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1. Introduction

Denote by Gr(Cn) the complex Grassmann manifold of r-planes in Cn, equipped with
the Kähler metric of maximal holomorphic sectional curvature c.

One of the simplest typical examples of submanifolds of Gr(Cn) is a totally geodesic
submanifold. B. Y. Chen and T. Nagano in [4, 5] determined maximal totally geodesic sub-
manifolds of G2(Cn). I. Satake and S. Ihara in [11, 6] determined all (equivariant) holomor-
phic, totally geodesic imbeddings of a symmetric domain into another symmetric domain.
When an ambient symmetric domain is of type (I)p,q , taking a compact dual symmetric space,
we obtain the complete list of maximal totally geodesic Kähler submanifolds ofGr(Cn).

Let M be a maximal totally geodesic Kähler submanifold of Gr(Cn) given by a Kähler
immersion ϕ : M → Gr(Cn). Since M is a symmetric space, denote by (G,K) the compact

symmetric pair ofM . Then there exists a certain unitary representation ρ : G → G̃ = SU(n),
such that ϕ(M) is given by the orbit of ρ(G) through the origin in Gr(Cn).

Denote by CPn and Qn, an n-dimensional complex projective space and an n-
dimensional complex quadric respectively.

EXAMPLE 1 ([4, 5, 11, 6]). LetM = G/K be a proper maximal totally geodesic Käh-
ler submanifold of Gr(Cn), ρ a corresponding unitary representation of G to SU(n). Then,
M and ρ are one of the following (up to isomorphism).

(1) M1 = Gr(Cn−1) ↪→ Gr(Cn), 1 � r � n− 2

(2) M2 = Gr−1(Cn−1) ↪→ Gr(Cn), 2 � r � n− 1
(3) M3 = Gr1(C

n1)×Gr2(C
n2) ↪→ Gr1+r2(Cn1+n2), 1 � ri � ni − 1, i = 1, 2

(4) M4 = M4,p = Sp(p)/U(p) ↪→ Gp(C2p), p � 2

(5) M5 = M5,p = SO(2p)/U(p) ↪→ Gp(C2p), p � 4

(6) M6,m = CPp ↪→ Gr(Cn), r = (
p

m−1

)
, n = (

p+1
m

)
, 2 � m � p − 1,

ρ6,m : SU(p + 1) → SU(n) : the exterior representation of degree m
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(7) M7 = Q3 ↪→ Q4 = G2(C4),

ρ7 : Spin(5) → SU(4) : spin representation

(8) M8 = M8,2l = Q2l ↪→ Gr(C2r ), l � 3,

ρ±
8 : Spin(2l + 2) → SU(2l ) : (two) spin representations

Notice that ρ1, · · · , ρ5 are the identical representations, and notice that M4,2 = M7 and
M5,4 = M8,6.

A submanifoldM ofGr(Cn) is parallel if the second fundamental form ofM is parallel.
H. Nakagawa and R. Takagi in [10] classified parallel Kähler submanifolds of a complex

projective space CPn−1 = G1(Cn). K. Tsukada in [14] showed that, in parallel Kähler
submanifolds ofGr(Cn), the above classification is essential. Moreover, if r �= 1, n− 1, then
a parallel Kähler submanifoldM ofGr(Cn) is a parallel Kähler submanifolds of some totally
geodesic Kähler submanifold of Gr(Cn), i.e, M is a parallel Kähler submanifold of one of
{Mi, i = 1, · · · , 8}. Notice that a Hermitian symmetric submanifolds of Gr(Cn) is parallel.

Another one of the simplest typical examples of submanifolds of Gr(Cn) is a homoge-
neous Kähler hypersurface. K. Konno in [8] determined all Kähler C-spaces embedded as a
hypersurface into a Kähler C-space with the second Betti number b2 = 1.

EXAMPLE 2 ([8]). Let M be a compact, simply connected homogeneous Kähler hy-
persurface ofGr(Cn). Then,M are one of the following (up to isomorphism).

(1) M9 = CPn−2 ↪→ CPn−1 = G1(Cn)
(2) M10 = Qn−2 ↪→ CPn−1 = G1(Cn)
(3) M7 = Q3 ↪→ Q4 = G2(C4)

(4) M11 = M11,l = Sp(l)/U(2) · Sp(l − 2) ↪→ G2(C2l) : Kähler C-space of type
(Cl, α2), l � 2

M9 and M7 are totally geodesic. M9, M10 and M7 are symmetric spaces. M10 is not totally
geodesic but parallel. If l = 2, then M11 is congruent to M7. If l > 2, M11 is neither
symmetric nor parallel.

Notice that all manifolds in Examples 1 and 2 are Einstein manifolds.
The purpose of this paper is, without the assumption of homogeneity, to characterize a

Kähler hypersurface M11.
M11 satisfies another interesting, extrinsic property as follows. It is known that G2(Cn)

admits the quaternionic Kähler structure J. For the normal bundle T ⊥M of a Kähler hyper-
surfaceM in G2(Cn), JT ⊥M is a vector bundle of real rank 6 over M . We consider a Kähler
hypersurface M of G2(Cn) satisfying the property that JT ⊥M is a subbundle of the tangent
bundle TM ofM , i.e, JT ⊥M ⊂ TM. The Kähler hypersurfaceM11, l satisfies this condition.
In [9], the author showed that if M is compact, then the first eigenvalue λ1 of the Laplacian

satisfies λ1 � c(n − n−1
2n−5 ). The equality holds if and only if n = 4 and M is congruent to

M11,2 = Q3.
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One of the simplest questions is as follows: What isM satisfying JT ⊥M ⊂ TM? With-
out the assumption of homogeneity, we shall show the following result.

