Токуо J. Матн. Vol. 28, No. 2, 2005

Submodules of $L^2(\mathbf{R}^2)$

Michio SETO

Hokkaido University

(Communicated by K. Masuda)

Dedicated to Professor Takahiko Nakazi on his 60th birthday

Abstract. In this paper, we study submodules of $L^2(\mathbf{R})^2$. We will give a Lax-type theorem and a result which is analogous to Helson's theory.

1. Introduction

 $L^2(\mathbf{R}^2)$ will denote the Hilbert space of square-integrable measurable functions with respect to the usual Lebesgue measure $dx_1 dx_2$ on the two dimensional Euclidean space \mathbf{R}^2 . $H^2(\mathbf{R})$ denotes the usual Hardy space on \mathbf{R} , that is, $H^2(\mathbf{R})$ consists of all functions in $L^2(\mathbf{R})$ which can be extended analytically to the upper half plane $\mathbf{C}_+ = \{x + it : x \in \mathbf{R}, t > 0\}$. $H^2(\mathbf{R}) \otimes H^2(\mathbf{R})$, the Hilbert space tensor product of $H^2(\mathbf{R})$, is the space of all f in $L^2(\mathbf{R}^2)$ whose Fourier transform

$$\mathfrak{F}(f)(\lambda_1,\lambda_2) = \hat{f}(\lambda_1,\lambda_2) = \int_{\mathbf{R}^2} f(x_1,x_2) e^{-i(\lambda_1 x_1 + \lambda_2 x_2)} dx_1 dx_2$$

is 0 whenever at least one component of (λ_1, λ_2) is negative, where (λ_1, λ_2) and (x_1, x_2) are in \mathbf{R}^2 . In this paper, $H^2(\mathbf{R}) \otimes H^2(\mathbf{R})$ is denoted by $H^2(\mathbf{R}^2)$, for short. Note that our $H^2(\mathbf{R}^2)$ is different from the usual Hardy space on \mathbf{R}^2 .

DEFINITION 1.1. A closed subspace \mathcal{M} of $L^2(\mathbf{R}^2)$ is said to be a submodule of $L^2(\mathbf{R}^2)$ if $e^{isx_j}\mathcal{M} \subseteq \mathcal{M}$ for any j = 1, 2 and any $s \ge 0$. For $s \ge 0$, $S_j(s)$ denotes the restriction on \mathcal{M} of the multiplication operator on $L^2(\mathbf{R}^2)$ by e^{isx_j} .

Submodules in one variable were completely described by Lax in [4]. In [1], Helson gave another point of view to the result of Lax. The purpose of our study is to consider Helson's theory in the multi-variable setting. My interest in considering Helson's theory in two variables is motivated by the study of Hardy submodules over the bidisk: Hardy submodules are invariant subspaces of Hardy space under multiplication operators by bounded analytic

Received January 5, 2004

²⁰⁰⁰ Mathematics subject classification: primary 47B38, secondary 47B35. Keywords and phrases: Hardy submodules.

functions. However, it is easy to see that a straightforward generalization of Helson's theory fails in the multi-variable setting. In Section 2 of this paper, we give a Lax-type theorem in two variables. To prove this we use Masani's integral (cf. [6]). In Section 3, we consider Helson's theory in two variables. We will give a result, analogous to Helson's result, under the following condition: $S_1(s)S_2(t)^* = S_2(t)^*S_1(s)$ for all $s, t \ge 0$.

2. A Lax-type theorem in \mathbb{R}^2

In [9], the author showed the following Lax-type theorem which is analogous to the theorem proved by Mandrekar [5] and Nakazi [7] for the bitorus.

