Токуо J. Матн. Vol. 28, No. 2, 2005

A Characterization of Certain Einstein Kähler Hypersurfaces in a Complex Grassmann manifold of 2-planes

Yoichiro MIYATA

Tokyo Metropolitan University (Communicated by Y. Ohnita)

1. Introduction

Denote by $G_r(\mathbb{C}^n)$ the complex Grassmann manifold of *r*-planes in \mathbb{C}^n , equipped with the Kähler metric of maximal holomorphic sectional curvature *c*.

One of the simplest typical examples of submanifolds of $G_r(\mathbb{C}^n)$ is a totally geodesic submanifold. B. Y. Chen and T. Nagano in [4, 5] determined maximal totally geodesic submanifolds of $G_2(\mathbb{C}^n)$. I. Satake and S. Ihara in [11, 6] determined all (equivariant) holomorphic, totally geodesic imbeddings of a symmetric domain into another symmetric domain. When an ambient symmetric domain is of type $(I)_{p,q}$, taking a compact dual symmetric space, we obtain the complete list of maximal totally geodesic Kähler submanifolds of $G_r(\mathbb{C}^n)$.

Let *M* be a maximal totally geodesic Kähler submanifold of $G_r(\mathbb{C}^n)$ given by a Kähler immersion $\varphi : M \to G_r(\mathbb{C}^n)$. Since *M* is a symmetric space, denote by (G, K) the compact symmetric pair of *M*. Then there exists a certain unitary representation $\rho : G \to \tilde{G} = SU(n)$, such that $\varphi(M)$ is given by the orbit of $\rho(G)$ through the origin in $G_r(\mathbb{C}^n)$.

Denote by $\mathbb{C}P^n$ and Q^n , an *n*-dimensional complex projective space and an *n*-dimensional complex quadric respectively.

EXAMPLE 1 ([4, 5, 11, 6]). Let M = G/K be a proper maximal totally geodesic Kähler submanifold of $G_r(\mathbb{C}^n)$, ρ a corresponding unitary representation of G to SU(n). Then, M and ρ are one of the following (up to isomorphism).

(1) $M_1 = G_r(\mathbb{C}^{n-1}) \hookrightarrow G_r(\mathbb{C}^n), \quad 1 \leq r \leq n-2$

(2)
$$M_2 = G_{r-1}(\mathbb{C}^{n-1}) \hookrightarrow G_r(\mathbb{C}^n), \quad 2 \leq r \leq n-1$$

(3)
$$M_3 = G_{r_1}(\mathbb{C}^{n_1}) \times G_{r_2}(\mathbb{C}^{n_2}) \hookrightarrow G_{r_1+r_2}(\mathbb{C}^{n_1+n_2}), \quad 1 \leq r_i \leq n_i - 1, i = 1, 2$$

(4) $M_4 = M_{4,p} = Sp(p)/U(p) \hookrightarrow G_p(\mathbb{C}^{2p}), \quad p \ge 2$

(5)
$$M_5 = M_{5,p} = SO(2p)/U(p) \hookrightarrow G_p(\mathbb{C}^{2p}), \quad p \ge 4$$

(6)
$$M_{6,m} = \mathbb{C}P^p \hookrightarrow G_r(\mathbb{C}^n), \ r = \binom{p}{m-1}, \ n = \binom{p+1}{m}, \ 2 \leq m \leq p-1,$$

 $\rho_{6,m} : SU(p+1) \to SU(n)$: the exterior representation of degree m

Received March 2, 2004

- (7) $M_7 = Q^3 \hookrightarrow Q^4 = G_2(\mathbb{C}^4),$ $\rho_7 : Spin(5) \to SU(4)$: spin representation (8) $M_8 = M_{8,2l} = Q^{2l} \hookrightarrow G_r(\mathbb{C}^{2r}), \quad l \ge 3,$
 - $\rho_8^{\pm}: Spin(2l+2) \to SU(2^l)$: (two) spin representations

Notice that ρ_1, \dots, ρ_5 are the identical representations, and notice that $M_{4,2} = M_7$ and $M_{5,4} = M_{8,6}$.

A submanifold M of $G_r(\mathbb{C}^n)$ is parallel if the second fundamental form of M is parallel. H. Nakagawa and R. Takagi in [10] classified parallel Kähler submanifolds of a complex projective space $\mathbb{C}P^{n-1} = G_1(\mathbb{C}^n)$. K. Tsukada in [14] showed that, in parallel Kähler submanifolds of $G_r(\mathbb{C}^n)$, the above classification is essential. Moreover, if $r \neq 1, n - 1$, then a parallel Kähler submanifold M of $G_r(\mathbb{C}^n)$ is a parallel Kähler submanifolds of some totally geodesic Kähler submanifold of $G_r(\mathbb{C}^n)$, i.e, M is a parallel Kähler submanifold of one of $\{M_i, i = 1, \dots, 8\}$. Notice that a Hermitian symmetric submanifolds of $G_r(\mathbb{C}^n)$ is parallel.

Another one of the simplest typical examples of submanifolds of $G_r(\mathbb{C}^n)$ is a homogeneous Kähler hypersurface. K. Konno in [8] determined all Kähler C-spaces embedded as a hypersurface into a Kähler C-space with the second Betti number $b_2 = 1$.

EXAMPLE 2 ([8]). Let M be a compact, simply connected homogeneous Kähler hypersurface of $G_r(\mathbb{C}^n)$. Then, M are one of the following (up to isomorphism).

- (1) $M_9 = \mathbb{C}P^{n-2} \hookrightarrow \mathbb{C}P^{n-1} = G_1(\mathbb{C}^n)$
- (2) $M_{10} = Q^{n-2} \hookrightarrow \mathbb{C}P^{n-1} = G_1(\mathbb{C}^n)$
- (3) $M_7 = Q^3 \hookrightarrow Q^4 = G_2(\mathbb{C}^4)$
- (4) $M_{11} = M_{11,l} = Sp(l)/U(2) \cdot Sp(l-2) \hookrightarrow G_2(\mathbb{C}^{2l})$: Kähler C-space of type $(C_l, \alpha_2), l \ge 2$

 M_9 and M_7 are totally geodesic. M_9 , M_{10} and M_7 are symmetric spaces. M_{10} is not totally geodesic but parallel. If l = 2, then M_{11} is congruent to M_7 . If l > 2, M_{11} is neither symmetric nor parallel.

Notice that all manifolds in Examples 1 and 2 are Einstein manifolds.

The purpose of this paper is, without the assumption of homogeneity, to characterize a Kähler hypersurface M_{11} .

 M_{11} satisfies another interesting, extrinsic property as follows. It is known that $G_2(\mathbb{C}^n)$ admits the quaternionic Kähler structure \mathfrak{J} . For the normal bundle $T^{\perp}M$ of a Kähler hypersurface M in $G_2(\mathbb{C}^n)$, $\mathfrak{J}T^{\perp}M$ is a vector bundle of real rank 6 over M. We consider a Kähler hypersurface M of $G_2(\mathbb{C}^n)$ satisfying the property that $\mathfrak{J}T^{\perp}M$ is a subbundle of the tangent bundle TM of M, i.e, $\mathfrak{J}T^{\perp}M \subset TM$. The Kähler hypersurface $M_{11, l}$ satisfies this condition. In [9], the author showed that if M is compact, then the first eigenvalue λ_1 of the Laplacian satisfies $\lambda_1 \leq c(n - \frac{n-1}{2n-5})$. The equality holds if and only if n = 4 and M is congruent to $M_{11,2} = Q^3$.

One of the simplest questions is as follows: What is M satisfying $\Im T^{\perp}M \subset TM$? Without the assumption of homogeneity, we shall show the following result.

THEOREM 1.1. If an Einstein Kähler hypersurface M of $G_2(\mathbb{C}^n)$ satisfies the condition $\Im T^{\perp}M \subset TM$, then n is even and M is locally congruent to $M_{11, n/2}$.

The author wishes to thank Professors K. Ogiue and Y. Ohnita for many valuable comments and suggestions.

NOTATIONS. $M_{r,s}(\mathbb{C})$ denotes the set of all $r \times s$ matrices with entries in \mathbb{C} , and $M_r(\mathbb{C})$ stands for $M_{r,r}(\mathbb{C})$. I_r and O_r denote the identity *r*-matrix and the zero *r*-matrix.