THEOREM 1.1. If an Einstein Kähler hypersurface M of G2(Cn) satisfies the condi-
tion JT ⊥M ⊂ TM , then n is even andM is locally congruent to M11, n/2.

The author wishes to thank Professors K. Ogiue and Y. Ohnita for many valuable com-
ments and suggestions.

NOTATIONS. Mr,s(C) denotes the set of all r×s matrices with entries in C, andMr(C)
stands for Mr,r(C). Ir and Or denote the identity r-matrix and the zero r-matrix.

2. Preliminaries

In this section, we review well-known geometries of complex Grassmann manifolds of
2-planes. For details, see [7] and [2].

Let M2(Cn) be the complex Stiefel manifold which is the set of all unitary 2-systems of
Cn, i.e.,

M2(Cn) = {Z ∈ Mn,2(C) |Z∗Z = I2} .

The complex 2-plane Grassmann manifold G2(Cn) is defined by

G2(Cn) = M2(Cn)/U(2) .

The origin õ ofG2(Cn) is defined by π(Z0), where Z0 =
(
I2

0

)
is an element ofM2(Cn), and

π : M2(Cn) → G2(Cn) is the natural projection.

The left action of the unitary group G̃ = SU(n) onG2(Cn) is transitive, and the isotropy
subgroup at the origin õ is

K̃ = S(U(2) · U(n− 2) )

=
{(

U1 0
0 U2

) ∣∣∣∣ U1 ∈ U(2), U2 ∈ U(n− 2), detU1 detU2 = 1

}
,

so that G2(Cn) is identified with a homogeneous space M̃ = G̃/K̃ .
Set g̃ = su(n) and

k̃ = R ⊕ su(2)⊕ su(n− 2)

=
{(
u1 0
0 u2

)
+ a

(− 1
2

√−1I2 0
0 1

n−2

√−1In−2

) ∣∣∣∣ a ∈ R,
u1 ∈ su(2)

u2 ∈ su(n− 2)

}
.
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Then g̃ and k̃ are the Lie algebras of G̃ and K̃ , respectively. Define a linear subspace m̃ of g̃

by

m̃ =
{ (

0 −ξ∗
ξ 0

) ∣∣∣∣ ξ ∈ Mn−2,2(C)
}
.

Then m̃ is identified with the tangent space Tõ(G2(Cn)). The G̃-invariant complex structure

J of G2(Cn) and the G̃-invariant Kähler metric g̃c of G2(Cn) of the maximal holomorphic
sectional curvature c are given by

J

(
0 −ξ∗
ξ 0

)
=

(
0

√−1ξ∗√−1ξ 0

)
,

g̃c(X, Y ) = −2

c
trXY , X, Y ∈ m̃ .(2.1)

Notice that g̃c satisfies

g̃c = −2

c

1

2n
Bg̃ = −2

c

L(g̃)

2
Bg̃(2.2)

on m̃, where Bg̃ is the Killing form of g̃, and L(g̃) is the squared length of the longest root of
g̃ relative to the Killing form.

We denote by X∗ an vector field on M̃ generated by X ∈ g̃, i.e.,

(X∗)p =
[
d

dt
exp tX · p

]
t=0

, p = g õ ∈ M̃ , g ∈ G̃ .

The Riemannian connection ∇̃ is described in terms of the Lie derivative as follows:

(LX∗ − ∇̃X∗)õỸ =
{

−ad(X)Ỹõ , if X ∈ k̃ ,

0 , if X ∈ m̃ ,
(2.3)

where Ỹ is a vector field on M̃ .
The complex 2-plane Grassmann manifold G2(Cn) admits another geometric structure

named the quaternionic Kähler structure J. J is a G̃-invariant subbundle of End(T (G2(Cn)))

of rank 3, where End(T (G2(Cn))) is the G̃-invariant vector bundle of all linear endmor-
phisms of the tangent bundle T (G2(Cn)). Under the identification with Tõ(G2(Cn)) and m̃,
the fiber Jõ at the origin õ is given by

Jõ = {Jε̃ = ad(ε̃) | ε̃ ∈ k̃q } ,
where k̃q is an ideal of k̃ defined by

k̃q =
{(
u1 0
0 0

) ∣∣∣∣ u1 ∈ su(2)

}
∼= su(2) .
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Define a basis {ε1, ε2, ε3} of su(2) by

ε1 =
(√−1 0

0 −√−1

)
, ε2 =

(
0 1

−1 0

)
, ε3 =

(
0

√−1√−1 0

)
.

Then ε1, ε2 and ε3 satisfy

[ε1, ε2] = 2ε3 , [ε2, ε3] = 2ε1 , [ε3, ε1] = 2ε2 .

Set ε̃i =
(
εi 0
0 0

)
and Ji = Jε̃i for i = 1, 2, 3. Then the basis {J1, J2, J3 } is a canonical

basis of Jõ satisfying

J 2
i = −idm̃ for i = 1, 2, 3 ,

J1J2 = −J2J1 = J3 , J2J3 = −J3J2 = J1 , J3J1 = −J1J3 = J2 ,

g̃c(JiX, JiY ) = g̃c(X, Y ) , for X,Y ∈ m̃ and i = 1, 2, 3 .

