3T+ M. For any unit normal vector &, {J1&, J»&, J3&€, J1&, J &, JJ3€E} is an
orthonormal basis of Vj, i.e.,

4.7 Vo = Spang{J1&, 1§, J3&, J1&, J 1§, JJ3E},

so that Vy is J-invariant. Let’s define V' be the orthogonal complement of Vj in 7M. Then
we have an orthogonal decomposition

TM=VyaV.

It is easy to see that V is J-invariant and J-invariant.
For a fiber bundle §, denote by I" () the linear space of all smooth sections of §.

LEMMA 4.2.
(1) Wy is a subspace of 0-eigenspace of Ag, i.e., AeY =0 foranyY € I'(Vp).
2) ForanyX e '(TM),Y e '(V)and J' € I'(J),

(4.8) g(VxY, J'&) = —g(Ae X, J'Y).
PROOF. Forany X € I'(TM) and J' € I'(J), since J'& is a section of Vp, (2.6) implies
4.9) Vx(J'§) +o (X, J'§) = Vx(J'§) = (VxJ)§ + J'(Vx§)
= (VxJNE — J As X + J'VyE .
Since J is parallel, @X J' € J. Thus, under our assumption (4.6), we see that (@x J)HE and
J ’Vfé are tangent to M. Therefore, the normal component of (4.9) is given by
o(X, J'E) =—gc (JAcX, )& — gc (V' Ae X, JE) JE

=g(AeX, J'E)E+ g (AeX, J'JE)JE

= Je(0 (X, J'E), £)§ + Ge(0(X, J'JE), §)JE,
which, from (2.7), is equivalent to

ge(o (X, J'E), £)§ — je(o(X, J'E), JE)JE,

so that we have
(4.10) Jge(o (X, J'&), JE)=0.
Exchanging X for JX € I'(T M), we get g.(o(JX, J'E), J&) =0, so that
(4.11) ge(o (X, J'8), §) =0.

From (4.10) and (4.11), we geto (X, J'&) = 0. Therefore, (2.7) and (4.7) imply o (X, Y) =0
forany Y € I'(Vp), namely, AgY = 0.



A CHARACTERIZATION OF CERTAIN EINSTEIN KAHLER HYPERSURFACES 455

Next, we consider the V-component of (4.9). The assumption (4.6) implies that (VxJ' )é
and J/V)%if are sections of V), so that, forany Y € I'(V), we get

9(Vx(J'8). ¥) = —jc (J'AeX. Y) .
Since J'§ L Y, this implies (4.8) immediately. a

For any tangent vector field X of M, denote by X¢ and Xy, the Vo-component of X and
V-component of X, respectively. Then, we obtain the following.

LEMMA 4.3. Under the assumption (4.6), the Ricci curvature tensor Ric satisfies
(4.12) Ric(Y, Z) = —2g(A}Yy, Zy)
+ < {(n = 4g(Yo. Zo) + @n =29ty Zv))
for any tangent vector fields Y and Z.
PROOF. Lemma 4.2 (1) implies that
(4.13) g(AZY, Z) = g(AzYy, Z) = g(AzYy, Zy).
Since V is J-invariant, J; Yy is a section of V, so that
(k) = (Yot
= Jc (Yo, &) & + ge(JkYo, JE) J&
= —g(Yo, Ji§) § —g(Yo, JiJE) JE.
Then, we get
9T, BDT) = §e(IYs TZ) = Ge((V)*, (2)T)
=g, Z) — g(Yo, Ji§) 9g(Zo, Jk&) — g(Yo, JiJ§) g(Zo, JkJ§),
so that, from (4.7), we have

(4.14) Y (T, (k2)T) =3g(Y, Z) — g(Yo, Zo)
k=1

=29(Yo, Zo) +39(Yy, Zy).

Exchanging Y and Z for JY and J Z respectively, we get

(4.15) Y (I, (JR2DT) =2¢(Yo, Zo) +39(Yv, Zv).
k=1
Since J& L Ji&, combining (4.2), (4.13), (4.14) and (4.15), we see that (4.12) holds. O

In the next stage, we consider the Codazzi’s equation

(4.16) g(VxA)eY — (VyA)e X, Z) = je(R(X, Y)Z, &)
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for any tangent vector fields X, Y and Z of M.

Let 1 be a non-zero eigenvalue of Ag, and Y be an eigenvector corresponding to p. We
can assume that u is a local smooth function on M, and Y is a local smooth section of 7M.
Then, for any X € I'(T M), we have

(VxA)eY = Vx(AgY) — AV#_Y — Ag(VxY)
=du(X)Y + uvyY — Av)ﬁY — A:(VxY),
so that, from Lemma 4.2 (1), since Y is a local section of V, we see
9((VxA)Y, J'E) = ng(VxY, J'€) — g(AyLeY. J'E) — g(A:(VxY), J'§)

= ng(VxY, J'8) = g(¥, AgieJ'€) — g(VxY, AgJ'6)
= png(VxY, J'€)

forany J' € I'(J). By Lemma 4.2 (2), we see
g((VxA)eY, J'E) = —pug(A: X, J'Y).