THEOREM 2.1. Let \mathcal{M} be a submodule of $L^2(\mathbf{R}^2)$, $H^2_{x_1}(\mathbf{R}^2) = L^2(\mathbf{R}, dx_1) \otimes H^2(\mathbf{R}, dx_2)$ and $H^2_{x_2}(\mathbf{R}^2) = H^2(\mathbf{R}, dx_1) \otimes L^2(\mathbf{R}, dx_2)$. If $S_1(s)S_2(t)^* = S_2(t)^*S_1(s)$ for all $s, t \ge 0$, then one and only one of the following occurs:

- (i) $\mathcal{M} = \chi_E L^2(\mathbf{R}^2) \oplus \chi_F \varphi H^2_{x_1}(\mathbf{R}^2),$
- (ii) $\mathcal{M} = \chi_E L^2(\mathbf{R}^2) \oplus \chi_G \psi H^2_{x_2}(\mathbf{R}^2),$
- (iii) $\mathcal{M} = q H^2(\mathbf{R}^2),$

where φ , ψ and q are unimodular functions, χ_E is the characteristic function of E, χ_F (resp. χ_G) is the characteristic function of F (resp. G) which depends only on the variable x_1 (resp. x_2).

We shall give a proof which differs from that given in [9]. To begin with, we briefly introduce Masani's integral which can be seen as a continuous Wold decomposition for a continuous semi-group of isometries, according to [6].

DEFINITION 2.1 (Masani [6]). Let $\{S(t) : t \ge 0\}$ be a strongly continuous semi-group of isometries on a Hilbert space \mathcal{H} . We introduce an operator-valued interval-measure. The measure T_{ab} of the interval [a, b] is defined by as follows:

$$T_{[a,b]} = T(b) - T(a)$$
, where $T(t) = \frac{1}{\sqrt{2}} \left\{ S(t) - I - \int_0^t S(s) \, ds \right\}$, for $t \ge 0$.

Let *iH* be the infinitesimal generator of $\{S(t) : t \ge 0\}$ and *V* be the Cayley transform of *H* and $R = V(\mathcal{H})$. For the step-function $x = \sum_{k=1}^{n} \alpha_k \chi_{J_k}$ on [a, b], where α_k in R^{\perp} and χ_{J_k} is the characteristic function of bounded interval J_k , we define

$$\int_a^b T_{dt}(x_t) := \sum_{k=1}^n T_{J_k}(\alpha_k) \, .$$

For any x in $L^2([a, b], R^{\perp})$, we define

$$\int_a^b T_{dt}(x_t) := \lim_{n \to \infty} \int_a^b T_{dt}(x_t^{(n)}),$$

where $\{x_t^{(n)}, n \ge 1\}$ is any sequence of step-functions which is tending to x in the L²-topology. We now define a direct integral as a set of vector-valued integrals:

$$\int_{a}^{b} T_{dt}(R^{\perp}) := \left\{ \xi : \xi = \int_{a}^{b} T_{dt}(x_{t}), x \in L^{2}([a, b], R^{\perp}) \right\}.$$

THEOREM 2.2 (Masani [6]). Let $\{S(t) : t \ge 0\}$ be a strongly continuous semi-group of isometries on a Hilbert space \mathcal{H} , i H be its infinitesimal generator and let V be the Cayley transform of H. Then, for $a \ge 0$,

$$S(a)(\mathcal{H}) = \int_a^\infty T_{dt}(R^\perp) \oplus \mathcal{H}_\infty,$$

where $R = V(\mathcal{H})$ and $\mathcal{H}_{\infty} = \bigcap_{t \ge 0} S(t)(\mathcal{H})$.

This theorem can be seen as a continuous Wold decomposition.

