Submodules of $L^{2}\left(\mathbf{R}^{2}\right)$

Michio SETO
Hokkaido University
(Communicated by K. Masuda)
Dedicated to Professor Takahiko Nakazi on his 60th birthday

Abstract

In this paper, we study submodules of $L^{2}(\mathbf{R})^{2}$. We will give a Lax-type theorem and a result which is analogous to Helson's theory.

1. Introduction

$L^{2}\left(\mathbf{R}^{2}\right)$ will denote the Hilbert space of square-integrable measurable functions with respect to the usual Lebesgue measure $d x_{1} d x_{2}$ on the two dimensional Euclidean space \mathbf{R}^{2}. $H^{2}(\mathbf{R})$ denotes the usual Hardy space on \mathbf{R}, that is, $H^{2}(\mathbf{R})$ consists of all functions in $L^{2}(\mathbf{R})$ which can be extended analytically to the upper half plane $\mathbf{C}_{+}=\{x+i t: x \in \mathbf{R}, t>0\}$. $H^{2}(\mathbf{R}) \otimes H^{2}(\mathbf{R})$, the Hilbert space tensor product of $H^{2}(\mathbf{R})$, is the space of all f in $L^{2}\left(\mathbf{R}^{2}\right)$ whose Fourier transform

$$
\mathfrak{F}(f)\left(\lambda_{1}, \lambda_{2}\right)=\hat{f}\left(\lambda_{1}, \lambda_{2}\right)=\int_{\mathbf{R}^{2}} f\left(x_{1}, x_{2}\right) e^{-i\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right)} d x_{1} d x_{2}
$$

is 0 whenever at least one component of $\left(\lambda_{1}, \lambda_{2}\right)$ is negative, where $\left(\lambda_{1}, \lambda_{2}\right)$ and $\left(x_{1}, x_{2}\right)$ are in \mathbf{R}^{2}. In this paper, $H^{2}(\mathbf{R}) \otimes H^{2}(\mathbf{R})$ is denoted by $H^{2}\left(\mathbf{R}^{2}\right)$, for short. Note that our $H^{2}\left(\mathbf{R}^{2}\right)$ is different from the usual Hardy space on \mathbf{R}^{2}.

Definition 1.1. A closed subspace \mathcal{M} of $L^{2}\left(\mathbf{R}^{2}\right)$ is said to be a submodule of $L^{2}\left(\mathbf{R}^{2}\right)$ if $e^{i s x_{j}} \mathcal{M} \subseteq \mathcal{M}$ for any $j=1,2$ and any $s \geq 0$. For $s \geq 0, S_{j}(s)$ denotes the restriction on \mathcal{M} of the multiplication operator on $L^{2}\left(\mathbf{R}^{2}\right)$ by $e^{i s x_{j}}$.

Submodules in one variable were completely described by Lax in [4]. In [1], Helson gave another point of view to the result of Lax. The purpose of our study is to consider Helson's theory in the multi-variable setting. My interest in considering Helson's theory in two variables is motivated by the study of Hardy submodules over the bidisk: Hardy submodules are invariant subspaces of Hardy space under multiplication operators by bounded analytic
functions. However, it is easy to see that a straightforward generalization of Helson's theory fails in the multi-variable setting. In Section 2 of this paper, we give a Lax-type theorem in two variables. To prove this we use Masani's integral (cf. [6]). In Section 3, we consider Helson's theory in two variables. We will give a result, analogous to Helson's result, under the following condition: $S_{1}(s) S_{2}(t)^{*}=S_{2}(t)^{*} S_{1}(s)$ for all $s, t \geq 0$.

2. A Lax-type theorem in \mathbf{R}^{2}

In [9], the author showed the following Lax-type theorem which is analogous to the theorem proved by Mandrekar [5] and Nakazi [7] for the bitorus.

THEOREM 2.1. Let \mathcal{M} be a submodule of $L^{2}\left(\mathbf{R}^{2}\right), H_{x_{1}}^{2}\left(\mathbf{R}^{2}\right)=L^{2}\left(\mathbf{R}, d x_{1}\right) \otimes$ $H^{2}\left(\mathbf{R}, d x_{2}\right)$ and $H_{x_{2}}^{2}\left(\mathbf{R}^{2}\right)=H^{2}\left(\mathbf{R}, d x_{1}\right) \otimes L^{2}\left(\mathbf{R}, d x_{2}\right)$. If $S_{1}(s) S_{2}(t)^{*}=S_{2}(t)^{*} S_{1}(s)$ for all $s, t \geq 0$, then one and only one of the following occurs:
(i) $\mathcal{M}=\chi_{E} L^{2}\left(\mathbf{R}^{2}\right) \oplus \chi_{F} \varphi H_{x_{1}}^{2}\left(\mathbf{R}^{2}\right)$,
(ii) $\mathcal{M}=\chi_{E} L^{2}\left(\mathbf{R}^{2}\right) \oplus \chi_{G} \psi H_{x_{2}}^{2}\left(\mathbf{R}^{2}\right)$,
(iii) $\mathcal{M}=q H^{2}\left(\mathbf{R}^{2}\right)$,
where φ, ψ and q are unimodular functions, χ_{E} is the characteristic function of E, χ_{F} (resp. $\left.\chi_{G}\right)$ is the characteristic function of $F($ resp. $G)$ which depends only on the variable x_{1} (resp. x_{2}).