Since J is given by

J = ad(ε̃C) , ε̃C = 2(n− 2)

n

(− 1
2

√−1I2 0
0 1

n−2

√−1In−2

)

on m, and since ε̃C is an element of the center of k̃, J is commutable with J. Moreover, the
property

trJ J ′ = 0(2.4)

holds for any J ′ ∈ J.

In [2], J. Berndt showed that the curvature tensor R̃ of M̃ is given by

R̃(X, Y )Z = c

8

[
g̃c(Y,Z)X − g̃c(X,Z)Y

+ g̃c(JY,Z)JX − g̃c(JX,Z)JY + 2g̃c(X, JY )JZ

+
3∑
k=1

{
g̃c(JkY,Z)JkX − g̃c(JkX,Z)JkY + 2g̃c(X, JkY )JkZ

}

+
3∑
k=1

{
g̃c(J JkY,Z)JJkX − g̃c(J JkX,Z)JJkY

}]

(2.5)

for any vector fields X,Y and Z of M̃ .

Let (M, g) be a Riemannian submanifold of M̃ . Denote by ∇ the Riemannian con-
nection of M , and by σ , A and ∇⊥ the second fundamental form, the Weingarten map and

the normal connection of M in G2(C2l ) respectively. We have the Gauss’ formula and the
Weingarten’s formula are:

∇̃XY = ∇XY + σ(X, Y ) , ∇̃Xξ = −AξX + ∇⊥
Xξ ,(2.6)
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where X,Y and Z are tangent vector fields and ξ is a normal vector field. Moreover, we see

g(AξX, Y ) = g̃c(σ (X, Y ), ξ) .

If M is a Kähler submanifold of M̃, then the following hold.

σ(X, JY ) = σ(JX, Y ) = Jσ(X, Y ) ,(2.7)

AξJ = −JAξ = −AJξ .(2.8)

M is called a quaternionic submanifold, if the tangent space TpM is invariant under the
action of J for each p in M . M is called a totally real submanifold, if JTpM is a subspace of

the normal space T ⊥
p M for each p in M .

3. The second fundamental form of Sp(l)/U(2) · Sp(l − 2) in G2(C2l)

In this section, we will consider a Kähler C-space M11, l = Sp(l)/U(2) · Sp(l − 2) as a

Kähler submanifold of G2(C2l) (cf. [3], [12]).
First, we study an intrinsic geometry of M11, l . Let us set

G = Sp(l)

=
{
g ∈ SU(2l)

∣∣∣∣ tg
(

0 −Il
Il 0

)
g =

(
0 −Il
Il 0

)}

=
{(
A −C
C A

)
∈ SU(2l)

∣∣∣∣ A,C ∈ Ml(C)
}

and

K = U(2) · Sp(l − 2)

=






A 0 0 0
0 A′ 0 −C′
0 0 A 0
0 C′ 0 A′




∣∣∣∣∣∣∣∣
A ∈ U(2) , A′, C′ ∈ Ml−2(C) ,(

A′ −C′
C′ A′

)
∈ Sp(l − 2)


 .

Then K is a closed subgroup of G. The Lie algebra g, the complexification gC and the Lie
algebra k are given by

g = sp(l)

=
{(
A −C
C A

) ∣∣∣∣ A,C ∈ Ml(C),
A∗ = −A, tC = C

}
,

gC = sp(l,C)

=
{(
A B

C −tA

) ∣∣∣∣ A,B,C ∈ Ml(C),
tB = B, tC = C

}
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and

k = u(2)+ sp(l − 2)

=






A 0 0 0
0 A′ 0 −C′
0 0 A 0
0 C′ 0 A′




∣∣∣∣∣∣∣∣
A ∈ M2(C),

A′, C′ ∈ Ml−2(C),
A∗ = −A, A′∗ = −A′, tC′ = C′


 .

g is a compact semisimple Lie algebra of type Cl .
For x, y ∈ Ml−2,2(C) and z ∈ M2(C) with tz = z, define

η(x, y, z) =




0 0 0 0
x 0 0 0
z ty 0 −tx

y 0 0 0




and

X(x, y, z) = η(x, y, z)− η(x, y, z)∗ .

Define a subspace m of g by

m = {X(x, y, z)} ,
then m is an ad(k)-invariant subspace and

g = k + m .

m is identified with the tangent space To(M11,l). Set

m+ = {η(x, y, z)} , m− = {tη(x, y, z)} ,

then mC = m+ + m− and m± are ±√−1-eigenspaces of the complex structure J of M11,l .
For X = X(x, y, z), X′ = X(x ′, y ′, z′) ∈ m, define a Hermitian inner product go on m

by

go(X,X′) = 4

c
Re tr(x ′∗x + y ′∗y + z′z) ,

then go is ad(k)-invariant, so that go induces a G-invariant Kähler metric g on M11,l .
(M11,l, J, g) is an Einstein Kähler manifold.

The natural inclusionG → G̃ defines a G-equivariant Kähler immersion ϕ ofM11,l into

M̃ = G2(C2l ), by ϕ(g · K) = g · K̃, g ∈ G. The complex codimension of ϕ is 1, so that

M11,l is a complex hypersurface of G2(C2l ).
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For X = X(x, y, z) ∈ m, let’s set

Xk̃(x, y, z) =




0 0 0 0
0 0 −ȳ 0
0 ty 0 −tx

0 0 x̄ 0


 , Xm̃(x, y, z) =




0 −x∗ −z∗ −y∗
x 0 0 0
z 0 0 0
y 0 0 0


 .