2. Preliminaries

In this section, we review well-known geometries of complex Grassmann manifolds of 2-planes. For details, see [7] and [2].

Let $M_2(\mathbb{C}^n)$ be the complex Stiefel manifold which is the set of all unitary 2-systems of \mathbb{C}^n , i.e.,

$$M_2(\mathbf{C}^n) = \{ Z \in M_{n,2}(\mathbf{C}) \mid Z^* Z = I_2 \}.$$

The complex 2-plane Grassmann manifold $G_2(\mathbb{C}^n)$ is defined by

$$G_2(\mathbf{C}^n) = M_2(\mathbf{C}^n)/U(2) \,.$$

The origin \tilde{o} of $G_2(\mathbb{C}^n)$ is defined by $\pi(Z_0)$, where $Z_0 = \begin{pmatrix} I_2 \\ 0 \end{pmatrix}$ is an element of $M_2(\mathbb{C}^n)$, and

 $\pi: M_2(\mathbb{C}^n) \to G_2(\mathbb{C}^n)$ is the natural projection.

The left action of the unitary group $\tilde{G} = SU(n)$ on $G_2(\mathbb{C}^n)$ is transitive, and the isotropy subgroup at the origin \tilde{o} is

$$\tilde{K} = S(U(2) \cdot U(n-2)) = \left\{ \begin{pmatrix} U_1 & 0 \\ 0 & U_2 \end{pmatrix} \middle| U_1 \in U(2), U_2 \in U(n-2), \det U_1 \det U_2 = 1 \right\},\$$

so that $G_2(\mathbb{C}^n)$ is identified with a homogeneous space $\tilde{M} = \tilde{G}/\tilde{K}$. Set $\tilde{g} = \mathfrak{su}(n)$ and

$$\tilde{\mathfrak{t}} = \mathbf{R} \oplus \mathfrak{su}(2) \oplus \mathfrak{su}(n-2)$$

$$= \left\{ \begin{pmatrix} u_1 & 0\\ 0 & u_2 \end{pmatrix} + a \begin{pmatrix} -\frac{1}{2}\sqrt{-1}I_2 & 0\\ 0 & \frac{1}{n-2}\sqrt{-1}I_{n-2} \end{pmatrix} \middle| a \in \mathbf{R}, \begin{array}{c} u_1 \in \mathfrak{su}(2)\\ u_2 \in \mathfrak{su}(n-2) \end{pmatrix} \right\}.$$

Then $\tilde{\mathfrak{g}}$ and $\tilde{\mathfrak{k}}$ are the Lie algebras of \tilde{G} and \tilde{K} , respectively. Define a linear subspace $\tilde{\mathfrak{m}}$ of $\tilde{\mathfrak{g}}$ by

$$\tilde{\mathfrak{m}} = \left\{ \begin{pmatrix} 0 & -\xi^* \\ \xi & 0 \end{pmatrix} \middle| \xi \in M_{n-2,2}(\mathbb{C}) \right\}.$$

Then $\tilde{\mathfrak{m}}$ is identified with the tangent space $T_{\tilde{o}}(G_2(\mathbb{C}^n))$. The \tilde{G} -invariant complex structure J of $G_2(\mathbb{C}^n)$ and the \tilde{G} -invariant Kähler metric \tilde{g}_c of $G_2(\mathbb{C}^n)$ of the maximal holomorphic sectional curvature c are given by

(2.1)
$$J\begin{pmatrix} 0 & -\xi^* \\ \xi & 0 \end{pmatrix} = \begin{pmatrix} 0 & \sqrt{-1}\xi^* \\ \sqrt{-1}\xi & 0 \end{pmatrix},$$
$$\tilde{g}_c(X, Y) = -\frac{2}{c}trXY, \quad X, Y \in \tilde{\mathfrak{m}}.$$

Notice that \tilde{g}_c satisfies

(2.2)
$$\tilde{g}_c = -\frac{2}{c} \frac{1}{2n} B_{\tilde{\mathfrak{g}}} = -\frac{2}{c} \frac{L(\tilde{\mathfrak{g}})}{2} B_{\tilde{\mathfrak{g}}}$$

on $\tilde{\mathfrak{m}}$, where $B_{\tilde{\mathfrak{g}}}$ is the Killing form of $\tilde{\mathfrak{g}}$, and $L(\tilde{\mathfrak{g}})$ is the squared length of the longest root of $\tilde{\mathfrak{g}}$ relative to the Killing form.

We denote by X^* an vector field on \tilde{M} generated by $X \in \tilde{g}$, i.e.,

$$(X^*)_p = \left[\frac{d}{dt} \exp tX \cdot p\right]_{t=0}, \quad p = g\tilde{o} \in \tilde{M}, \quad g \in \tilde{G}.$$

The Riemannian connection $\tilde{\nabla}$ is described in terms of the Lie derivative as follows:

(2.3)
$$(L_{X^*} - \tilde{\nabla}_{X^*})_{\tilde{o}}\tilde{Y} = \begin{cases} -ad(X)\tilde{Y}_{\tilde{o}}, & \text{if } X \in \tilde{\mathfrak{k}}, \\ 0, & \text{if } X \in \tilde{\mathfrak{m}}, \end{cases}$$

where \tilde{Y} is a vector field on \tilde{M} .

The complex 2-plane Grassmann manifold $G_2(\mathbb{C}^n)$ admits another geometric structure named the quaternionic Kähler structure \mathfrak{J} . \mathfrak{J} is a \tilde{G} -invariant subbundle of $End(T(G_2(\mathbb{C}^n)))$ of rank 3, where $End(T(G_2(\mathbb{C}^n)))$ is the \tilde{G} -invariant vector bundle of all linear endmorphisms of the tangent bundle $T(G_2(\mathbb{C}^n))$. Under the identification with $T_{\tilde{o}}(G_2(\mathbb{C}^n))$ and $\tilde{\mathfrak{m}}$, the fiber $\mathfrak{J}_{\tilde{o}}$ at the origin \tilde{o} is given by

$$\mathfrak{J}_{\tilde{o}} = \{J_{\tilde{\varepsilon}} = ad(\tilde{\varepsilon}) \,|\, \tilde{\varepsilon} \in \tilde{\mathfrak{k}}_q\}\,,\$$

where $\tilde{\mathfrak{k}}_q$ is an ideal of $\tilde{\mathfrak{k}}$ defined by

$$\tilde{\mathfrak{k}}_q = \left\{ \begin{pmatrix} u_1 & 0\\ 0 & 0 \end{pmatrix} \middle| u_1 \in \mathfrak{su}(2) \right\} \cong \mathfrak{su}(2) \,.$$

Define a basis $\{\varepsilon_1, \varepsilon_2, \varepsilon_3\}$ of $\mathfrak{su}(2)$ by

$$\varepsilon_1 = \begin{pmatrix} \sqrt{-1} & 0 \\ 0 & -\sqrt{-1} \end{pmatrix}, \quad \varepsilon_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \varepsilon_3 = \begin{pmatrix} 0 & \sqrt{-1} \\ \sqrt{-1} & 0 \end{pmatrix}.$$

Then ε_1 , ε_2 and ε_3 satisfy

$$[\varepsilon_1, \varepsilon_2] = 2\varepsilon_3, \quad [\varepsilon_2, \varepsilon_3] = 2\varepsilon_1, \quad [\varepsilon_3, \varepsilon_1] = 2\varepsilon_2.$$

Set $\tilde{\varepsilon}_i = \begin{pmatrix} \varepsilon_i & 0 \\ 0 & 0 \end{pmatrix}$ and $J_i = J_{\tilde{\varepsilon}_i}$ for i = 1, 2, 3. Then the basis $\{J_1, J_2, J_3\}$ is a canonical basis of $\mathfrak{J}_{\tilde{o}}$ satisfying

$$J_i^2 = -id_{\tilde{\mathfrak{m}}} \quad \text{for } i = 1, 2, 3,$$

$$J_1 J_2 = -J_2 J_1 = J_3, \quad J_2 J_3 = -J_3 J_2 = J_1, \quad J_3 J_1 = -J_1 J_3 = J_2,$$

$$\tilde{g}_c(J_i X, J_i Y) = \tilde{g}_c(X, Y), \quad \text{for } X, Y \in \tilde{\mathfrak{m}} \text{ and } i = 1, 2, 3.$$

Since J is given by

$$J = ad(\tilde{\varepsilon}_{\mathbf{C}}), \quad \tilde{\varepsilon}_{\mathbf{C}} = \frac{2(n-2)}{n} \begin{pmatrix} -\frac{1}{2}\sqrt{-1}I_2 & 0\\ 0 & \frac{1}{n-2}\sqrt{-1}I_{n-2} \end{pmatrix}$$

on m, and since $\tilde{\varepsilon}_{\mathbf{C}}$ is an element of the center of $\tilde{\mathfrak{k}}$, *J* is commutable with \mathfrak{J} . Moreover, the property

$$(2.4) tr J J' = 0$$

holds for any $J' \in \mathfrak{J}$.