We shall give a proof which differs from that given in [9]. To begin with, we briefly introduce Masani's integral which can be seen as a continuous Wold decomposition for a continuous semi-group of isometries, according to [6].

DEFINITION 2.1 (Masani [6]). Let $\{S(t): t \geq 0\}$ be a strongly continuous semi-group of isometries on a Hilbert space \mathcal{H}. We introduce an operator-valued interval-measure. The measure $T_{a b}$ of the interval $[a, b]$ is defined by as follows:

$$
T_{[a, b]}=T(b)-T(a), \quad \text { where } T(t)=\frac{1}{\sqrt{2}}\left\{S(t)-I-\int_{0}^{t} S(s) d s\right\}, \quad \text { for } t \geq 0
$$

Let $i H$ be the infinitesimal generator of $\{S(t): t \geq 0\}$ and V be the Cayley transform of H and $R=V(\mathcal{H})$. For the step-function $x=\sum_{k=1}^{n} \alpha_{k} \chi_{J_{k}}$ on $[a, b]$, where α_{k} in R^{\perp} and $\chi_{J_{k}}$ is the characteristic function of bounded interval J_{k}, we define

$$
\int_{a}^{b} T_{d t}\left(x_{t}\right):=\sum_{k=1}^{n} T_{J_{k}}\left(\alpha_{k}\right) .
$$

For any x in $L^{2}\left([a, b], R^{\perp}\right)$, we define

$$
\int_{a}^{b} T_{d t}\left(x_{t}\right):=\lim _{n \rightarrow \infty} \int_{a}^{b} T_{d t}\left(x_{t}^{(n)}\right)
$$

where $\left\{x_{t}^{(n)}, n \geq 1\right\}$ is any sequence of step-functions which is tending to x in the L^{2}-topology.
We now define a direct integral as a set of vector-valued integrals:

$$
\int_{a}^{b} T_{d t}\left(R^{\perp}\right):=\left\{\xi: \xi=\int_{a}^{b} T_{d t}\left(x_{t}\right), x \in L^{2}\left([a, b], R^{\perp}\right)\right\} .
$$

THEOREM 2.2 (Masani [6]). Let $\{S(t): t \geq 0\}$ be a strongly continuous semi-group of isometries on a Hilbert space \mathcal{H}, iH be its infinitesimal generator and let V be the Cayley transform of H. Then, for $a \geq 0$,

$$
S(a)(\mathcal{H})=\int_{a}^{\infty} T_{d t}\left(R^{\perp}\right) \oplus \mathcal{H}_{\infty}
$$

where $R=V(\mathcal{H})$ and $\mathcal{H}_{\infty}=\bigcap_{t \geq 0} S(t)(\mathcal{H})$.
This theorem can be seen as a continuous Wold decomposition.
Example 2.1. Let $T_{d s}^{(k)}$ be the operator-valued measures defined by $S_{k}(s)$ for $k=$ 1,2. Identifying bounded functions with multiplication operators, $T^{(k)}(s)$ can be computed formally as follows:

$$
\begin{aligned}
T^{(k)}(s) & =\frac{1}{\sqrt{2}}\left\{S_{k}(s)-I_{\mathcal{M}}-\int_{0}^{s} S_{k}(t) d t\right\} \\
& =\frac{1}{\sqrt{2}}\left\{e^{i s x_{k}}-1-\int_{0}^{s} e^{i t x_{k}} d t\right\} \\
& =\frac{1}{\sqrt{2}}\left\{e^{i s x_{k}}-1-\left[\frac{1}{i x_{k}} e^{i t x_{k}}\right]_{0}^{s}\right\} \\
& =\frac{1}{\sqrt{2}}\left\{e^{i s x_{k}}-1-\frac{1}{i x_{k}}\left(e^{i s x_{k}}-1\right)\right\} \\
& =\frac{1}{\sqrt{2}}\left(e^{i s x_{k}}-1\right)\left(1-\frac{1}{i x_{k}}\right) \\
& =\frac{1}{\sqrt{2} x_{k}}\left(e^{i s x_{k}}-1\right)\left(x_{k}+i\right)
\end{aligned}
$$

Thus the operator valued measure $T_{d s}^{(k)}$ can be computed as follows:

$$
\begin{aligned}
T_{d s}^{(k)} & =\frac{d}{d s}\left(\frac{1}{\sqrt{2} x_{k}}\left(e^{i s x_{k}}-1\right)\left(x_{k}+i\right)\right) d s \\
& =\frac{1}{\sqrt{2}} i e^{i s x_{k}}\left(x_{k}+i\right) d s
\end{aligned}
$$

We are now in a position to prove Theorem 2.1.
Proof (A proof of Theorem 2.1). Some parts of this proof are similar to those in the proof by Mandrekar [5] and Nakazi [7] for the bitorus (cf. Seto [9]).