EXAMPLE 2.1. Let $T_{ds}^{(k)}$ be the operator-valued measures defined by $S_k(s)$ for k = 1, 2. Identifying bounded functions with multiplication operators, $T^{(k)}(s)$ can be computed formally as follows:

$$T^{(k)}(s) = \frac{1}{\sqrt{2}} \left\{ S_k(s) - I_{\mathcal{M}} - \int_0^s S_k(t) dt \right\}$$

= $\frac{1}{\sqrt{2}} \left\{ e^{isx_k} - 1 - \int_0^s e^{itx_k} dt \right\}$
= $\frac{1}{\sqrt{2}} \left\{ e^{isx_k} - 1 - \left[\frac{1}{ix_k} e^{itx_k} \right]_0^s \right\}$
= $\frac{1}{\sqrt{2}} \left\{ e^{isx_k} - 1 - \frac{1}{ix_k} (e^{isx_k} - 1) \right\}$
= $\frac{1}{\sqrt{2}} (e^{isx_k} - 1) \left(1 - \frac{1}{ix_k} \right)$
= $\frac{1}{\sqrt{2}} x_k (e^{isx_k} - 1) (x_k + i).$

Thus the operator valued measure $T_{ds}^{(k)}$ can be computed as follows:

$$T_{ds}^{(k)} = \frac{d}{ds} \left(\frac{1}{\sqrt{2} x_k} (e^{isx_k} - 1)(x_k + i) \right) ds$$
$$= \frac{1}{\sqrt{2}} i e^{isx_k} (x_k + i) ds .$$

We are now in a position to prove Theorem 2.1.

PROOF (A proof of Theorem 2.1). Some parts of this proof are similar to those in the proof by Mandrekar [5] and Nakazi [7] for the bitorus (cf. Seto [9]).

Suppose that $S_1(s)S_2(t)^* = S_2(t)^*S_1(s)$ for all $s, t \ge 0$. Let V_{x_k} be the isometry induced by $\{S_k(s) : s \ge 0\}$ as in Theorem 2.2 for k = 1, 2. Since V_{x_k} is in the von Neumann algebra generated by $\{S_k(s) : s \ge 0\}$, we have $V_{x_1}^*V_{x_2} = V_{x_2}V_{x_1}^*$. It suffices to consider the following two cases:

- V_{x_1} and V_{x_2} are completely non-unitary,
- V_{x_1} is completely non-unitary and V_{x_2} is unitary.

First, we suppose that V_{x_1} and V_{x_2} are completely non-unitary. Then

$$\mathcal{M} = \int_0^\infty T_{ds}^{(1)} \left\{ \int_0^\infty T_{dt}^{(2)} \left(\mathcal{M} \ominus (V_{x_1} \mathcal{M} + V_{x_2} \mathcal{M}) \right) \right\},\,$$

by Theorem 2.2. Let f be in $\mathcal{M} \ominus (V_{x_1}\mathcal{M} + V_{x_2}\mathcal{M})$ such that ||f|| = 1. Then

$$\int_{\mathbf{R}^2} |f(x_1, x_2)|^2 \frac{(x_1 - i)^k}{(x + i)^k} \frac{(x_2 - i)^l}{(x_2 + i)^l} \, dx_1 dx_2 = 0 \,,$$

for all $(k, l) \neq (0, 0)$. Changing variables x_1 and x_2 to θ_1 and θ_2 , we have

$$\int_{0}^{2\pi} \int_{0}^{2\pi} |f(\theta_1, \theta_2)|^2 e^{ik\theta_1} e^{il\theta_2} \frac{1}{\left(\cos^2 \frac{\theta_1}{2}\right)\left(\cos^2 \frac{\theta_2}{2}\right)} \, d\theta_1 d\theta_2 = 0 \, .$$

Hence $|f(\theta_1, \theta_2)|^2 (\cos^2 \frac{\theta_1}{2})^{-1} (\cos^2 \frac{\theta_2}{2})^{-1} = 1$, equivalently $(x_1^2 + 1)(x_2^2 + 1)|f(x_1, x_2)|^2 = 1$. Therefore, there exists a unimodular function q such that

$$f = \frac{q}{(x_1 + i)(x_2 + i)} \,.$$

Hence we have

$$\mathcal{M} \ominus (V_{x_1}\mathcal{M} + V_{x_2}\mathcal{M}) = \mathbb{C}\frac{q}{(x_1 + i)(x_2 + i)}$$