Denote by ϕ∗, the differential of ϕ. Then, the image of the tangent space To(M11,l) is given
by

ϕ∗oTo(M11,l) = ϕ∗om = {Xm̃(x, y, z)} ⊂ m̃ = Tõ(G2(Cn)) .(3.1)

For z ∈ M2(C) with tz = −z, set

ξ(z) =




0 0 −z∗ 0
0 0 0 0
z 0 0 0
0 0 0 0


 .

Thus, we can identify the normal space T ⊥
o (M11,l) with the subspace

m⊥ = {ξ(z)}(3.2)

of m̃. Since ϕ is G-equivariant, the normal space at g · o is given by

T ⊥
g ·o(M11,l) =

{[
d

dt
g exp(tξ) · õ

]
t=0

∣∣∣∣ ξ ∈ m⊥
}
.

For X = X(x, y, z) ∈ To(M11,l), the curve c(t) = exp(tX) · õ is a curve in M11,l , so
that the vector field X∗ generated by X is tangent to M11,l. Define a unit normal vector field
along c(t) by

ξ(t) = (exp tX)∗õξ0 , ξ0 = ξ(z0) , z0 =
√
c

8

(
0 −1
1 0

)
.

(2.3) implies

(LX∗ξ(t)− ∇̃X∗ξ(t))õ = −[Xk̃(x, y, z), ξ0] .
By the definition of the Lie derivative,

(LX∗ξ(t))õ = [X∗, ξ(t)]õ =
[
d

dt
exp(−tX)∗c(t)ξ(t)

]
t=0

=
[
d

dt
ξ0

]
t=0

= 0 ,

so that we obtain

∇̃ϕ∗oXξ(t) = [Xk̃(x, y, z), ξ0] =




0 −z0
ty 0 z0

tx

−ȳz0 0 0 0
0 0 0 0
x̄z0 0 0 0


 ∈ m̃ .
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From (3.1) and (3.2), we obtain the following.

PROPOSITION 3.1. ∇̃ϕ∗oXξ(t) is tangent to M11,l . Moreover, the unit normal vector
field ξ(t) is parallel at o, and the Weingarten map satisfies

Aξ0X(x, y, z) = X(ȳz0,−x̄z0, 0)(3.3)

for any X(x, y, z) ∈ m.

Define three subspaces of To(M11,l) by

V0(o, ξ0) = {X(0, 0, z) | tz = z, z ∈ M2(C)} ,
V+(o, ξ0) = {X(x, y, 0) | x = (x1, x2), y = (−x2, x1), xi ∈ Ml−2,1(C)}

and

V−(o, ξ0) = {X(x, y, 0) | x = (x1, x2), y = (x2,−x1), xi ∈ Ml−2,1(C)} .
We have the eigenspace decomposition of the tangent space Tp(M11,l) as follows.

PROPOSITION 3.2. For any point p ∈ M11,l and any unit normal vector ξ ∈
T ⊥
p (M11,l), there exist three subspaces V0, V+ and V− of Tp(M11,l), such that the follow-

ing properties hold.
(1) V0 is a J -invariant 0-eigenspace of Aξ satisfying

V0 = JpT
⊥
p (M11,l) .

(2) V± are J-invariant ±√
c
8 -eigenspaces of Aξ satisfying

JV+ = V− .

(3) The eigenspace decomposition

Tp(M11,l) = V0 ⊕ V+ ⊕ V−

holds.

PROOF. In the case that p = o and ξ = ξ0, put V0 = V0(o, ξ0) and V± = V±(o, ξ0).
By simple calculation of matrices, we can easily see that V0, V+ and V− satisfy the properties
of this proposition.

In the case that p = o and ξ is arbitrary, (2.8) implies this proposition.

Since the structures J and J are G̃-invariant, and since the immersion ϕ isG-equivariant,
this proposition holds for arbitrary p and ξ . �
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4. A second fundamental form of an Einstein Kähler hypersurface

In this section, we study an Einstein Kähler hypersurface of G2(Cn), and under some
assumption, determine its second fundamental form.

Let M be a Kähler hypersurface of M̃ = G2(Cn). The complex dimension m of M is
equal to 2n − 5. Let p be any fixed point of M , and ξ be a local unit normal vector field
around p, and set ξ1 = ξ, ξ2 = J ξ , so that {ξ1, ξ2} is a local orthonormal frame field of the
normal bundle T ⊥M .

Denote by R the curvature tensor field of M . Then we have the Gauss equation

g(R(X, Y )Z, W) =
2∑
α=1

{
g(AξαX, W)g(AξαY, Z)− g(AξαX, Z)g(AξαY, W)

}
(4.1)

+ g̃c(R̃(X, Y )Z, W)

for any tangent vector fields X,Y,Z and W of M .
For any vector field X along M , denote by XT and X⊥, the tangential part of X and the

normal part of X, respectively. Then, we obtain the following.

LEMMA 4.1. The Ricci curvature tensor Ric satisfies

Ric(Y, Z) = − 2g(A2
ξ Y, Z)(4.2)

+ c

8

{
(2m+ 2)g(Y, Z)+ 3

3∑
k=1

g((JkY )T , (JkZ)T )

−
3∑
k=1

g((JJkY )T , (JJkZ)T )+ 2
3∑
k=1

g̃c(J ξ, Jkξ) g̃c(J JkY, Z)
}

for any tangent vector fields Y and Z.