Suppose that $S_{1}(s) S_{2}(t)^{*}=S_{2}(t)^{*} S_{1}(s)$ for all $s, t \geq 0$. Let $V_{x_{k}}$ be the isometry induced by $\left\{S_{k}(s): s \geq 0\right\}$ as in Theorem 2.2 for $k=1,2$. Since $V_{x_{k}}$ is in the von Neumann algebra generated by $\left\{S_{k}(s): s \geq 0\right\}$, we have $V_{x_{1}}^{*} V_{x_{2}}=V_{x_{2}} V_{x_{1}}^{*}$. It suffices to consider the following two cases

- $V_{x_{1}}$ and $V_{x_{2}}$ are completely non-unitary,
- $V_{x_{1}}$ is completely non-unitary and $V_{x_{2}}$ is unitary.

First, we suppose that $V_{x_{1}}$ and $V_{x_{2}}$ are completely non-unitary. Then

$$
\mathcal{M}=\int_{0}^{\infty} T_{d s}^{(1)}\left\{\int_{0}^{\infty} T_{d t}^{(2)}\left(\mathcal{M} \ominus\left(V_{x_{1}} \mathcal{M}+V_{x_{2}} \mathcal{M}\right)\right)\right\},
$$

by Theorem 2.2. Let f be in $\mathcal{M} \ominus\left(V_{x_{1}} \mathcal{M}+V_{x_{2}} \mathcal{M}\right)$ such that $\|f\|=1$. Then

$$
\int_{\mathbf{R}^{2}}\left|f\left(x_{1}, x_{2}\right)\right|^{2} \frac{\left(x_{1}-i\right)^{k}}{(x+i)^{k}} \frac{\left(x_{2}-i\right)^{l}}{\left(x_{2}+i\right)^{l}} d x_{1} d x_{2}=0,
$$

for all $(k, l) \neq(0,0)$. Changing variables x_{1} and x_{2} to θ_{1} and θ_{2}, we have

$$
\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|f\left(\theta_{1}, \theta_{2}\right)\right|^{2} e^{i k \theta_{1}} e^{i l \theta_{2}} \frac{1}{\left(\cos ^{2} \frac{\theta_{1}}{2}\right)\left(\cos ^{2} \frac{\theta_{2}}{2}\right)} d \theta_{1} d \theta_{2}=0
$$

Hence $\left|f\left(\theta_{1}, \theta_{2}\right)\right|^{2}\left(\cos ^{2} \frac{\theta_{1}}{2}\right)^{-1}\left(\cos ^{2} \frac{\theta_{2}}{2}\right)^{-1}=1$, equivalently $\left(x_{1}^{2}+1\right)\left(x_{2}^{2}+1\right)\left|f\left(x_{1}, x_{2}\right)\right|^{2}=1$. Therefore, there exists a unimodular function q such that

$$
f=\frac{q}{\left(x_{1}+i\right)\left(x_{2}+i\right)} .
$$

Hence we have

$$
\mathcal{M} \ominus\left(V_{x_{1}} \mathcal{M}+V_{x_{2}} \mathcal{M}\right)=\mathbf{C} \frac{q}{\left(x_{1}+i\right)\left(x_{2}+i\right)} .
$$

By the Paley-Wiener theorem,

$$
\begin{aligned}
\mathcal{M} & =\int_{0}^{\infty} T_{d s}^{(1)}\left\{\int_{0}^{\infty} T_{d t}^{(2)}\left(\mathbf{C} \frac{q}{\left(x_{1}+i\right)\left(x_{2}+i\right)}\right)\right\} \\
& =\left\{\xi: \xi=q \int_{0}^{\infty} e^{i s x_{1}} d s \int_{0}^{\infty} e^{i t x_{2}} f(s, t) d t ; f \in L^{2}((0, \infty) \times(0, \infty))\right\} \\
& =q\left(H^{2}(\mathbf{R}) \otimes H^{2}(\mathbf{R})\right) \\
& =q H^{2}\left(\mathbf{R}^{2}\right)
\end{aligned}
$$