By the Paley-Wiener theorem,

$$\begin{split} \mathcal{M} &= \int_0^\infty T_{ds}^{(1)} \bigg\{ \int_0^\infty T_{dt}^{(2)} \bigg(\mathbf{C} \frac{q}{(x_1 + i)(x_2 + i)} \bigg) \bigg\} \\ &= \bigg\{ \xi : \xi = q \int_0^\infty e^{isx_1} \, ds \, \int_0^\infty e^{itx_2} f(s, t) \, dt \; ; \; f \in L^2((0, \infty) \times (0, \infty)) \bigg\} \\ &= q (H^2(\mathbf{R}) \otimes H^2(\mathbf{R})) \\ &= q H^2(\mathbf{R}^2) \, . \end{split}$$

Next, we suppose that V_{x_1} is completely non-unitary and V_{x_2} is unitary. Then

$$\mathcal{M} = \int_0^\infty T_{ds}^{(1)}(\mathcal{M} \ominus V_{x_1}\mathcal{M}),$$

by Theorem 2.2. Let f be in $\mathcal{M} \ominus V_{x_1} \mathcal{M}$. Then

$$\int_{\mathbf{R}^2} |f(x_1, x_2)|^2 \frac{(x_1 - i)^k}{(x_1 + i)^k} \frac{(x_2 - i)^l}{(x_2 + l)^l} \, dx_2 dx_1 = 0 \,,$$

for all $k \neq 0$ and *l*. By the same calculations as in the first case, we have

$$f(x_1, x_2) = g(x_1, x_2)/(x_1 + i)$$

for some g such that the function |g| depends only on the variable x_2 .

The following argument is known (cf. [3]). Let $\chi_{E(g)}$ be the support function of g, that is, $\chi_{E(g)}$ is the characteristic function of the set $E(g) = \{(x_1, x_2) \in \mathbf{R}^2 : g(x_1, x_2) \neq 0\}$, and ϕ_g be a unimodular function defined as follows:

$$\phi_g = \begin{cases} g/|g| & (g \neq 0) \\ 1 & (g = 0) \,. \end{cases}$$

Then

$$\bigvee_{t \in \mathbf{R}} e^{itx_2} \frac{g}{x_1 + i} = \frac{\phi_g}{x_1 + i} \chi_{E(g)} L^2(\mathbf{R}, dx_2),$$

where \lor denotes the closed vector span. Since there exists a function F in $\mathcal{M} \ominus V_{x_1} \mathcal{M}$ which has the maximal support in $\mathcal{M} \ominus V_{x_1} \mathcal{M}$, that is, $E(g) \subseteq E(F)$, for any g in $\mathcal{M} \ominus V_{x_1} \mathcal{M}$, we have

$$\mathcal{M} \ominus V_{x_1}\mathcal{M} = \frac{\phi_F}{x_1+i}\chi_{E(F)}L^2(\mathbf{R}, dx_2).$$

Let $\chi_G = \chi_{E(F)}$ and $\psi = \phi_F$. By the Paley-Wiener theorem, we have the following:

$$\mathcal{M} = \int_0^\infty T_{ds}^{(1)} \left(\frac{1}{x_1 + i} \chi_G \psi L^2(\mathbf{R}, dx_2) \right)$$

= $\left\{ \xi : \xi = \chi_G \psi \int_0^\infty e^{isx_1} f(s, x_2) \, ds \; ; \; f \in L^2 \left((0, \infty) \times \mathbf{R} \right) \right\}$
= $\chi_G \psi H^2(\mathbf{R}, dx_1) \otimes L^2(\mathbf{R}, dx_2)$
= $\chi_G \psi H_{\chi_1}^2(\mathbf{R}^2) \; .$

The converse is easy to verify.

A function q is said to be inner if q is in $H^2(\mathbf{R}^2)$ and $|q(x_1, x_2)| = 1$ a.e.