PROOF. Let {e1, · · · , e2m} be a local orthonormal basis of TM . Note that Aξα is sym-

metric. Moreover, from (2.8), trAξα = 0 and A2
ξ1

= A2
ξ2

= A2
ξ . So we get, from (4.1),

Ric(Y, Z) =
2m∑
i=1

g(R(ei , Y )Z, ei)(4.3)

=
2m∑
i=1

2∑
α=1

{
g(Aξα ei, ei)g(AξαY, Z)− g(Aξα ei, Z)g(AξαY, ei)

}

+
2m∑
i=1

g̃c(R̃(ei , Y )Z, ei)

=
2∑
α=1

{
(trAξα ) g(AξαY, Z)− g(AξαY, AξαZ)

} +
2m∑
i=1

g̃c(R̃(ei, Y )Z, ei)
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= −2g(A2
ξY, Z)+

2m∑
i=1

g̃c(R̃(ei, Y )Z, ei) .

From (2.5), we can see that

2m∑
i=1

g̃c(R̃(ei, Y )Z, ei)

(4.4)

= c

8

2m∑
i=1

[
g̃c(ei, ei)g̃c(Y, Z)− g̃c(ei, Z)g̃c(Y, ei)

+ g̃c(J ei, ei)g̃c(JY,Z)− g̃c(J ei, Z)g̃c(JY, ei)+ 2g̃c(ei, JY )g̃c(JZ, ei)

+
3∑
k=1

{
g̃c(Jkei, ei)g̃c(JkY,Z)− g̃c(Jkei, Z)g̃c(JkY, ei)+ 2g̃c(ei , JkY )g̃c(JkZ, ei)

}

+
3∑
k=1

{
g̃c(J Jkei, ei)g̃c(J JkY, Z)− g̃c(J Jkei, Z)g̃c(J JkY, ei)

}]

= c

8

[
(2m+ 2)g(Y, Z)+ 3

3∑
k=1

g̃c

( 2m∑
i=1

g̃c(JkZ, ei)ei, JkY
)

+
3∑
k=1

2m∑
i=1

g̃c(J Jkei, ei)g̃c(J JkY, Z)−
3∑
k=1

g̃c

( 2m∑
i=1

g̃c(J JkZ, ei)ei, J JkY
)]

= c

8

[
(2m+ 2)g(Y, Z)+ 3

3∑
k=1

g̃c((JkZ)T , JkY )

+
3∑
k=1

2m∑
i=1

g̃c(J Jkei, ei)g̃c(J JkY, Z)−
3∑
k=1

g̃c((J JkZ)T , JJkY )
]
.

Since {e1, · · · , e2m ξ, J ξ} is a local orthonormal frame of T M̃ , (2.4) implies

2m∑
i=1

g̃c(J Jkei , ei) = −g̃c(J Jkξ, ξ)− g̃c(J Jk(J ξ), J ξ) = 2g̃c(J ξ, Jkξ) .(4.5)

Combining (4.3), (4.4) and (4.5), we see that (4.2) holds. �

From now on, we assume that JT ⊥M is a vector subbundle of the tangent bundle TM ,
i.e,

JT ⊥M ⊂ TM .(4.6)
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This condition is equivalent to the condition that Jpν ⊥ Jpν, where p is any point of M and
ν is any normal vector at p.

Set V0 = JT ⊥M . For any unit normal vector ξ , {J1ξ, J2ξ, J3ξ, JJ1ξ, JJ2ξ, JJ3ξ} is an
orthonormal basis of V0, i.e.,

V0 = SpanR{J1ξ, J2ξ, J3ξ, JJ1ξ, JJ2ξ, JJ3ξ} ,(4.7)

so that V0 is J -invariant. Let’s define V be the orthogonal complement of V0 in TM . Then
we have an orthogonal decomposition

TM = V0 ⊕ V .

It is easy to see that V is J -invariant and J-invariant.
For a fiber bundle F, denote by Γ (F) the linear space of all smooth sections of F.

LEMMA 4.2.
(1) V0 is a subspace of 0-eigenspace of Aξ , i.e., AξY = 0 for any Y ∈ Γ (V0).
(2) For any X ∈ Γ (TM), Y ∈ Γ (V ) and J ′ ∈ Γ (J),

g(∇XY, J ′ξ) = −g(AξX, J ′Y ) .(4.8)

PROOF. For anyX ∈ Γ (TM) and J ′ ∈ Γ (J), since J ′ξ is a section of V0, (2.6) implies

∇X(J ′ξ)+ σ(X, J ′ξ) = ∇̃X(J ′ξ) = (∇̃XJ ′)ξ + J ′(∇̃Xξ)(4.9)

= (∇̃XJ ′)ξ − J ′AξX + J ′∇⊥
Xξ .

Since J is parallel, ∇̃XJ ′ ∈ J. Thus, under our assumption (4.6), we see that (∇̃XJ ′)ξ and

J ′∇⊥
Xξ are tangent to M . Therefore, the normal component of (4.9) is given by

σ(X, J ′ξ) = −g̃c
(
J ′AξX, ξ

)
ξ − g̃c

(
J ′AξX, J ξ

)
J ξ

= g
(
AξX, J

′ξ
)
ξ + g

(
AξX, J

′J ξ
)
J ξ

= g̃c(σ (X, J ′ξ), ξ)ξ + g̃c(σ (X, J ′J ξ), ξ)J ξ ,

which, from (2.7), is equivalent to

g̃c(σ (X, J ′ξ), ξ)ξ − g̃c(σ (X, J ′ξ), J ξ)J ξ ,

so that we have

g̃c(σ (X, J ′ξ), J ξ) = 0 .(4.10)

Exchanging X for JX ∈ Γ (TM), we get g̃c(σ (JX, J ′ξ), J ξ) = 0, so that

g̃c(σ (X, J ′ξ), ξ) = 0 .(4.11)

From (4.10) and (4.11), we get σ(X, J ′ξ) = 0. Therefore, (2.7) and (4.7) imply σ(X, Y ) = 0
for any Y ∈ Γ (V0), namely, AξY = 0.
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Next, we consider the V -component of (4.9). The assumption (4.6) implies that (∇̃XJ ′)ξ
and J ′∇⊥

Xξ are sections of V0, so that, for any Y ∈ Γ (V ), we get

g
(∇X(J ′ξ), Y

) = −g̃c
(
J ′AξX, Y

)
.