In [2], J. Berndt showed that the curvature tensor \tilde{R} of \tilde{M} is given by

$$(2.5) \qquad \tilde{R}(X, Y)Z = \frac{c}{8} \bigg[\tilde{g}_c(Y, Z)X - \tilde{g}_c(X, Z)Y \\ + \tilde{g}_c(JY, Z)JX - \tilde{g}_c(JX, Z)JY + 2\tilde{g}_c(X, JY)JZ \\ + \sum_{k=1}^3 \big\{ \tilde{g}_c(J_kY, Z)J_kX - \tilde{g}_c(J_kX, Z)J_kY + 2\tilde{g}_c(X, J_kY)J_kZ \big\} \\ + \sum_{k=1}^3 \big\{ \tilde{g}_c(JJ_kY, Z)JJ_kX - \tilde{g}_c(JJ_kX, Z)JJ_kY \big\} \bigg]$$

for any vector fields X, Y and Z of \tilde{M} .

Let (M, g) be a Riemannian submanifold of \tilde{M} . Denote by ∇ the Riemannian connection of M, and by σ , A and ∇^{\perp} the second fundamental form, the Weingarten map and the normal connection of M in $G_2(\mathbb{C}^{2l})$ respectively. We have the Gauss' formula and the Weingarten's formula are:

(2.6)
$$\nabla_X Y = \nabla_X Y + \sigma(X, Y), \quad \nabla_X \xi = -A_{\xi} X + \nabla_X^{\perp} \xi,$$

where X, Y and Z are tangent vector fields and ξ is a normal vector field. Moreover, we see

$$g(A_{\xi}X, Y) = \tilde{g}_c(\sigma(X, Y), \xi) \,.$$

If *M* is a Kähler submanifold of \tilde{M} , then the following hold.

(2.7)
$$\sigma(X, JY) = \sigma(JX, Y) = J\sigma(X, Y),$$

(2.8)
$$A_{\xi}J = -JA_{\xi} = -A_{J\xi}$$
.

M is called a *quaternionic submanifold*, if the tangent space T_pM is invariant under the action of \mathfrak{J} for each *p* in *M*. *M* is called a *totally real submanifold*, if JT_pM is a subspace of the normal space $T_p^{\perp}M$ for each *p* in *M*.

3. The second fundamental form of $Sp(l)/U(2) \cdot Sp(l-2)$ in $G_2(\mathbb{C}^{2l})$

In this section, we will consider a Kähler C-space $M_{11,l} = Sp(l)/U(2) \cdot Sp(l-2)$ as a Kähler submanifold of $G_2(\mathbb{C}^{2l})$ (cf. [3], [12]).

First, we study an intrinsic geometry of $M_{11, l}$. Let us set

$$G = Sp(l)$$

$$= \left\{ g \in SU(2l) \middle| {}^{t}g \begin{pmatrix} 0 & -I_{l} \\ I_{l} & 0 \end{pmatrix} g = \begin{pmatrix} 0 & -I_{l} \\ I_{l} & 0 \end{pmatrix} \right\}$$

$$= \left\{ \begin{pmatrix} A & -\overline{C} \\ C & \overline{A} \end{pmatrix} \in SU(2l) \middle| A, C \in M_{l}(\mathbb{C}) \right\}$$

and

$$K = U(2) \cdot Sp(l-2)$$

$$= \left\{ \begin{pmatrix} A & 0 & 0 & 0 \\ 0 & A' & 0 & -\overline{C'} \\ 0 & 0 & \overline{A} & 0 \\ 0 & C' & 0 & \overline{A'} \end{pmatrix} \middle| \begin{array}{c} A \in U(2) , \quad A', C' \in M_{l-2}(\mathbb{C}) , \\ \begin{pmatrix} A' & -\overline{C'} \\ C' & \overline{A'} \end{pmatrix} \in Sp(l-2) \end{array} \right\}.$$

Then K is a closed subgroup of G. The Lie algebra \mathfrak{g} , the complexification $\mathfrak{g}^{\mathbb{C}}$ and the Lie algebra \mathfrak{k} are given by

$$\mathfrak{g} = \mathfrak{sp}(l)$$

$$= \left\{ \begin{pmatrix} A & -\overline{C} \\ C & \overline{A} \end{pmatrix} \middle| \begin{array}{l} A, C \in M_l(\mathbf{C}), \\ A^* = -A, \ ^tC = C \end{array} \right\},$$

$$\mathfrak{g}^{\mathbf{C}} = \mathfrak{sp}(l, \mathbf{C})$$

$$= \left\{ \begin{pmatrix} A & B \\ C & -^tA \end{pmatrix} \middle| \begin{array}{l} A, B, C \in M_l(\mathbf{C}), \\ \ ^tB = B, \ ^tC = C \end{array} \right\}$$

and

$$\mathfrak{k} = \mathfrak{u}(2) + \mathfrak{sp}(l-2)$$

$$= \left\{ \begin{pmatrix} A & 0 & 0 & 0 \\ 0 & A' & 0 & -\overline{C'} \\ 0 & 0 & \overline{A} & 0 \\ 0 & C' & 0 & \overline{A'} \end{pmatrix} \middle| \begin{array}{c} A \in M_2(\mathbf{C}), \\ A', C' \in M_{l-2}(\mathbf{C}), \\ A^* = -A, A'^* = -A', \ 'C' = C' \\ \end{array} \right\}$$

 \mathfrak{g} is a compact semisimple Lie algebra of type C_l .

For $x, y \in M_{l-2,2}(\mathbb{C})$ and $z \in M_2(\mathbb{C})$ with $t_z = z$, define

$$\eta(x, y, z) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ x & 0 & 0 & 0 \\ z & {}^{t}y & 0 & -{}^{t}x \\ y & 0 & 0 & 0 \end{pmatrix}$$

and

$$X(x, y, z) = \eta(x, y, z) - \eta(x, y, z)^*.$$

Define a subspace m of g by

$$\mathfrak{m} = \{X(x, y, z)\},\$$

then \mathfrak{m} is an $ad(\mathfrak{k})$ -invariant subspace and

$$\mathfrak{g}=\mathfrak{k}+\mathfrak{m}$$
 .

m is identified with the tangent space $T_o(M_{11,l})$. Set

$$\mathfrak{m}^+ = \{\eta(x, y, z)\}, \quad \mathfrak{m}^- = \{{}^t \eta(x, y, z)\},\$$

then $\mathfrak{m}^{\mathbb{C}} = \mathfrak{m}^+ + \mathfrak{m}^-$ and \mathfrak{m}^{\pm} are $\pm \sqrt{-1}$ -eigenspaces of the complex structure J of $M_{11,l}$.

For X = X(x, y, z), $X' = X(x', y', z') \in \mathfrak{m}$, define a Hermitian inner product g_o on \mathfrak{m} by

$$g_o(X, X') = \frac{4}{c} \operatorname{Re} tr(x'^* x + y'^* y + \overline{z'} z),$$

then g_o is $ad(\mathfrak{k})$ -invariant, so that g_o induces a *G*-invariant Kähler metric g on $M_{11,l}$. ($M_{11,l}$, J, g) is an Einstein Kähler manifold.