Next, we suppose that $V_{x_{1}}$ is completely non-unitary and $V_{x_{2}}$ is unitary. Then

$$
\mathcal{M}=\int_{0}^{\infty} T_{d s}^{(1)}\left(\mathcal{M} \ominus V_{x_{1}} \mathcal{M}\right)
$$

by Theorem 2.2. Let f be in $\mathcal{M} \ominus V_{x_{1}} \mathcal{M}$. Then

$$
\int_{\mathbf{R}^{2}}\left|f\left(x_{1}, x_{2}\right)\right|^{2} \frac{\left(x_{1}-i\right)^{k}}{\left(x_{1}+i\right)^{k}} \frac{\left(x_{2}-i\right)^{l}}{\left(x_{2}+l\right)^{l}} d x_{2} d x_{1}=0
$$

for all $k \neq 0$ and l. By the same calculations as in the first case, we have

$$
f\left(x_{1}, x_{2}\right)=g\left(x_{1}, x_{2}\right) /\left(x_{1}+i\right)
$$

for some g such that the function $|g|$ depends only on the variable x_{2}.
The following argument is known (cf. [3]). Let $\chi_{E(g)}$ be the support function of g, that is, $\chi_{E(g)}$ is the characteristic function of the set $E(g)=\left\{\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2}: g\left(x_{1}, x_{2}\right) \neq 0\right\}$, and ϕ_{g} be a unimodular function defined as follows:

$$
\phi_{g}= \begin{cases}g /|g| & (g \neq 0) \\ 1 & (g=0)\end{cases}
$$

Then

$$
\bigvee_{t \in \mathbf{R}} e^{i t x_{2}} \frac{g}{x_{1}+i}=\frac{\phi_{g}}{x_{1}+i} \chi_{E(g)} L^{2}\left(\mathbf{R}, d x_{2}\right)
$$

where \vee denotes the closed vector span. Since there exists a function F in $\mathcal{M} \ominus V_{x_{1}} \mathcal{M}$ which has the maximal support in $\mathcal{M} \ominus V_{x_{1}} \mathcal{M}$, that is, $E(g) \subseteq E(F)$, for any g in $\mathcal{M} \ominus V_{x_{1}} \mathcal{M}$, we have

$$
\mathcal{M} \ominus V_{x_{1}} \mathcal{M}=\frac{\phi_{F}}{x_{1}+i} \chi_{E(F)} L^{2}\left(\mathbf{R}, d x_{2}\right)
$$

Let $\chi_{G}=\chi_{E(F)}$ and $\psi=\phi_{F}$. By the Paley-Wiener theorem, we have the following:

$$
\begin{aligned}
\mathcal{M} & =\int_{0}^{\infty} T_{d s}^{(1)}\left(\frac{1}{x_{1}+i} \chi_{G} \psi L^{2}\left(\mathbf{R}, d x_{2}\right)\right) \\
& =\left\{\xi: \xi=\chi_{G} \psi \int_{0}^{\infty} e^{i s x_{1}} f\left(s, x_{2}\right) d s ; f \in L^{2}((0, \infty) \times \mathbf{R})\right\} \\
& =\chi_{G} \psi H^{2}\left(\mathbf{R}, d x_{1}\right) \otimes L^{2}\left(\mathbf{R}, d x_{2}\right) \\
& =\chi_{G} \psi H_{x_{2}}^{2}\left(\mathbf{R}^{2}\right)
\end{aligned}
$$

The converse is easy to verify.
A function q is said to be inner if q is in $H^{2}\left(\mathbf{R}^{2}\right)$ and $\left|q\left(x_{1}, x_{2}\right)\right|=1$ a.e.

COROLLARY 2.1. Let \mathcal{M} be a submodule of $H^{2}\left(\mathbf{R}^{2}\right)$. Then $S_{1}(s) S_{2}(t)^{*}=$ $S_{2}(t)^{*} S_{1}(s)$ for all $s, t \geq 0$ if and only if $\mathcal{M}=q H^{2}\left(\mathbf{R}^{2}\right)$ for some inner function q.

3. Helson's theory under the double commuting condition in $L^{2}\left(\mathbf{R}^{2}\right)$

In this section, we discuss Helson's theory in $L^{2}\left(\mathbf{R}^{2}\right)$ under the double commuting condition: $S_{1}(s) S_{2}(t)^{*}=S_{2}(t)^{*} S_{1}(s)$ for all $s, t \geq 0$. Then, it is parallel to Helson's argument for the one-variable case in [1].