Since J ′ξ ⊥ Y , this implies (4.8) immediately. �

For any tangent vector field X of M , denote by X0 and XV , the V0-component of X and
V -component of X, respectively. Then, we obtain the following.

LEMMA 4.3. Under the assumption (4.6), the Ricci curvature tensor Ric satisfies

Ric(Y, Z) = −2g(A2
ξYV , ZV )(4.12)

+ c

8

{
(4n− 4)g(Y0, Z0)+ (4n− 2)g(YV , ZV )

}
for any tangent vector fields Y and Z.

PROOF. Lemma 4.2 (1) implies that

g(A2
ξ Y, Z) = g(A2

ξ YV , Z) = g(A2
ξ YV , ZV ) .(4.13)

Since V is J-invariant, JkYV is a section of V , so that

(JkY )
⊥ = (JkY0)

⊥

= g̃c(JkY0, ξ) ξ + g̃c(JkY0, J ξ) J ξ

= −g(Y0, Jkξ) ξ − g(Y0, JkJ ξ) J ξ .

Then, we get

g
(
(JkY )

T , (JkZ)
T
) = g̃c(JkY, JkZ)− g̃c

(
(JkY )

⊥, (JkZ)⊥
)

= g(Y, Z)− g(Y0, Jkξ) g(Z0, Jkξ)− g(Y0, JkJ ξ) g(Z0, JkJ ξ) ,

so that, from (4.7), we have

3∑
k=1

g
(
(JkY )

T , (JkZ)
T
) = 3g(Y, Z)− g(Y0, Z0)(4.14)

= 2g(Y0, Z0)+ 3g(YV , ZV ) .

Exchanging Y and Z for JY and JZ respectively, we get

3∑
k=1

g
(
(JJkY )

T , (JJkZ)
T
) = 2g(Y0, Z0)+ 3g(YV , ZV ) .(4.15)

Since J ξ ⊥ Jkξ , combining (4.2), (4.13), (4.14) and (4.15), we see that (4.12) holds. �

In the next stage, we consider the Codazzi’s equation

g((∇XA)ξY − (∇YA)ξX, Z) = g̃c(R̃(X, Y )Z, ξ)(4.16)
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for any tangent vector fields X,Y and Z of M .
Let µ be a non-zero eigenvalue of Aξ , and Y be an eigenvector corresponding to µ. We

can assume that µ is a local smooth function on M , and Y is a local smooth section of TM .
Then, for any X ∈ Γ (TM), we have

(∇XA)ξY = ∇X(AξY )− A∇⊥
Xξ
Y − Aξ(∇XY )

= dµ(X)Y + µ∇XY − A∇⊥
Xξ
Y − Aξ(∇XY ) ,

so that, from Lemma 4.2 (1), since Y is a local section of V , we see

g
(
(∇XA)ξY, J ′ξ

) = µg
(∇XY, J ′ξ

) − g
(
A∇⊥

Xξ
Y, J ′ξ

) − g(Aξ (∇XY ), J ′ξ)

= µg(∇XY, J ′ξ)− g
(
Y, A∇⊥

Xξ
J ′ξ

) − g(∇XY, AξJ ′ξ)

= µg(∇XY, J ′ξ)

for any J ′ ∈ Γ (J). By Lemma 4.2 (2), we see

g
(
(∇XA)ξY, J ′ξ

) = −µg(AξX, J ′Y ) .

If X is also an eigenvector of Aξ corresponding to a non-zero eigenvalue λ, we get

g
(
(∇XA)ξY, J ′ξ

) = −λµg(X, J ′Y ) = λµg(J ′X, Y )(4.17)

and

g
(
(∇YA)ξX, J ′ξ

) = λµg(J ′Y, X) = −λµg(J ′X, Y ) .(4.18)

On the other hand, from (2.5), we can see that, for above X and Y ,

g̃c(R̃(X, Y )J ′ξ, ξ)

= c

8

[
g̃c(X, ξ)g̃c(Y, J ′ξ)− g̃c(X, J ′ξ)g̃c(Y, ξ)

+ g̃c(JX, ξ)g̃c(JY, J ′ξ)− g̃c(JX, J ′ξ)g̃c(JY, ξ)+ 2g̃c(X, JY )g̃c(J J ′ξ, ξ)

+
3∑
k=1

{
g̃c(JkX, ξ)g̃c(JkY, J ′ξ)− g̃c(JkX, J ′ξ)g̃c(JkY, ξ)

+ 2g̃c(X, JkY )g̃c(JkJ ′ξ, ξ)
}

+
3∑
k=1

{
g̃c(J JkX, ξ)g̃c(J JkY, J ′ξ)− g̃c(J JkX, J ′ξ)g̃c(J JkY, ξ)

}]

= c

4

3∑
k=1

g̃c(X, JkY )g̃c(JkJ ′ξ, ξ) .
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Since {J1, J2, J3} is a basis of J, there exist real numbers al, l = 1, 2, 3, such that J ′ =∑3
l=1 a

lJl , so that we see g̃c(JkJ ′ξ, ξ) = ∑3
l=1 a

l g̃c(JkJlξ, ξ) = −ak and

g̃c(R̃(X, Y )J ′ξ, ξ) = − c

4

3∑
k=1

g̃c(X, akJkY )(4.19)

= − c

4
g̃c(X, J ′Y ) = c

4
g(J ′X, Y ) .