The natural inclusion $G \to \tilde{G}$ defines a *G*-equivariant Kähler immersion φ of $M_{11,l}$ into $\tilde{M} = G_2(\mathbb{C}^{2l})$, by $\varphi(g \cdot K) = g \cdot \tilde{K}$, $g \in G$. The complex codimension of φ is 1, so that $M_{11,l}$ is a complex hypersurface of $G_2(\mathbb{C}^{2l})$.

For $X = X(x, y, z) \in \mathfrak{m}$, let's set

$$X_{\tilde{\mathfrak{k}}}(x, y, z) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -\bar{y} & 0 \\ 0 & ^{t}y & 0 & -^{t}x \\ 0 & 0 & \bar{x} & 0 \end{pmatrix}, \quad X_{\tilde{\mathfrak{m}}}(x, y, z) = \begin{pmatrix} 0 & -x^{*} & -z^{*} & -y^{*} \\ x & 0 & 0 & 0 \\ z & 0 & 0 & 0 \\ y & 0 & 0 & 0 \end{pmatrix}.$$

Denote by φ_* , the differential of φ . Then, the image of the tangent space $T_o(M_{11,l})$ is given by

(3.1)
$$\varphi_{*o}T_o(M_{11,l}) = \varphi_{*o}\mathfrak{m} = \{X_{\tilde{\mathfrak{m}}}(x, y, z)\} \subset \tilde{\mathfrak{m}} = T_{\tilde{o}}(G_2(\mathbb{C}^n)).$$

For $z \in M_2(\mathbf{C})$ with ${}^t z = -z$, set

$$\xi(z) = \begin{pmatrix} 0 & 0 & -z^* & 0 \\ 0 & 0 & 0 & 0 \\ z & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Thus, we can identify the normal space $T_o^{\perp}(M_{11,l})$ with the subspace

$$\mathfrak{m}^{\perp} = \{\xi(z)\}$$

of $\tilde{\mathfrak{m}}$. Since φ is *G*-equivariant, the normal space at $g \cdot o$ is given by

$$T_{g \cdot o}^{\perp}(M_{11,l}) = \left\{ \left[\frac{d}{dt} g \exp(t\xi) \cdot \tilde{o} \right]_{t=0} \middle| \xi \in \mathfrak{m}^{\perp} \right\}.$$

For $X = X(x, y, z) \in T_o(M_{11,l})$, the curve $c(t) = \exp(tX) \cdot \tilde{o}$ is a curve in $M_{11,l}$, so that the vector field X^* generated by X is tangent to $M_{11,l}$. Define a unit normal vector field along c(t) by

$$\xi(t) = (\exp t X)_{*\tilde{o}}\xi_0, \quad \xi_0 = \xi(z_0), \quad z_0 = \sqrt{\frac{c}{8}} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

(2.3) implies

$$(L_{X^*}\xi(t) - \tilde{\nabla}_{X^*}\xi(t))_{\tilde{o}} = -[X_{\tilde{\mathfrak{k}}}(x, y, z), \xi_0].$$

By the definition of the Lie derivative,

$$(L_{X^*}\xi(t))_{\tilde{o}} = [X^*, \,\xi(t)]_{\tilde{o}} = \left[\frac{d}{dt}\exp(-tX)_{*c(t)}\xi(t)\right]_{t=0} = \left[\frac{d}{dt}\xi_0\right]_{t=0} = 0\,,$$

so that we obtain

$$\tilde{\nabla}_{\varphi_{*_o}X}\xi(t) = [X_{\tilde{\mathfrak{k}}}(x, y, z), \xi_0] = \begin{pmatrix} 0 & -z_0^T y & 0 & z_0^T x \\ -\bar{y}z_0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \bar{x}z_0 & 0 & 0 & 0 \end{pmatrix} \in \tilde{\mathfrak{m}}.$$

From (3.1) and (3.2), we obtain the following.

PROPOSITION 3.1. $\tilde{\nabla}_{\varphi_{*o}X}\xi(t)$ is tangent to $M_{11,l}$. Moreover, the unit normal vector field $\xi(t)$ is parallel at o, and the Weingarten map satisfies

(3.3)
$$A_{\xi_0}X(x, y, z) = X(\bar{y}z_0, -\bar{x}z_0, 0)$$

for any $X(x, y, z) \in \mathfrak{m}$.

Define three subspaces of $T_o(M_{11,l})$ by

$$V_0(o, \xi_0) = \{X(0, 0, z) \mid {}^tz = z, z \in M_2(\mathbf{C})\},\$$

$$V_+(o, \xi_0) = \{X(x, y, 0) \mid x = (x_1, x_2), y = (-\overline{x_2}, \overline{x_1}), x_i \in M_{l-2,1}(\mathbf{C})\}$$

and

$$V_{-}(o, \xi_{0}) = \{X(x, y, 0) \mid x = (x_{1}, x_{2}), y = (\overline{x_{2}}, -\overline{x_{1}}), x_{i} \in M_{l-2,1}(\mathbb{C})\}.$$

We have the eigenspace decomposition of the tangent space $T_p(M_{11,l})$ as follows.

PROPOSITION 3.2. For any point $p \in M_{11,l}$ and any unit normal vector $\xi \in T_p^{\perp}(M_{11,l})$, there exist three subspaces V_0 , V_+ and V_- of $T_p(M_{11,l})$, such that the following properties hold.

(1) V_0 is a J-invariant 0-eigenspace of A_{ξ} satisfying

$$V_0 = \mathfrak{J}_p T_p^{\perp}(M_{11,l}) \,.$$

(2) V_{\pm} are \mathfrak{J} -invariant $\pm \sqrt{\frac{c}{8}}$ -eigenspaces of A_{ξ} satisfying

$$JV_+ = V_-.$$

(3) *The eigenspace decomposition*

$$T_p(M_{11,l}) = V_0 \oplus V_+ \oplus V_-$$

holds.

PROOF. In the case that p = o and $\xi = \xi_0$, put $V_0 = V_0(o, \xi_0)$ and $V_{\pm} = V_{\pm}(o, \xi_0)$. By simple calculation of matrices, we can easily see that V_0 , V_+ and V_- satisfy the properties of this proposition.

In the case that p = o and ξ is arbitrary, (2.8) implies this proposition.

Since the structures J and \mathfrak{J} are \tilde{G} -invariant, and since the immersion φ is G-equivariant, this proposition holds for arbitrary p and ξ .

4. A second fundamental form of an Einstein Kähler hypersurface

In this section, we study an Einstein Kähler hypersurface of $G_2(\mathbb{C}^n)$, and under some assumption, determine its second fundamental form.

Let *M* be a Kähler hypersurface of $\tilde{M} = G_2(\mathbb{C}^n)$. The complex dimension *m* of *M* is equal to 2n - 5. Let *p* be any fixed point of *M*, and ξ be a local unit normal vector field around *p*, and set $\xi_1 = \xi$, $\xi_2 = J\xi$, so that $\{\xi_1, \xi_2\}$ is a local orthonormal frame field of the normal bundle $T^{\perp}M$.

Denote by R the curvature tensor field of M. Then we have the Gauss equation

(4.1)
$$g(R(X, Y)Z, W) = \sum_{\alpha=1}^{2} \left\{ g(A_{\xi_{\alpha}}X, W)g(A_{\xi_{\alpha}}Y, Z) - g(A_{\xi_{\alpha}}X, Z)g(A_{\xi_{\alpha}}Y, W) \right\} + \tilde{g}_{c}(\tilde{R}(X, Y)Z, W)$$

for any tangent vector fields *X*, *Y*, *Z* and *W* of *M*.

For any vector field X along M, denote by X^T and X^{\perp} , the tangential part of X and the normal part of X, respectively. Then, we obtain the following.

LEMMA 4.1. The Ricci curvature tensor Ric satisfies

(4.2)
$$Ric(Y, Z) = -2g(A_{\xi}^{2}Y, Z) + \frac{c}{8} \left\{ (2m+2)g(Y, Z) + 3\sum_{k=1}^{3} g((J_{k}Y)^{T}, (J_{k}Z)^{T}) - \sum_{k=1}^{3} g((JJ_{k}Y)^{T}, (JJ_{k}Z)^{T}) + 2\sum_{k=1}^{3} \tilde{g}_{c}(J\xi, J_{k}\xi) \tilde{g}_{c}(JJ_{k}Y, Z) \right\}$$

for any tangent vector fields Y and Z.