DEFINITION 3.1. Let \mathcal{M} be a submodule of $L^{2}\left(\mathbf{R}^{2}\right)$. For any λ, μ in \mathbf{R}, we define oneparameter unitary groups $\left\{\alpha_{\lambda}\right\},\left\{\beta_{\mu}\right\}$ and projections $\left\{P_{\lambda}\right\},\left\{Q_{\mu}\right\}$ on $L^{2}\left(\mathbf{R}^{2}\right)$ as follows: for any f in $L^{2}\left(\mathbf{R}^{2}\right), \alpha_{\lambda} f=e^{i \lambda x} f, \beta_{\mu} f=e^{i \mu y} f$, and $P_{\lambda}=\alpha_{\lambda}^{*} P_{\mathcal{M}} \alpha_{\lambda}, Q_{\mu}=\beta_{\mu}^{*} P_{\mathcal{M}} \beta_{\mu}$, that is, P_{λ} and Q_{μ} are the orthogonal projections of $L^{2}\left(\mathbf{R}^{2}\right)$ onto $\alpha_{\lambda}^{*} \mathcal{M}$ and $\beta_{\mu}^{*} \mathcal{M}$, respectively.

LEMMA 3.1. Let \mathcal{M} be a submodule of $L^{2}\left(\mathbf{R}^{2}\right)$. $S_{1}(s) S_{2}(t)^{*}=S_{2}(t)^{*} S_{1}(s)$ for all $s, t \geq 0$ if and only if $P_{\mathcal{M}} \alpha_{\lambda} P_{\mathcal{M}} \beta_{\mu} P_{\mathcal{M}}=P_{\mathcal{M}} \beta_{\mu} P_{\mathcal{M}} \alpha_{\lambda} P_{\mathcal{M}}$ for all λ, μ in \mathbf{R}.

Proof. It is easy to verify.
Definition 3.2. A submodule \mathcal{M} of $L^{2}\left(\mathbf{R}^{2}\right)$ is said to be simple if $S_{1}(s) S_{2}(t)^{*}=$ $S_{2}(t)^{*} S_{1}(s)$ for all $s, t \geq 0$ and $\left(\bigcap_{\lambda} \alpha_{\lambda} \mathcal{M}+\bigcap_{\mu} \beta_{\mu} \mathcal{M}\right)=\{o\}$ (this is equivalent to that $P_{-\infty}=\lim _{\lambda \rightarrow-\infty} P_{\lambda}=O$ and $\left.Q_{-\infty}=\lim _{\mu \rightarrow-\infty} Q_{\mu}=O\right)$.

Note that a submodule \mathcal{M} is simple if and only if $\mathcal{M}=q H^{2}\left(\mathbf{R}^{2}\right)$ for some unimodular function q by Theorem 2.2.

Next, we define two sequences of projections, and show that these are the spectral measures of $L^{2}\left(\mathbf{R}^{2}\right)$. Let E_{λ} and F_{μ} be projections defined as follows:

$$
E_{\lambda}=\alpha_{\lambda}^{*} Q_{+\infty} \alpha_{\lambda} \text { and } F_{\mu}=\beta_{\mu}^{*} P_{+\infty} \beta_{\mu} .
$$

Lemma 3.2. Let \mathcal{M} be a submodule of $L^{2}\left(\mathbf{R}^{2}\right)$. If \mathcal{M} is simple, then $\left\{E_{\lambda}\right\}$ and $\left\{F_{\mu}\right\}$ are spectral families. Moreover $E_{\lambda} F_{\mu}=F_{\mu} E_{\lambda}=\alpha_{\lambda}^{*} \beta_{\mu}^{*} P_{\mathcal{M}} \alpha_{\lambda} \beta_{\mu}$ for all λ, μ in \mathbf{R}.

Proof. Since, for $\gamma \geq \lambda, \mu$,

$$
\begin{aligned}
E_{\lambda} F_{\mu} & =\alpha_{\lambda}^{*} Q_{+\infty} \alpha_{\lambda} \beta_{\mu}^{*} P_{+\infty} \beta_{\mu} \\
& =\lim _{\gamma \rightarrow+\infty}\left(\alpha_{\lambda}^{*} \beta_{\gamma}^{*} P_{\mathcal{M}} \beta_{\gamma} \alpha_{\lambda} \beta_{\mu}^{*} \alpha_{\gamma}^{*} P_{\mathcal{M}} \alpha_{\gamma} \beta_{\mu}\right) \\
& =\lim _{\gamma \rightarrow+\infty}\left(\alpha_{\lambda}^{*} \beta_{\gamma}^{*} P_{\mathcal{M}} \alpha_{\gamma-\alpha}^{*} P_{\mathcal{M}} \beta_{\gamma-\mu} P_{\mathcal{M}} \alpha_{\gamma} \beta_{\mu}\right) \\
& =\lim _{\gamma \rightarrow+\infty}\left(\alpha_{\lambda}^{*} \beta_{\gamma}^{*} P_{\mathcal{M}} \beta_{\gamma-\mu} P_{\mathcal{M}} \alpha_{\gamma-\lambda}^{*} P_{\mathcal{M}} \alpha_{\gamma} \beta_{\mu}\right) \\
& =\lim _{\gamma \rightarrow+\infty}\left(\alpha_{\lambda}^{*} \beta_{\mu}^{*} \beta_{\gamma-\mu}^{*} P_{\mathcal{M}} \beta_{\gamma-\mu} P_{\mathcal{M}} \alpha_{\gamma-\lambda}^{*} P_{\mathcal{M}} \alpha_{\gamma-\lambda} \alpha_{\lambda} \beta_{\mu}\right) \\
& =\alpha_{\lambda}^{*} \beta_{\mu}^{*} P_{\mathcal{M}} \alpha_{\lambda} \beta_{\mu},
\end{aligned}
$$