From (4.16), (4.17), (4.18) and (4.19), we obtain the following.

LEMMA 4.4. Under the assumption (4.6), the equality(
λµ− c

8

)
g(J ′X, Y ) = 0(4.20)

holds, where X and Y are eigenvectors of Aξ corresponding to non-zero eigenvalues λ and µ
respectively, and J ′ is any section of J.

The following proposition is a goal of this section.

PROPOSITION 4.5. If an Einstein Kähler hypersurfaceM ofG2(Cn) satisfies the con-
dition JT ⊥M ⊂ TM , then, for any point p ∈ M and any unit normal vector ξ ∈ T ⊥

p M , there

exist three subspaces V0, V+ and V− of TpM such that the following properties hold:
(1) V0 is a J -invariant 0-eigenspace of Aξ satisfying

V0 = JpT
⊥
p M .

(2) V± are Jp-invariant ±
√
c
8 -eigenspaces of Aξ satisfying

JV+ = V− .

(3) The eigenspace decomposition

TpM = V0 ⊕ V+ ⊕ V−
holds.

Moreover, n must be even.

PROOF. Let Aξ |V be the restriction of Aξ to V . Denote by ρ, the scalar curvature of

M . Since the Ricci curvature Ric satisfies the Einstein condition Ric = ρ
2mg, Lemma 4.3

implies

g(A2
ξ YV , ZV ) = c

16

{(
4n− 4 − 4ρ

cm

)
g(Y0, Z0)+

(
4n− 2 − 4ρ

cm

)
g(YV , ZV )

}
(4.21)

for any tangent vector fields Y and Z. Choosing Y and Z as Y = Z ∈ V0, we get ρ =
cm(n− 1) = c(n− 1)(2n− 5). Therefore, (4.21) implies

g(A2
ξ YV , ZV ) = c

8
g(YV , ZV ) ,
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equivalently, all eigenvalues of Aξ |V are ±√
c
8 . In particular, 0 is not an eigenvalue of Aξ |V ,

which, together with Lemma 4.2 (1), implies that V0 is a 0-eigenspace of Aξ . Denote by

V±, eigenspaces corresponding to ±√
c
8 respectively. Then V is a diagonal sum of subspaces

V± : V = V+ ⊕ V−. From (2.8), we easily see JV+ = V−.
For any X ∈ V+, Y ∈ V− and J ′ ∈ Jp, Lemma 4.4 implies g(J ′X, Y ) = 0. Since

J ′X ∈ V , we get J ′X ∈ V+, so that V+ is Jp-invariant. Similarly, we can see that V− is also
Jp-invariant.

Since the real dimension of V0 is 6, we have dimR V = 2m−6 = 4n−16 and dimR V± =
1
2 dimR V = 2n− 8. Since V± are Jp-invariant, 2n− 8 is a multiple of 4, so that n is even. �

5. A focal variety

Let M be an Einstein Kähler hypersurface M of M̃ = G2(Cn) satisfies the condition
JT ⊥M ⊂ TM . By Proposition 4.5, n must be even, so that we put n = 2l. In this section,
we study the first focal set of M , and prove our main theorem.

We will use the same notations as those in the section 4. Moreover, for any point p ∈ M
and any unit normal vector ξ , define subspaces of TpM̃ by

V0,+ = Jξ = SpanR {J1ξ, J2ξ, J3ξ} ,
V0,− = JJξ = SpanR{JJ1ξ, JJ2ξ, JJ3ξ } ,
⊥+ = SpanR{ξ} ,
⊥− = SpanR{J ξ} .

By direct computation, (2.5) implies the following. Also see [2, Theorem 3].

LEMMA 5.1. Let R̃ξ be the curvature operator with respect to ξ , i.e, R̃ξ is defined by

R̃ξ (X) = R̃(X, ξ)ξ for anyX ∈ TpM̃ . Let κ be an eigenvalue of R̃ξ , and Tκ be an eigenspace
corresponding to κ . Then, we have the following complete table.

κ Tκ

0 ⊥+ ⊕V0,−
c
8 V+ ⊕ V−
c
2 ⊥− ⊕V0,+

Let U⊥M be the unit normal bundle of M with a natural projection π , i.e., U⊥M is the
subbundle of all unit normal vectors ofM . For ξ ∈ U⊥M , let γξ (t) be the geodesic ofG2(Cn),

such that γξ (0) = π(ξ) and γ ′
ξ (0) = ξ . For r > 0, define a smooth map Fr from U⊥M into

G2(Cn) by Fr(ξ) = γξ (r). If r is sufficiently small, the image Nr = Fr(U
⊥M) is a tube
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aroundM with radius r , which is a real hypersurface ofG2(Cn). If rank(Fr∗)ξ < dimR M̃−1
for some r and ξ , a point Fr(ξ) is called a “focal point”. Fr(ξ) is called the first focal point if
Ft (ξ) is not a focal point for any t with 0 < t < r .