PROOF. Let $\{e_1, \dots, e_{2m}\}$ be a local orthonormal basis of TM. Note that $A_{\xi_{\alpha}}$ is symmetric. Moreover, from (2.8), $trA_{\xi_{\alpha}} = 0$ and $A_{\xi_1}^2 = A_{\xi_2}^2 = A_{\xi}^2$. So we get, from (4.1),

(4.3)
$$Ric(Y, Z) = \sum_{i=1}^{2m} g(R(e_i, Y)Z, e_i)$$
$$= \sum_{i=1}^{2m} \sum_{\alpha=1}^{2} \left\{ g(A_{\xi_{\alpha}}e_i, e_i)g(A_{\xi_{\alpha}}Y, Z) - g(A_{\xi_{\alpha}}e_i, Z)g(A_{\xi_{\alpha}}Y, e_i) \right\}$$
$$+ \sum_{i=1}^{2m} \tilde{g}_c(\tilde{R}(e_i, Y)Z, e_i)$$
$$= \sum_{\alpha=1}^{2} \left\{ (trA_{\xi_{\alpha}}) g(A_{\xi_{\alpha}}Y, Z) - g(A_{\xi_{\alpha}}Y, A_{\xi_{\alpha}}Z) \right\} + \sum_{i=1}^{2m} \tilde{g}_c(\tilde{R}(e_i, Y)Z, e_i)$$

$$= -2g(A_{\xi}^{2}Y, Z) + \sum_{i=1}^{2m} \tilde{g}_{c}(\tilde{R}(e_{i}, Y)Z, e_{i}).$$

From (2.5), we can see that

$$\begin{aligned} &(4.4) \\ &\sum_{i=1}^{2m} \tilde{g}_{c}(\tilde{R}(e_{i}, Y)Z, e_{i}) \\ &= \frac{c}{8} \sum_{i=1}^{2m} \left[\tilde{g}_{c}(e_{i}, e_{i}) \tilde{g}_{c}(Y, Z) - \tilde{g}_{c}(e_{i}, Z) \tilde{g}_{c}(Y, e_{i}) \\ &+ \tilde{g}_{c}(Je_{i}, e_{i}) \tilde{g}_{c}(JY, Z) - \tilde{g}_{c}(Je_{i}, Z) \tilde{g}_{c}(JY, e_{i}) + 2\tilde{g}_{c}(e_{i}, JY) \tilde{g}_{c}(JZ, e_{i}) \\ &+ \sum_{k=1}^{3} \left\{ \tilde{g}_{c}(J_{k}e_{i}, e_{i}) \tilde{g}_{c}(J_{k}Y, Z) - \tilde{g}_{c}(J_{k}e_{i}, Z) \tilde{g}_{c}(J_{k}Y, e_{i}) + 2\tilde{g}_{c}(e_{i}, J_{k}Y) \tilde{g}_{c}(J_{k}Z, e_{i}) \right\} \\ &+ \sum_{k=1}^{3} \left\{ \tilde{g}_{c}(J_{k}e_{i}, e_{i}) \tilde{g}_{c}(J_{k}Y, Z) - \tilde{g}_{c}(J_{k}e_{i}, Z) \tilde{g}_{c}(J_{k}Y, e_{i}) + 2\tilde{g}_{c}(e_{i}, J_{k}Y) \tilde{g}_{c}(J_{k}Z, e_{i}) \right\} \right] \\ &= \frac{c}{8} \left[(2m+2)g(Y, Z) + 3 \sum_{k=1}^{3} \tilde{g}_{c} \left(\sum_{i=1}^{2m} \tilde{g}_{c}(J_{k}Z, e_{i})e_{i}, J_{k}Y) \right) \\ &+ \sum_{k=1}^{3} \sum_{i=1}^{2m} \tilde{g}_{c}(J_{k}e_{i}, e_{i}) \tilde{g}_{c}(J_{k}Y, Z) - \sum_{k=1}^{3} \tilde{g}_{c} \left(\sum_{i=1}^{2m} \tilde{g}_{c}(J_{k}Z, e_{i})e_{i}, J_{k}Y) \right) \right] \\ &= \frac{c}{8} \left[(2m+2)g(Y, Z) + 3 \sum_{k=1}^{3} \tilde{g}_{c}((J_{k}Z)^{T}, J_{k}Y) \\ &+ \sum_{k=1}^{3} \sum_{i=1}^{2m} \tilde{g}_{c}(J_{k}e_{i}, e_{i}) \tilde{g}_{c}(J_{k}Y, Z) - \sum_{k=1}^{3} \tilde{g}_{c}((J_{k}Z)^{T}, J_{k}Y) \right] . \end{aligned}$$

Since $\{e_1, \dots, e_{2m} \xi, J\xi\}$ is a local orthonormal frame of $T\tilde{M}$, (2.4) implies

(4.5)
$$\sum_{i=1}^{2m} \tilde{g}_c(JJ_k e_i, e_i) = -\tilde{g}_c(JJ_k \xi, \xi) - \tilde{g}_c(JJ_k(J\xi), J\xi) = 2\tilde{g}_c(J\xi, J_k \xi).$$

Combining (4.3), (4.4) and (4.5), we see that (4.2) holds.

From now on, we assume that $\mathfrak{J}T^{\perp}M$ is a vector subbundle of the tangent bundle TM, i.e,

(4.6)
$$\mathfrak{J}T^{\perp}M\subset TM.$$

453

This condition is equivalent to the condition that $J_p \nu \perp \mathfrak{J}_p \nu$, where p is any point of M and ν is any normal vector at p.

Set $V_0 = \Im T^{\perp} M$. For any unit normal vector ξ , $\{J_1\xi, J_2\xi, J_3\xi, JJ_1\xi, JJ_2\xi, JJ_3\xi\}$ is an orthonormal basis of V_0 , i.e.,

(4.7)
$$V_0 = Span_{\mathbf{R}}\{J_1\xi, J_2\xi, J_3\xi, JJ_1\xi, JJ_2\xi, JJ_3\xi\},\$$

so that V_0 is J-invariant. Let's define V be the orthogonal complement of V_0 in TM. Then we have an orthogonal decomposition

$$TM = V_0 \oplus V$$
.

It is easy to see that V is J-invariant and \mathfrak{J} -invariant.

For a fiber bundle \mathfrak{F} , denote by $\Gamma(\mathfrak{F})$ the linear space of all smooth sections of \mathfrak{F} .

Lemma 4.2.

- (1) V_0 is a subspace of 0-eigenspace of A_{ξ} , i.e., $A_{\xi}Y = 0$ for any $Y \in \Gamma(V_0)$.
- (2) For any $X \in \Gamma(TM)$, $Y \in \Gamma(V)$ and $J' \in \Gamma(\mathfrak{J})$,

(4.8)
$$g(\nabla_X Y, J'\xi) = -g(A_{\xi}X, J'Y).$$

PROOF. For any $X \in \Gamma(TM)$ and $J' \in \Gamma(\mathfrak{J})$, since $J'\xi$ is a section of V_0 , (2.6) implies

(4.9)
$$\nabla_X (J'\xi) + \sigma(X, J'\xi) = \tilde{\nabla}_X (J'\xi) = (\tilde{\nabla}_X J')\xi + J'(\tilde{\nabla}_X \xi)$$
$$= (\tilde{\nabla}_X J')\xi - J'A_\xi X + J'\nabla_X^{\perp} \xi .$$

Since \mathfrak{J} is parallel, $\tilde{\nabla}_X J' \in \mathfrak{J}$. Thus, under our assumption (4.6), we see that $(\tilde{\nabla}_X J')\xi$ and $J'\nabla_X^{\perp}\xi$ are tangent to M. Therefore, the normal component of (4.9) is given by

$$\sigma(X, J'\xi) = -\tilde{g}_c \left(J'A_{\xi}X, \xi \right) \xi - \tilde{g}_c \left(J'A_{\xi}X, J\xi \right) J\xi$$
$$= g \left(A_{\xi}X, J'\xi \right) \xi + g \left(A_{\xi}X, J'J\xi \right) J\xi$$
$$= \tilde{g}_c (\sigma(X, J'\xi), \xi) \xi + \tilde{g}_c (\sigma(X, J'J\xi), \xi) J\xi$$

which, from (2.7), is equivalent to

$$\tilde{g}_c(\sigma(X, J'\xi), \xi)\xi - \tilde{g}_c(\sigma(X, J'\xi), J\xi)J\xi$$
,

so that we have

(4.10)
$$\tilde{g}_c(\sigma(X, J'\xi), J\xi) = 0.$$

Exchanging X for $JX \in \Gamma(TM)$, we get $\tilde{g}_c(\sigma(JX, J'\xi), J\xi) = 0$, so that

(4.11)
$$\tilde{g}_c(\sigma(X, J'\xi), \xi) = 0.$$

From (4.10) and (4.11), we get $\sigma(X, J'\xi) = 0$. Therefore, (2.7) and (4.7) imply $\sigma(X, Y) = 0$ for any $Y \in \Gamma(V_0)$, namely, $A_{\xi}Y = 0$.