we have $E_{\lambda} F_{\mu}=\alpha_{\lambda}^{*} \beta_{\mu}^{*} P_{\mathcal{M}} \alpha_{\lambda} \beta_{\mu}=F_{\mu} E_{\lambda}$ for all λ, μ in \mathbf{R}.
Next, suppose that

$$
\chi_{G} L^{2}\left(\mathbf{R}^{2}\right)=\overline{\bigcup_{\lambda, \mu} \alpha_{\lambda} \beta_{\mu} \mathcal{M}} \ominus \overline{\bigcap_{\lambda} \alpha_{\lambda} \bigcup_{\mu} \beta_{\mu} \mathcal{M}+\bigcap_{\mu} \beta_{\mu} \bigcup_{\lambda} \alpha_{\lambda} \mathcal{M}}
$$

where the bar denotes the closure. We shall show $\chi_{G}=1$. The following argument is the same as in [1]. Let $U_{s, 0}=\int_{\mathbf{R}} e^{i t \lambda} d E_{\lambda}$. Then, since $\alpha_{\lambda_{0}} \beta_{\mu_{0}} E_{\lambda} \alpha_{\lambda_{0}}^{*} \beta_{\mu_{0}}^{*}=E_{\lambda-\lambda_{0}}$, we have

$$
\begin{aligned}
\alpha_{\lambda_{0}} \beta_{\mu_{0}} U_{s, 0} & =\alpha_{\lambda_{0}} \beta_{\mu_{0}} \int e^{i s \lambda} d E_{\lambda} \\
& =\int e^{i s \lambda} d E_{\lambda-\lambda_{0}} \alpha_{\lambda_{0}} \beta_{\mu_{0}} \\
& =e^{i s \lambda_{0}} \int e^{i s\left(\lambda-\lambda_{0}\right)} d E_{\lambda-\lambda_{0}} \alpha_{\lambda_{0}} \beta_{\mu_{0}} \\
& =e^{i s \lambda_{0}} U_{s, 0} \alpha_{\lambda_{0}} \beta_{\mu_{0}}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
U_{s, 0} T_{-s, 0} \alpha_{\lambda} \beta_{\mu} & =U_{s, 0} e^{i s \lambda} \alpha_{\lambda} \beta_{\mu} T_{-s, 0} \\
& =\alpha_{\lambda} \beta_{\mu} U_{s, 0} T_{(-s, 0)}
\end{aligned}
$$

where $T_{s, t}$ is the translation operator such that $\left(T_{s, t} f\right)(x, y)=f(x-s, y-t)$. Hence $U_{s, 0} T_{-s, 0}$ is a multiplication operator on $L^{2}\left(\mathbf{R}^{2}\right)$. Since $U_{s, 0} T_{-s, 0}$ maps $T_{s, 0} \chi_{G} L^{2}\left(\mathbf{R}^{2}\right)$ to $\chi_{G} L^{2}\left(\mathbf{R}^{2}\right)$, we have $T_{s, 0} \chi_{G} L^{2}\left(\mathbf{R}^{2}\right)=\chi_{G} L^{2}\left(\mathbf{R}^{2}\right)$. By the same argument for β_{μ}, we have $T_{0, t} \chi_{G} L^{2}\left(\mathbf{R}^{2}\right)=\chi_{G} L^{2}\left(\mathbf{R}^{2}\right)$, that is, $T_{s, t} \chi_{G} L^{2}\left(\mathbf{R}^{2}\right)=L^{2}\left(\mathbf{R}^{2}\right)$ for all s, t in \mathbf{R}. Hence G is a null set or $G=\mathbf{R}^{2}$, and we have

$$
\begin{aligned}
& \operatorname{ran}\left(\lim _{\lambda \rightarrow+\infty} E_{\lambda}\right)=\operatorname{ran}\left(\lim _{\mu \rightarrow+\infty} F_{\mu}\right)=\overline{\bigcup_{\lambda, \mu} \alpha_{\lambda} \beta_{\mu} \mathcal{M}}=L^{2}\left(\mathbf{R}^{2}\right), \\
& \operatorname{ran}\left(\lim _{\lambda \rightarrow-\infty} E_{\lambda}\right)=\overline{\bigcap_{\lambda} \alpha_{\lambda} \bigcup_{\mu} \beta_{\mu} \mathcal{M}}=\{o\}, \\
& \operatorname{ran}\left(\lim _{\mu \rightarrow-\infty} F_{\mu}\right)=\overline{\bigcap_{\mu} \beta_{\mu} \bigcup_{\lambda} \alpha_{\lambda} \mathcal{M}}=\{o\} .
\end{aligned}
$$