If X is also an eigenvector of Ag corresponding to a non-zero eigenvalue A, we get

4.17) g((VxA)eY, J'E) = —aug(X, J'Y) =iug(J'X, Y)
and
(4.18) g((VyA)eX, J'E) = aug(J'Y, X) = —iug(J'X, Y).

On the other hand, from (2.5), we can see that, for above X and Y,

Ge(R(X, Y)J'&, &)
_c
T8
+ Ge(IX, E)3c(JY, J'E) — Ge(UX, J'E)3c(JY, &) +25:(X, JY)Gc(JI'E, &)
3

+ D G UX, ©)Fe (Y, J'E) = Ge(Ii X, J'E)Fe(JiY, &)
k=1

|:§C(X7 §)§¢(Y, J,‘i:) - gC(Xs J/é)gc(ys ‘i:)

+2Gc(X, kY)Ge(NJ'E, )}

3
+ S {3 IX, 3T IY, T'E) = 5oL I X, JEGe(J LY, s)}}
k=1

c

4

WE

gc(X’ JkY)gc(Jk-lléa é) .
1
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Since {Ji, Jo, J3} is a basis of J, there exist real numbers a', 1 =1,2,3, such that J/ =
Zle al Jj, so that we see jo(JpJ'E, €) = Zle al Ge(J JiE, &) = —aF and

3
(4.19) G(RXY)I'E, §) = =7 ) Ge(X. " iY)
k=1

= S5, JY) = S9U'X, )
=~ dc(X, = 90X, V).

From (4.16), (4.17), (4.18) and (4.19), we obtain the following.
LEMMA 4.4. Under the assumption (4.6), the equality

(4.20) (m - %)g(]’X, Y)=0

holds, where X and Y are eigenvectors of Ag corresponding to non-zero eigenvalues A and
respectively, and J' is any section of 3.

The following proposition is a goal of this section.

PROPOSITION 4.5. Ifan Einstein Kdihler hypersurface M of G2(C") satisfies the con-
dition JT+M C T M, then, for any point p € M and any unit normal vector £ € TpLM, there
exist three subspaces Vo, Vy and V_ of T, M such that the following properties hold:

(1) Wy is a J-invariant 0-eigenspace of Ag satisfying

Vo=3,T,M.

c_

(2) Vi are Jp-invariant %, | g-eigenspaces of Ag satisfying

JVi=V_.
(3) The eigenspace decomposition
TyM=Vod Vi V_

holds.
Moreover, n must be even.

PROOF. Let A¢|y be the restriction of Ag to V. Denote by p, the scalar curvature of
M. Since the Ricci curvature Ric satisfies the Einstein condition Ric = ﬁ g, Lemma 4.3
implies

c 4 4
@21) gAYy, Zy) = ~—{ (dn =4 = 22 ) g(¥o. Zo) + (4n —2 - 22 ) g(vy. zy)
16 cm cm

for any tangent vector fields ¥ and Z. Choosing Y and Z as Y = Z € Vj, we get p =
cm(n — 1) =c(n — 1)(2n — 5). Therefore, (4.21) implies

c
g(AFYy. Zy) = <5 9. Zv).
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equivalently, all eigenvalues of Ag|y are j:\/g . In particular, 0 is not an eigenvalue of A¢|y,
which, together with Lemma 4.2 (1), implies that Vj is a 0-eigenspace of Ag. Denote by
V4, eigenspaces corresponding to :I:\/g respectively. Then V is a diagonal sum of subspaces
Vi :V =V, @ V_. From (2.8), we easily see JV, = V_.

Forany X € V,,Y € V_and J' € J,, Lemma 4.4 implies g(J'X, Y) = 0. Since
J'X e V,wegetJ' X € Vy,sothat Vy is Jp-invariant. Similarly, we can see that V_ is also
J p-invariant.

Since the real dimension of Vj is 6, we have dimgr V = 2m—6 = 4n—16 and dimg V4 =
% dimg V = 2n — 8. Since V4 are J,-invariant, 2n — 8 is a multiple of 4, so that n is even. O

5. A focal variety

Let M be an Einstein Kihler hypersurface M of M = G»(C") satisfies the condition
3T+M c TM. By Proposition 4.5, n must be even, so that we put n = 2[. In this section,
we study the first focal set of M, and prove our main theorem.

We will use the same notations as those in the section 4. Moreover, for any point p € M

and any unit normal vector &, define subspaces of 7 p]l71 by
Vo+ = J§ = Spang {J1§, 2§, J36},
Vo,— = J3§ = Spang{J 11§, J 2§, J J3§ },

Ly = Spang(&},
1_ = Spang{Jé&}.

By direct computation, (2.5) implies the following. Also see [2, Theorem 3].

LEMMA 5.1. Let Rg be the curvature operator with respect to &, i.e, Rg is defined by

Iég (X) = R(X, &)& forany X € T, M. Let k be an eigenvalue ofﬁg, and T, be an eigenspace
corresponding to k. Then, we have the following complete table.