Next, we consider the V-component of (4.9). The assumption (4.6) implies that $(\tilde{\nabla}_X J')\xi$ and $J'\nabla_X^{\perp}\xi$ are sections of V_0 , so that, for any $Y \in \Gamma(V)$, we get

$$g\left(\nabla_X(J'\xi), Y\right) = -\tilde{g}_c\left(J'A_{\xi}X, Y\right).$$

Since $J'\xi \perp Y$, this implies (4.8) immediately.

For any tangent vector field X of M, denote by X_0 and X_V , the V_0 -component of X and V-component of X, respectively. Then, we obtain the following.

LEMMA 4.3. Under the assumption (4.6), the Ricci curvature tensor Ric satisfies

(4.12)
$$Ric(Y, Z) = -2g(A_{\xi}^{2}Y_{V}, Z_{V}) + \frac{c}{8} \{ (4n-4)g(Y_{0}, Z_{0}) + (4n-2)g(Y_{V}, Z_{V}) \}$$

for any tangent vector fields Y and Z.

PROOF. Lemma 4.2 (1) implies that

(4.13)
$$g(A_{\xi}^2 Y, Z) = g(A_{\xi}^2 Y_V, Z) = g(A_{\xi}^2 Y_V, Z_V).$$

Since V is \mathfrak{J} -invariant, $J_k Y_V$ is a section of V, so that

$$(J_k Y)^{\perp} = (J_k Y_0)^{\perp}$$

= $\tilde{g}_c (J_k Y_0, \xi) \xi + \tilde{g}_c (J_k Y_0, J\xi) J \xi$
= $-g(Y_0, J_k \xi) \xi - g(Y_0, J_k J \xi) J \xi$.

Then, we get

$$g((J_kY)^T, (J_kZ)^T) = \tilde{g}_c(J_kY, J_kZ) - \tilde{g}_c((J_kY)^{\perp}, (J_kZ)^{\perp})$$

= $g(Y, Z) - g(Y_0, J_k\xi) g(Z_0, J_k\xi) - g(Y_0, J_kJ\xi) g(Z_0, J_kJ\xi),$

so that, from (4.7), we have

(4.14)
$$\sum_{k=1}^{3} g((J_k Y)^T, (J_k Z)^T) = 3g(Y, Z) - g(Y_0, Z_0)$$
$$= 2g(Y_0, Z_0) + 3g(Y_V, Z_V)$$

Exchanging Y and Z for JY and JZ respectively, we get

(4.15)
$$\sum_{k=1}^{3} g((JJ_kY)^T, (JJ_kZ)^T) = 2g(Y_0, Z_0) + 3g(Y_V, Z_V).$$

Since $J\xi \perp J_k\xi$, combining (4.2), (4.13), (4.14) and (4.15), we see that (4.12) holds.

In the next stage, we consider the Codazzi's equation

(4.16)
$$g((\nabla_X A)_{\xi} Y - (\nabla_Y A)_{\xi} X, Z) = \tilde{g}_c(R(X, Y)Z, \xi)$$

for any tangent vector fields X, Y and Z of M.

Let μ be a non-zero eigenvalue of A_{ξ} , and Y be an eigenvector corresponding to μ . We can assume that μ is a local smooth function on M, and Y is a local smooth section of TM. Then, for any $X \in \Gamma(TM)$, we have

$$\begin{aligned} (\nabla_X A)_{\xi} Y &= \nabla_X (A_{\xi} Y) - A_{\nabla_X^{\perp} \xi} Y - A_{\xi} (\nabla_X Y) \\ &= d\mu(X) Y + \mu \nabla_X Y - A_{\nabla_X^{\perp} \xi} Y - A_{\xi} (\nabla_X Y) \,, \end{aligned}$$

so that, from Lemma 4.2 (1), since Y is a local section of V, we see

$$g((\nabla_X A)_{\xi} Y, J'\xi) = \mu g(\nabla_X Y, J'\xi) - g(A_{\nabla_X^{\perp} \xi} Y, J'\xi) - g(A_{\xi}(\nabla_X Y), J'\xi)$$
$$= \mu g(\nabla_X Y, J'\xi) - g(Y, A_{\nabla_X^{\perp} \xi} J'\xi) - g(\nabla_X Y, A_{\xi} J'\xi)$$
$$= \mu g(\nabla_X Y, J'\xi)$$

for any $J' \in \Gamma(\mathfrak{J})$. By Lemma 4.2 (2), we see

,

$$g((\nabla_X A)_{\xi} Y, J'\xi) = -\mu g(A_{\xi} X, J'Y).$$

If X is also an eigenvector of A_{ξ} corresponding to a non-zero eigenvalue λ , we get

(4.17)
$$g((\nabla_X A)_{\xi} Y, J'\xi) = -\lambda \mu g(X, J'Y) = \lambda \mu g(J'X, Y)$$

and

(4.18)
$$g((\nabla_Y A)_{\xi} X, J'\xi) = \lambda \mu g(J'Y, X) = -\lambda \mu g(J'X, Y).$$

On the other hand, from (2.5), we can see that, for above X and Y,

$$\begin{split} \tilde{g}_{c}(\tilde{R}(X, Y)J'\xi, \xi) \\ &= \frac{c}{8} \bigg[\tilde{g}_{c}(X, \xi) \tilde{g}_{c}(Y, J'\xi) - \tilde{g}_{c}(X, J'\xi) \tilde{g}_{c}(Y, \xi) \\ &+ \tilde{g}_{c}(JX, \xi) \tilde{g}_{c}(JY, J'\xi) - \tilde{g}_{c}(JX, J'\xi) \tilde{g}_{c}(JY, \xi) + 2\tilde{g}_{c}(X, JY) \tilde{g}_{c}(JJ'\xi, \xi) \\ &+ \sum_{k=1}^{3} \big\{ \tilde{g}_{c}(J_{k}X, \xi) \tilde{g}_{c}(J_{k}Y, J'\xi) - \tilde{g}_{c}(J_{k}X, J'\xi) \tilde{g}_{c}(J_{k}Y, \xi) \\ &+ 2\tilde{g}_{c}(X, J_{k}Y) \tilde{g}_{c}(J_{k}J'\xi, \xi) \big\} \\ &+ \sum_{k=1}^{3} \big\{ \tilde{g}_{c}(JJ_{k}X, \xi) \tilde{g}_{c}(JJ_{k}Y, J'\xi) - \tilde{g}_{c}(JJ_{k}X, J'\xi) \tilde{g}_{c}(JJ_{k}Y, \xi) \big\} \bigg] \\ &= \frac{c}{4} \sum_{k=1}^{3} \tilde{g}_{c}(X, J_{k}Y) \tilde{g}_{c}(J_{k}J'\xi, \xi) \,. \end{split}$$

Since $\{J_1, J_2, J_3\}$ is a basis of \mathfrak{J} , there exist real numbers a^l , l = 1, 2, 3, such that $J' = \sum_{l=1}^3 a^l J_l$, so that we see $\tilde{g}_c(J_k J'\xi, \xi) = \sum_{l=1}^3 a^l \tilde{g}_c(J_k J_l\xi, \xi) = -a^k$ and

(4.19)
$$\tilde{g}_{c}(\tilde{R}(X, Y)J'\xi, \xi) = -\frac{c}{4}\sum_{k=1}^{3}\tilde{g}_{c}(X, a^{k}J_{k}Y)$$
$$= -\frac{c}{4}\tilde{g}_{c}(X, J'Y) = \frac{c}{4}g(J'X, Y).$$

From (4.16), (4.17), (4.18) and (4.19), we obtain the following.