Therefore $\left\{E_{\lambda}\right\}$ and $\left\{F_{\mu}\right\}$ are the spectral families.
By virtue of Lemma 3.2, for any simple submodule of $L^{2}\left(\mathbf{R}^{2}\right)$, there exists a spectral measure $d E_{\lambda, \mu}=d E_{\lambda} d F_{\mu}$ on \mathbf{R}^{2} and we have a two-parameter continuous unitary group $\left\{U_{s, t}\right\}$ on $L^{2}\left(\mathbf{R}^{2}\right)$ as follows:

$$
U_{s, t}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(s \lambda+t \mu)} d E_{\lambda} d F_{\mu}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(s \lambda+t \mu)} d E_{\lambda, \mu}
$$

DEFINITION 3.3. A family $\left\{A_{s, t}\right\}$ of functions on \mathbf{R}^{2} which are individually measurable is said to be a cocycle of \mathbf{R}^{2} if
(i) $\left|A_{s, t}(x, y)\right|=1$ almost everywhere in x, y, for each s, t,
(ii) $\quad A_{s, t} f$ moves continuously in $L^{2}\left(\mathbf{R}^{2}\right)$ as s and t varies, for each f in $L^{2}\left(\mathbf{R}^{2}\right)$,
(iii) $A_{s+u, t+v}=A_{s, t} T_{s, t} A_{u, v}$ almost everywhere, for each s, t, u and v.

EXAMPLE 3.1 (cf. [1]). In Lemma 5.3, we showed the following commutation relation:

$$
U_{s, 0} T_{-s, 0} \alpha_{\lambda} \beta_{\mu}=\alpha_{\lambda} \beta_{\mu} U_{s, 0} T_{-s, 0}
$$

Using the same argument with respect to the variable x_{2}, we have

$$
U_{s, t} T_{-s,-t} \alpha_{\lambda} \beta_{\mu}=\alpha_{\lambda} \beta_{\mu} U_{s, t} T_{-s,-t}
$$

Therefore $U_{s, t} T_{-s,-t}$ is the multiplication operator by some unimodular function $A_{s, t}$. We shall show $\left\{A_{s, t}\right\}$ is a cocycle of \mathbf{R}^{2}. Identifying bounded functions with multiplication operators, we have

$$
\begin{aligned}
A_{s+u, t+v} & =U_{s+u, t+v} T_{-s-u,-t-v} \\
& =U_{s, t} U_{u, v} T_{-u,-v} T_{-s,-t} \\
& =U_{s, t} A_{u, v} T_{-s,-t} \\
& =A_{s, t} T_{s, t} A_{u, v} T_{-s,-t} .
\end{aligned}
$$

Hence

$$
A_{s+u, t+v}(x, y)=A_{s, t}(x, y) A_{u, v}(x-s, y-t) .
$$

Proposition 3.1. There exists a one-to-one correspondence between simple submodules of $L^{2}\left(\mathbf{R}^{2}\right)$ and cocycles of \mathbf{R}^{2}.

Proof. Suppose that $\left\{A_{s, t}\right\}$ is a cocycle of \mathbf{R}^{2}. Let $U_{s, t}=A_{s, t} T_{s, t}$. Then $\left\{U_{s, t}\right\}$ is a two-parameter unitary group on $L^{2}\left(\mathbf{R}^{2}\right)$. By Stone's theorem for \mathbf{R}^{2}, there exists a unique spectral measure of $L^{2}\left(\mathbf{R}^{2}\right)$ such that

$$
U_{s, t}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(s \lambda+t \mu)} d E_{\lambda, \mu}
$$

Let $\mathcal{M}=\operatorname{ran} E_{0,0}$. Then

$$
\begin{aligned}
\int_{\mathbf{R}^{2}} e^{i(s \lambda+t \mu)} d E_{\lambda+\tau_{1}, \mu+\tau_{2}} & =e^{-i\left(s \tau_{1}+t \tau_{2}\right)} \int_{\mathbf{R}^{2}} e^{i\left(s\left(\lambda+\tau_{1}\right)+t\left(\mu+\tau_{2}\right)\right)} d E_{\lambda+\tau_{1}, \mu+\tau_{2}} \\
& =e^{-i\left(s \tau_{1}+t \tau_{2}\right)} \int_{\mathbf{R}^{2}} e^{i(s \lambda+t \mu)} d E_{\lambda, \mu} \\
& =\alpha_{\tau_{1}}^{*} \beta_{\tau_{2}}^{*} U_{s, t} \alpha_{\tau_{1}} \beta_{\tau_{2}}
\end{aligned}
$$

$$
=\int_{\mathbf{R}^{2}} e^{i(s \lambda+t \mu)} d\left(\alpha_{\tau_{1}}^{*} \beta_{\tau_{2}}^{*} E_{\lambda, \mu} \alpha_{\tau_{1}} \beta_{\tau_{2}}\right)
$$