K T,

0| Ly ®Vo_
3 Vi V-
5| L-@Vo+

Let UL M be the unit normal bundle of M with a natural projection & , i.e., U L+ M is the
subbundle of all unit normal vectors of M. For& € U M, let e (t) be the geodesic of G2(C"),
such that y¢ (0) = 7 (&) and yé (0) = &. Forr > 0, define a smooth map F;- from UL M into

Go(C") by F.(§) = ye(r). If r is sufficiently small, the image N, = F-(ULM) is a tube
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around M withradius r, which is a real hypersurface of G2(C"). If rank(F;,)s < dimg M—1
for some r and &, a point F, (§) is called a “focal point”. F;(£) is called the first focal point if
F; (&) is not a focal point for any  with0 < ¢ < r.

Let £(s) be a curve in UM with £(0) = £ and £€(0) = X € Tz (U-M). Define a
smooth map ¥ by ¥ (¢, s) = F;(§(s)), and define a vector field Z(¢) along y¢ by

. [d 9
Z@) = (Ft*)EX = [EFt(é(S))} = [g ¢1|S=0.

s=0

Since ¥ is a variation of a geodesic yg, Z(t) is a Jacobi field along ye, i.e, Z(¢) satisfies the
Jacobi equation

VIZ(t) + R(Z(). yi))yi(t) =0.
Z (t) must satisfy the initial condition
ZO)=meX, Z'(0)=[ViE()],_,-

We remark that the image (F,*) ¢ (Tg UM )) are spanned by above Jacobi fields.
To get a basic Jacobi field, set Z(t) = f(¢t)P(t), where P is a parallel vector field

along yg, and f is a smooth function. Since )/é (1) and the curvature tensor R are also par-
allel, the function f satisfies f”(1)P(t) + f(t) T, (R(P(0), £)€) = 0, where 1, is a paral-
lel displacement along ¢ (¢). In particular, if P(0) € T, and P(0) # O, then f satisfies
(@) +«f@) =0.

LEMMA 5.2. For each of the cases below, there exists a curve £(s) in UM, such that
f satisfies

(5.1 [0 +kf@) =0, fO)PO) =mzE(0), f(O)PO) =[Vi&s)],_,-

(1) PO) el and f(1)= /2 sin [t

2) P(0) € Vorand f(t) = cos\@t.
(3) P(0) € Vo and f(t) = 1.

(4) P(0) € Vi and f(t) = /2 cos (\/g, +I).
(5) P(O) € V- and f(1) = V2cos (/1 - %).

PROOF. Inthe case (1), there exists a € R, such that P(0) = aJ&. Set&(s) = cosas -&
+sinas-J&. Then, we see ,:£'(0) = 0 and [@Sé(s)]szo = aJ&. From Lemma 5.1, we have
k = 5. Therefore, the equation (5.1) is equivalent to f” 4+ 5f =0, f(0) =0, f'(0) = 1,
which has a unique solution f () = \/(Z sin \/; t
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In other cases, X = P(0) is tangent to M. Let c(s) be a curve in M with ¢’(0) = X,
and £(s) be a parallel normal vector field along c(s), satisfying £(0) = &. Then, we see
mye€'(0) = X and [V£(5)] _, = —A: X.

Let’s assume X € V. Lemma 5.1 implies x = ¢, and Proposition 4.5 implies
[%é(s)]szo = —/5X. Therefore, the equation (5.1) is equivalent to f”+§ f =0, £(0) = 1,
f/(0) = — /5, which has a unique solution f(r) = ~/2cos (,/5:+% ), so that the case (4) is
proved.

The remaining cases are similarly proved. O

Let’s set r| =\/§ Z. Then, any point of N, is the first focal point, the image of (F, «)¢

is a vector space 7, (L_ @Vp,— ® V_), and rank(F;, «)e = % dimg M, so that the first focal
set N, is a submanifold of M. The tangent space of N, atq = F, (§) is given by

T,Ny =1,(L_&Vo_ V),

which is J-invariant. It is easy to see that the real dimension of N,, is equal to %dimR M.
Moreover, the normal space of N, at g is given by

T, "Ne =1, (Ly Vo4 © V),
so that we see
JTyNy =T} Ny, .
Therefore, we obtain the following.

PROPOSITION 5.3. The first focal set Ny, of M is a quaternionic Kdihler, totally real
submanifold of G2(C?). The real dimension of N, is one half of dimg Go(C?.

In [13], H. Tasaki showed that any complete, quaternionic Kihler, totally real sub-
manifold of G»(C?) is congruent to a quaternionic projective space. Then, for some fixed
q € N, there exists a quaternionic projective space HP!~!, such that ¢ € HP'~! and
T,N,, = T,HP!~'. In [1], Alekseevskii proved that a quaternionic submanifold in a quater-
nionic Kahler manifold is totally geodesic. Therefore, N,, is a open portion of HPI,

By Proposition 3.2, M satisfies the same assumption as M. Then, the first focal set
of My, is congruent to HP!! up to the automorphism of Gz(Czl), so that M and My ; are
locally congruent. Therefore, we complete the proof of Theorem 1.1.
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