LEMMA 4.4. Under the assumption (4.6), the equality

(4.20)
$$\left(\lambda\mu - \frac{c}{8}\right)g(J'X, Y) = 0$$

holds, where X and Y are eigenvectors of A_{ξ} corresponding to non-zero eigenvalues λ and μ respectively, and J' is any section of \mathfrak{J} .

The following proposition is a goal of this section.

PROPOSITION 4.5. If an Einstein Kähler hypersurface M of $G_2(\mathbb{C}^n)$ satisfies the condition $\Im T^{\perp}M \subset TM$, then, for any point $p \in M$ and any unit normal vector $\xi \in T_p^{\perp}M$, there exist three subspaces V_0 , V_+ and V_- of T_pM such that the following properties hold:

(1) V_0 is a J-invariant 0-eigenspace of A_{ξ} satisfying

$$V_0 = \mathfrak{J}_p T_p^{\perp} M$$

(2) $V_{\pm} are \mathfrak{J}_p$ -invariant $\pm \sqrt{\frac{c}{8}}$ -eigenspaces of A_{ξ} satisfying

$$JV_+ = V_-.$$

(3) The eigenspace decomposition

$$T_p M = V_0 \oplus V_+ \oplus V_-$$

holds.

Moreover, n must be even.

PROOF. Let $A_{\xi}|_V$ be the restriction of A_{ξ} to V. Denote by ρ , the scalar curvature of M. Since the Ricci curvature Ric satisfies the Einstein condition $Ric = \frac{\rho}{2m}g$, Lemma 4.3 implies

(4.21)
$$g(A_{\xi}^2 Y_V, Z_V) = \frac{c}{16} \left\{ \left(4n - 4 - \frac{4\rho}{cm} \right) g(Y_0, Z_0) + \left(4n - 2 - \frac{4\rho}{cm} \right) g(Y_V, Z_V) \right\}$$

for any tangent vector fields Y and Z. Choosing Y and Z as $Y = Z \in V_0$, we get $\rho = cm(n-1) = c(n-1)(2n-5)$. Therefore, (4.21) implies

$$g(A_{\xi}^2 Y_V, Z_V) = \frac{c}{8} g(Y_V, Z_V),$$

equivalently, all eigenvalues of $A_{\xi}|_{V}$ are $\pm \sqrt{\frac{c}{8}}$. In particular, 0 is not an eigenvalue of $A_{\xi}|_{V}$, which, together with Lemma 4.2 (1), implies that V_{0} is a 0-eigenspace of A_{ξ} . Denote by V_{\pm} , eigenspaces corresponding to $\pm \sqrt{\frac{c}{8}}$ respectively. Then V is a diagonal sum of subspaces $V_{\pm}: V = V_{+} \oplus V_{-}$. From (2.8), we easily see $JV_{+} = V_{-}$.

For any $X \in V_+$, $Y \in V_-$ and $J' \in \mathfrak{J}_p$, Lemma 4.4 implies g(J'X, Y) = 0. Since $J'X \in V$, we get $J'X \in V_+$, so that V_+ is \mathfrak{J}_p -invariant. Similarly, we can see that V_- is also \mathfrak{J}_p -invariant.

Since the real dimension of V_0 is 6, we have $\dim_{\mathbf{R}} V = 2m - 6 = 4n - 16$ and $\dim_{\mathbf{R}} V_{\pm} = \frac{1}{2} \dim_{\mathbf{R}} V = 2n - 8$. Since V_{\pm} are \mathfrak{J}_p -invariant, 2n - 8 is a multiple of 4, so that *n* is even. \Box

5. A focal variety

Let *M* be an Einstein Kähler hypersurface *M* of $\tilde{M} = G_2(\mathbb{C}^n)$ satisfies the condition $\Im T^{\perp}M \subset TM$. By Proposition 4.5, *n* must be even, so that we put n = 2l. In this section, we study the first focal set of *M*, and prove our main theorem.

We will use the same notations as those in the section 4. Moreover, for any point $p \in M$ and any unit normal vector ξ , define subspaces of $T_p \tilde{M}$ by

$$\begin{split} V_{0,+} &= \quad \mathfrak{J}\xi = Span_{\mathbf{R}} \{ J_{1}\xi, J_{2}\xi, J_{3}\xi \} \,, \\ V_{0,-} &= J \mathfrak{J}\xi = Span_{\mathbf{R}} \{ J J_{1}\xi, J J_{2}\xi, J J_{3}\xi \} \,, \\ \bot_{+} &= Span_{\mathbf{R}} \{ \xi \} \,, \\ \bot_{-} &= Span_{\mathbf{R}} \{ J \xi \} \,. \end{split}$$

By direct computation, (2.5) implies the following. Also see [2, Theorem 3].

LEMMA 5.1. Let \tilde{R}_{ξ} be the curvature operator with respect to ξ , i.e, \tilde{R}_{ξ} is defined by $\tilde{R}_{\xi}(X) = \tilde{R}(X, \xi)\xi$ for any $X \in T_p \tilde{M}$. Let κ be an eigenvalue of \tilde{R}_{ξ} , and T_{κ} be an eigenspace corresponding to κ . Then, we have the following complete table.

$$\begin{array}{c|c}
\kappa & T_{\kappa} \\
\hline 0 & \bot_{+} \oplus V_{0,-} \\
\hline \frac{c}{8} & V_{+} \oplus V_{-} \\
\hline \frac{c}{2} & \bot_{-} \oplus V_{0,+}
\end{array}$$

Let $U^{\perp}M$ be the unit normal bundle of M with a natural projection π , i.e., $U^{\perp}M$ is the subbundle of all unit normal vectors of M. For $\xi \in U^{\perp}M$, let $\gamma_{\xi}(t)$ be the geodesic of $G_2(\mathbb{C}^n)$, such that $\gamma_{\xi}(0) = \pi(\xi)$ and $\gamma'_{\xi}(0) = \xi$. For r > 0, define a smooth map F_r from $U^{\perp}M$ into $G_2(\mathbb{C}^n)$ by $F_r(\xi) = \gamma_{\xi}(r)$. If r is sufficiently small, the image $N_r = F_r(U^{\perp}M)$ is a tube

around M with radius r, which is a real hypersurface of $G_2(\mathbb{C}^n)$. If $\operatorname{rank}(F_{r*})_{\xi} < \dim_{\mathbb{R}} \tilde{M} - 1$ for some r and ξ , a point $F_r(\xi)$ is called a "focal point". $F_r(\xi)$ is called the first focal point if $F_t(\xi)$ is not a focal point for any t with 0 < t < r.

Let $\xi(s)$ be a curve in $U^{\perp}M$ with $\xi(0) = \xi$ and $\xi'(0) = \hat{X} \in T_{\xi}(U^{\perp}M)$. Define a smooth map ψ by $\psi(t, s) = F_t(\xi(s))$, and define a vector field Z(t) along γ_{ξ} by

$$Z(t) = \left(F_{t*}\right)_{\xi} \hat{X} = \left[\frac{d}{ds}F_t(\xi(s))\right]_{s=0} = \left[\frac{\partial}{\partial s}\psi\right]_{s=0}$$

Since ψ is a variation of a geodesic γ_{ξ} , Z(t) is a Jacobi field along γ_{ξ} , i.e., Z(t) satisfies the Jacobi equation

$$\tilde{\nabla}_t^2 Z(t) + \tilde{R}(Z(t), \gamma_{\xi}'(t))\gamma_{\xi}'(t) = 0.$$

Z(t) must satisfy the initial condition

$$Z(0) = \pi_{*\xi} \hat{X}, \quad Z'(0) = \left[\tilde{\nabla}_s \xi(s) \right]_{s=0}.$$

We remark that the image $(F_{t*})_{\xi}(T_{\xi}(U^{\perp}M))$ are spanned by above Jacobi fields.