Let ξ(s) be a curve in U⊥M with ξ(0) = ξ and ξ ′(0) = X̂ ∈ Tξ (U
⊥M). Define a

smooth map ψ by ψ(t, s) = Ft (ξ(s)), and define a vector field Z(t) along γξ by

Z(t) = (
Ft ∗

)
ξ
X̂ =

[
d

ds
Ft (ξ(s))

]
s=0

=
[
∂

∂s
ψ

]
s=0

.

Since ψ is a variation of a geodesic γξ , Z(t) is a Jacobi field along γξ , i.e, Z(t) satisfies the
Jacobi equation

∇̃2
t Z(t)+ R̃(Z(t), γ ′

ξ (t))γ
′
ξ (t) = 0 .

Z(t) must satisfy the initial condition

Z(0) = π∗ξ X̂ , Z′(0) = [∇̃sξ(s)]s=0 .

We remark that the image
(
Ft∗

)
ξ

(
Tξ (U

⊥M)
)

are spanned by above Jacobi fields.

To get a basic Jacobi field, set Z(t) = f (t)P (t), where P is a parallel vector field

along γξ , and f is a smooth function. Since γ ′
ξ (t) and the curvature tensor R̃ are also par-

allel, the function f satisfies f ′′(t)P (t) + f (t) τt (R̃(P (0), ξ)ξ) = 0, where τt is a paral-
lel displacement along γξ (t). In particular, if P(0) ∈ Tκ and P(0) �= 0, then f satisfies
f ′′(t)+ κf (t) = 0.

LEMMA 5.2. For each of the cases below, there exists a curve ξ(s) in U⊥M , such that
f satisfies

f ′′(t)+ κf (t) = 0 , f (0)P (0) = π∗ξ ξ ′(0) , f ′(0)P (0) = [∇̃sξ(s)]s=0 .(5.1)

(1) P(0) ∈⊥− and f (t) =
√

2
c

sin
√

c
2 t .

(2) P(0) ∈ V0,+ and f (t) = cos
√

c
2 t .

(3) P(0) ∈ V0,− and f (t) ≡ 1.

(4) P(0) ∈ V+ and f (t) = √
2 cos

(√
c
8 t + π

4

)
.

(5) P(0) ∈ V− and f (t) = √
2 cos

(√
c
8 t − π

4

)
.

PROOF. In the case (1), there exists a ∈ R, such that P(0) = aJ ξ . Set ξ(s) = cos as · ξ
+ sin as ·J ξ . Then, we see π∗ξ ξ ′(0) = 0 and

[∇̃sξ(s)]s=0 = aJ ξ . From Lemma 5.1, we have

κ = c
2 . Therefore, the equation (5.1) is equivalent to f ′′ + c

2f = 0, f (0) = 0, f ′(0) = 1,

which has a unique solution f (t) = √
2
c sin

√
c
2 t .
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In other cases, X = P(0) is tangent to M . Let c(s) be a curve in M with c′(0) = X,
and ξ(s) be a parallel normal vector field along c(s), satisfying ξ(0) = ξ . Then, we see

π∗ξ ξ ′(0) = X and
[∇̃sξ(s)]s=0 = −AξX.

Let’s assume X ∈ V+. Lemma 5.1 implies κ = c
8 , and Proposition 4.5 implies[∇̃sξ(s)]s=0 = −√

c
8X. Therefore, the equation (5.1) is equivalent to f ′′+ c

8f = 0, f (0) = 1,

f ′(0) = −√
c
8 , which has a unique solution f (t) = √

2 cos
(√

c
8 t+ π

4

)
, so that the case (4) is

proved.
The remaining cases are similarly proved. �

Let’s set r1 =√
2
c
π
2 . Then, any point of Nr1 is the first focal point, the image of (Fr1∗)ξ

is a vector space τr1(⊥− ⊕V0,− ⊕ V−), and rank(Fr1∗)ξ = 1
2 dimR M̃ , so that the first focal

set Nr1 is a submanifold of M̃ . The tangent space of Nr1 at q = Fr1(ξ) is given by

TqNr1 = τr1(⊥− ⊕V0,− ⊕ V−) ,

which is J-invariant. It is easy to see that the real dimension of Nr1 is equal to 1
2 dimR M̃ .

Moreover, the normal space of Nr1 at q is given by

T ⊥
q Nr1 = τr1(⊥+ ⊕V0,+ ⊕ V+) ,

so that we see

JTqNr1 = T ⊥
q Nr1 .

Therefore, we obtain the following.

PROPOSITION 5.3. The first focal set Nr1 of M is a quaternionic Kähler, totally real

submanifold of G2(C2l). The real dimension of Nr1 is one half of dimRG2(C2l ).

In [13], H. Tasaki showed that any complete, quaternionic Kähler, totally real sub-

manifold of G2(C2l) is congruent to a quaternionic projective space. Then, for some fixed
q ∈ Nr1 , there exists a quaternionic projective space HP l−1, such that q ∈ HP l−1 and

TqNr1 = TqHP l−1. In [1], Alekseevskii proved that a quaternionic submanifold in a quater-

nionic Kähler manifold is totally geodesic. Therefore, Nr1 is a open portion of HP l−1.
By Proposition 3.2, M11,l satisfies the same assumption as M . Then, the first focal set

of M11,l is congruent to HP l−1 up to the automorphism of G2(C2l), so that M and M11,l are
locally congruent. Therefore, we complete the proof of Theorem 1.1.
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