COROLLARY 2.1. Let \mathcal{M} be a submodule of $H^2(\mathbb{R}^2)$. Then $S_1(s)S_2(t)^* = S_2(t)^*S_1(s)$ for all $s, t \ge 0$ if and only if $\mathcal{M} = q H^2(\mathbb{R}^2)$ for some inner function q.

3. Helson's theory under the double commuting condition in $L^2(\mathbb{R}^2)$

In this section, we discuss Helson's theory in $L^2(\mathbf{R}^2)$ under the double commuting condition: $S_1(s)S_2(t)^* = S_2(t)^*S_1(s)$ for all $s, t \ge 0$. Then, it is parallel to Helson's argument for the one-variable case in [1].

DEFINITION 3.1. Let \mathcal{M} be a submodule of $L^2(\mathbf{R}^2)$. For any λ , μ in \mathbf{R} , we define oneparameter unitary groups $\{\alpha_{\lambda}\}$, $\{\beta_{\mu}\}$ and projections $\{P_{\lambda}\}$, $\{Q_{\mu}\}$ on $L^2(\mathbf{R}^2)$ as follows: for any f in $L^2(\mathbf{R}^2)$, $\alpha_{\lambda}f = e^{i\lambda x}f$, $\beta_{\mu}f = e^{i\mu y}f$, and $P_{\lambda} = \alpha_{\lambda}^* P_{\mathcal{M}} \alpha_{\lambda}$, $Q_{\mu} = \beta_{\mu}^* P_{\mathcal{M}} \beta_{\mu}$, that is, P_{λ} and Q_{μ} are the orthogonal projections of $L^2(\mathbf{R}^2)$ onto $\alpha_{\lambda}^* \mathcal{M}$ and $\beta_{\mu}^* \mathcal{M}$, respectively.

LEMMA 3.1. Let \mathcal{M} be a submodule of $L^2(\mathbf{R}^2)$. $S_1(s)S_2(t)^* = S_2(t)^*S_1(s)$ for all $s, t \ge 0$ if and only if $P_{\mathcal{M}}\alpha_{\lambda}P_{\mathcal{M}}\beta_{\mu}P_{\mathcal{M}} = P_{\mathcal{M}}\beta_{\mu}P_{\mathcal{M}}\alpha_{\lambda}P_{\mathcal{M}}$ for all λ, μ in \mathbf{R} .

PROOF. It is easy to verify.

DEFINITION 3.2. A submodule \mathcal{M} of $L^2(\mathbf{R}^2)$ is said to be simple if $S_1(s)S_2(t)^* = S_2(t)^*S_1(s)$ for all $s, t \ge 0$ and $\left(\bigcap_{\lambda} \alpha_{\lambda} \mathcal{M} + \bigcap_{\mu} \beta_{\mu} \mathcal{M}\right) = \{o\}$ (this is equivalent to that $P_{-\infty} = \lim_{\lambda \to -\infty} P_{\lambda} = O$ and $Q_{-\infty} = \lim_{\mu \to -\infty} Q_{\mu} = O$).

Note that a submodule \mathcal{M} is simple if and only if $\mathcal{M} = q H^2(\mathbf{R}^2)$ for some unimodular function q by Theorem 2.2.

Next, we define two sequences of projections, and show that these are the spectral measures of $L^2(\mathbf{R}^2)$. Let E_{λ} and F_{μ} be projections defined as follows:

$$E_{\lambda} = \alpha_{\lambda}^* Q_{+\infty} \alpha_{\lambda}$$
 and $F_{\mu} = \beta_{\mu}^* P_{+\infty} \beta_{\mu}$

LEMMA 3.2. Let \mathcal{M} be a submodule of $L^2(\mathbf{R}^2)$. If \mathcal{M} is simple, then $\{E_{\lambda}\}$ and $\{F_{\mu}\}$ are spectral families. Moreover $E_{\lambda}F_{\mu} = F_{\mu}E_{\lambda} = \alpha_{\lambda}^*\beta_{\mu}^*P_{\mathcal{M}}\alpha_{\lambda}\beta_{\mu}$ for all λ, μ in **R**.