To get a basic Jacobi field, set Z(t) = f(t)P(t), where P is a parallel vector field along γ_{ξ} , and f is a smooth function. Since $\gamma'_{\xi}(t)$ and the curvature tensor \tilde{R} are also parallel, the function f satisfies $f''(t)P(t) + f(t)\tau_t(\tilde{R}(P(0),\xi)\xi) = 0$, where τ_t is a parallel displacement along $\gamma_{\xi}(t)$. In particular, if $P(0) \in T_{\kappa}$ and $P(0) \neq 0$, then f satisfies $f''(t) + \kappa f(t) = 0.$

LEMMA 5.2. For each of the cases below, there exists a curve $\xi(s)$ in $U^{\perp}M$, such that f satisfies

(5.1)
$$f''(t) + \kappa f(t) = 0$$
, $f(0)P(0) = \pi_{*\xi}\xi'(0)$, $f'(0)P(0) = \left[\tilde{\nabla}_{s}\xi(s)\right]_{s=0}$

(1)
$$P(0) \in \perp_{-} and f(t) = \sqrt{\frac{2}{c}} \sin \sqrt{\frac{c}{2}} t$$

- (1) $P(0) \in U_{0,+}$ and $f(t) = \sqrt{c} \sin \sqrt{2}$ (2) $P(0) \in V_{0,+}$ and $f(t) = \cos \sqrt{\frac{c}{2}}t$. (3) $P(0) \in V_{0,-}$ and $f(t) \equiv 1$.

(4)
$$P(0) \in V_+ \text{ and } f(t) = \sqrt{2} \cos\left(\sqrt{\frac{c}{8}t + \frac{\pi}{4}}\right).$$

(5) $P(0) \in V_{-} and f(t) = \sqrt{2} \cos\left(\sqrt{\frac{c}{8}t - \frac{\pi}{4}}\right).$

PROOF. In the case (1), there exists $a \in \mathbf{R}$, such that $P(0) = aJ\xi$. Set $\xi(s) = \cos as \cdot \xi$ $+\sin as \cdot J\xi$. Then, we see $\pi_{*\xi}\xi'(0) = 0$ and $\left[\tilde{\nabla}_s\xi(s)\right]_{s=0} = aJ\xi$. From Lemma 5.1, we have $\kappa = \frac{c}{2}$. Therefore, the equation (5.1) is equivalent to $f'' + \frac{c}{2}f = 0$, f(0) = 0, f'(0) = 1, which has a unique solution $f(t) = \sqrt{\frac{2}{c}} \sin \sqrt{\frac{c}{2}} t$.

In other cases, X = P(0) is tangent to M. Let c(s) be a curve in M with c'(0) = X, and $\xi(s)$ be a parallel normal vector field along c(s), satisfying $\xi(0) = \xi$. Then, we see $\pi_{*\xi}\xi'(0) = X$ and $[\tilde{\nabla}_{s}\xi(s)]_{s=0} = -A_{\xi}X$.

Let's assume $X \in V_+$. Lemma 5.1 implies $\kappa = \frac{c}{8}$, and Proposition 4.5 implies $\left[\tilde{\nabla}_s \xi(s)\right]_{s=0} = -\sqrt{\frac{c}{8}}X$. Therefore, the equation (5.1) is equivalent to $f'' + \frac{c}{8}f = 0$, f(0) = 1, $f'(0) = -\sqrt{\frac{c}{8}}$, which has a unique solution $f(t) = \sqrt{2}\cos\left(\sqrt{\frac{c}{8}}t + \frac{\pi}{4}\right)$, so that the case (4) is proved.

The remaining cases are similarly proved.

Let's set $r_1 = \sqrt{\frac{2}{c}} \frac{\pi}{2}$. Then, any point of N_{r_1} is the first focal point, the image of $(F_{r_1*})_{\xi}$ is a vector space $\tau_{r_1}(\perp \oplus V_{0,-} \oplus V_-)$, and $\operatorname{rank}(F_{r_1*})_{\xi} = \frac{1}{2} \dim_{\mathbf{R}} \tilde{M}$, so that the first focal set N_{r_1} is a submanifold of \tilde{M} . The tangent space of N_{r_1} at $q = F_{r_1}(\xi)$ is given by

$$T_q N_{r_1} = \tau_{r_1} (\bot_- \oplus V_{0,-} \oplus V_-),$$

which is \mathfrak{J} -invariant. It is easy to see that the real dimension of N_{r_1} is equal to $\frac{1}{2} \dim_{\mathbf{R}} M$. Moreover, the normal space of N_{r_1} at q is given by

$$T_q^{\perp} N_{r_1} = \tau_{r_1} (\perp_+ \oplus V_{0,+} \oplus V_+),$$

so that we see

$$JT_q N_{r_1} = T_a^{\perp} N_{r_1} \,.$$

Therefore, we obtain the following.

PROPOSITION 5.3. The first focal set N_{r_1} of M is a quaternionic Kähler, totally real submanifold of $G_2(\mathbb{C}^{2l})$. The real dimension of N_{r_1} is one half of dim_{**R**} $G_2(\mathbb{C}^{2l})$.

In [13], H. Tasaki showed that any complete, quaternionic Kähler, totally real submanifold of $G_2(\mathbb{C}^{2l})$ is congruent to a quaternionic projective space. Then, for some fixed $q \in N_{r_1}$, there exists a quaternionic projective space $\mathbf{H}P^{l-1}$, such that $q \in \mathbf{H}P^{l-1}$ and $T_q N_{r_1} = T_q \mathbf{H}P^{l-1}$. In [1], Alekseevskii proved that a quaternionic submanifold in a quaternionic Kähler manifold is totally geodesic. Therefore, N_{r_1} is a open portion of $\mathbf{H}P^{l-1}$.

By Proposition 3.2, $M_{11,l}$ satisfies the same assumption as M. Then, the first focal set of $M_{11,l}$ is congruent to $\mathbf{H}P^{l-1}$ up to the automorphism of $G_2(\mathbb{C}^{2l})$, so that M and $M_{11,l}$ are locally congruent. Therefore, we complete the proof of Theorem 1.1.

References

- [1] D. V. ALEKSEEVSKII, Compact quaternion spaces, Functional Anal. Appl. 2 (1968), 109–114.
- J. BERNDT, Riemannian geometry of complex two-plane Grassmannians, Rend. Sem. Mat. Univ. Politec. Torino 55 (1997), 19–83.
- [3] A. BOREL and F. HIRZEBRUCH, Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458–538.

- [4] B. Y. CHEN and T. NAGANO, Totally geodesic submanifolds of symmetric spaces, I, Duke Math. J. 44 (1977), 745–755.
- [5] B. Y. CHEN and T. NAGANO, Totally geodesic submanifolds of symmetric spaces, II, Duke Math. J. 45 (1978), 405–425.
- [6] S. IHARA, Holomorphic imbeddings of symmetric domains, J. Math. Soc. Japan 19 (1967), 261–302.
- [7] S. KOBAYASHI and K. NOMIZU, Foundations of Differential Geometry I, II, John Wiley and Sons, Interscience, New York, 1969.
- [8] K. KONNO, Homogeneous hypersurfaces in Kähler C-spaces with $b_2 = 1$, J. Math. Soc. Japan **40** (1988), 687–703.
- [9] Y. MIYATA, Spectral geometry of Kähler hypersurfaces in a complex Grassmann manifold, Tokyo J. Math. 28 (2005).
- H. NAKAGAWA and R. TAKAGI, On locally symmetric Kaehler submanifolds in a complex projective space, J. Math. Soc. Japan 28 (1976), 638–667.
- [11] I. SATAKE, Holomorphic imbeddings of symmetric domains into a Siegel space, Amer. J. Math. 87 (1965), 425–461.
- [12] M. TAKEUCHI, Homogeneous K\u00e4hler submanifolds in complex projective spaces, Japan. J. Math. 4 (1978), 171–219.
- [13] H. TASAKI, Quaternionic submanifolds in quaternionic symmetric spaces, Tohoku Math. J. 38 (1986), 513– 538.
- [14] K. TSUKADA, Parallel Kaehler submanifolds of Hermitian symmetric spaces, Math. Z. 190 (1985), 129–150.

Present Address: DEPARTMENT OF MATHEMATICS, TOKYO METROPOLITAN UNIVERSITY, MINAMI-OHSAWA, HACHIOJI-SHI, TOKYO, 192–0397 JAPAN. *e-mail*: miyata@comp.metro-u.ac.jp