Hence we have

$$
E_{\lambda+\tau_{1}, \mu+\tau_{2}}=\alpha_{\tau_{1}}^{*} \beta_{\tau_{2}}^{*} E_{\lambda, \mu} \alpha_{\tau_{1}} \beta_{\tau_{2}}
$$

Therefore \mathcal{M} is a submodule of $L^{2}\left(\mathbf{R}^{2}\right)$.
Next, we shall show that \mathcal{M} satisfies the double commuting condition. It suffices to consider the case where $\lambda \geq 0$ and $\mu \leq 0$.

$$
\begin{aligned}
P_{\mathcal{M}} \alpha_{\lambda} P_{\mathcal{M}} \beta_{\mu} P_{\mathcal{M}} & =E_{0,0} \alpha_{\lambda} E_{0,0} \beta_{\mu} E_{0,0} \\
& =\alpha_{\lambda} E_{\lambda, 0} E_{0,0} E_{0,-\mu} \beta_{\mu} \\
& =\alpha_{\lambda} E_{0,0} \beta_{\mu}
\end{aligned}
$$

and

$$
\begin{aligned}
P_{\mathcal{M}} \beta_{\mu} P_{\mathcal{M}} \alpha_{\lambda} P_{\mathcal{M}} & =E_{0,0} \beta_{\mu} E_{0,0} \alpha_{\lambda} E_{0,0} \\
& =E_{0,0} E_{0,-\mu} \beta_{\mu} \alpha_{\lambda} E_{0,0} \\
& =E_{0,0} \alpha_{\lambda} \beta_{\mu} E_{0,0} \\
& =\alpha_{\lambda} E_{\lambda, 0} E_{0,-\mu} \beta_{\mu} \\
& =\alpha_{\lambda} E_{0,0} \beta_{\mu}
\end{aligned}
$$

Therefore $P_{\mathcal{M}} \alpha_{\lambda} P_{\mathcal{M}} \beta_{\mu} P_{\mathcal{M}}=P_{\mathcal{M}} \beta_{\mu} P_{\mathcal{M}} \alpha_{\lambda} P_{\mathcal{M}}$. This concludes the proof by Lemma 3.1.
EXAMPLE 3.2 (cf. [1]). Suppose that $\mathcal{M}=q H^{2}\left(\mathbf{R}^{2}\right)$ for some unimodular function q. Then its cocycle is $\left\{q T_{s, t} q^{-1}\right\}$.

A cocycle of the form $A_{s, t}=q T_{s, t} q^{-1}$, for some unimodular function, is called a coboundary of \mathbf{R}^{2}.

Corollary 3.1. Every cocycle of \mathbf{R}^{2} is a coboundary of \mathbf{R}^{2}.
Proof. By Theorem 2.1, for any simple submodule \mathcal{M} of $L^{2}\left(\mathbf{R}^{2}\right)$, there is a unimodular function q such that $\mathcal{M}=q H^{2}\left(\mathbf{R}^{2}\right)$. Hence the cocycle of \mathcal{M} is a coboundary.

References

[1] H. Helson, Lectures on invariant subspaces, Academic Press (1964).
[2] H. Helson, Analyticity on compact abelian groups, Algebras in analysis (Proc. Instructional Conf. and NATO Advanced Study Inst., Birmingham, 1973), Academic Press (1975), 1-62.
[3] K. IzUCHI, Invariant subspaces on a torus, lecture notes (1998), unpublished.
[4] P. D. Lax, Translation invariant subspaces, Acta Math. 101 (1959), 163-178.
[5] V. Mandrekar, The validity of Beurling theorems in polydiscs, Proc. Amer. Math. Soc. 103 (1988), 145148.
[6] P. MASANI, Isometric flows on Hilbert space, Bull. Amer. Math. Soc. 68 (1962), 624-632.
[7] T. NAKAZI, Certain invariant subspaces of H^{2} and L^{2} on a bidisc, Canad. J. Math. 40 (1988), 1272-1280.
[8] T. NAKAZI, Invariant subspaces in the bidisc and commutators, J. Austral. Math. Soc. Ser. A 56 (1994), no. 2, 232-242.
[9] M. Seto, Invariant subspaces on \mathbf{T}^{N} and \mathbf{R}^{N}, to appear in Canad. Math. Bull.

Present Address:
Department of Mathematics, Kanagawa University,
Rokkakubashi, Kanagawa-Ku, Yokohama, 221-8686 Japan.
e-mail: seto@kanagawa-u.ac.jp