PROOF. Since, for $\gamma \geq \lambda, \mu$,

$$E_{\lambda}F_{\mu} = \alpha_{\lambda}^{*}Q_{+\infty}\alpha_{\lambda}\beta_{\mu}^{*}P_{+\infty}\beta_{\mu}$$

$$= \lim_{\gamma \to +\infty} (\alpha_{\lambda}^{*}\beta_{\gamma}^{*}P_{\mathcal{M}}\beta_{\gamma}\alpha_{\lambda}\beta_{\mu}^{*}\alpha_{\gamma}^{*}P_{\mathcal{M}}\alpha_{\gamma}\beta_{\mu})$$

$$= \lim_{\gamma \to +\infty} (\alpha_{\lambda}^{*}\beta_{\gamma}^{*}P_{\mathcal{M}}\alpha_{\gamma-\alpha}^{*}P_{\mathcal{M}}\beta_{\gamma-\mu}P_{\mathcal{M}}\alpha_{\gamma}\beta_{\mu})$$

$$= \lim_{\gamma \to +\infty} (\alpha_{\lambda}^{*}\beta_{\gamma}^{*}P_{\mathcal{M}}\beta_{\gamma-\mu}P_{\mathcal{M}}\alpha_{\gamma-\lambda}^{*}P_{\mathcal{M}}\alpha_{\gamma-\lambda}\beta_{\mu})$$

$$= \lim_{\gamma \to +\infty} (\alpha_{\lambda}^{*}\beta_{\mu}^{*}\beta_{\gamma-\mu}^{*}P_{\mathcal{M}}\beta_{\gamma-\mu}P_{\mathcal{M}}\alpha_{\gamma-\lambda}^{*}P_{\mathcal{M}}\alpha_{\gamma-\lambda}\alpha_{\lambda}\beta_{\mu})$$

$$= \alpha_{\lambda}^{*}\beta_{\mu}^{*}P_{\mathcal{M}}\alpha_{\lambda}\beta_{\mu},$$

we have $E_{\lambda}F_{\mu} = \alpha_{\lambda}^{*}\beta_{\mu}^{*}P_{\mathcal{M}}\alpha_{\lambda}\beta_{\mu} = F_{\mu}E_{\lambda}$ for all λ, μ in **R**. Next, suppose that

$$\chi_G L^2(\mathbf{R}^2) = \overline{\bigcup_{\lambda,\mu} \alpha_\lambda \beta_\mu \mathcal{M}} \ominus \overline{\bigcap_{\lambda} \alpha_\lambda \bigcup_{\mu} \beta_\mu \mathcal{M} + \bigcap_{\mu} \beta_\mu \bigcup_{\lambda} \alpha_\lambda \mathcal{M}},$$

where the bar denotes the closure. We shall show $\chi_G = 1$. The following argument is the same as in [1]. Let $U_{s,0} = \int_{\mathbf{R}} e^{it\lambda} dE_{\lambda}$. Then, since $\alpha_{\lambda_0}\beta_{\mu_0}E_{\lambda}\alpha_{\lambda_0}^*\beta_{\mu_0}^* = E_{\lambda-\lambda_0}$, we have

$$\begin{aligned} \alpha_{\lambda_0} \beta_{\mu_0} U_{s,0} &= \alpha_{\lambda_0} \beta_{\mu_0} \int e^{is\lambda} dE_\lambda \\ &= \int e^{is\lambda} dE_{\lambda-\lambda_0} \alpha_{\lambda_0} \beta_{\mu_0} \\ &= e^{is\lambda_0} \int e^{is(\lambda-\lambda_0)} dE_{\lambda-\lambda_0} \alpha_{\lambda_0} \beta_{\mu_0} \\ &= e^{is\lambda_0} U_{s,0} \alpha_{\lambda_0} \beta_{\mu_0} \,. \end{aligned}$$

Therefore

$$U_{s,0}T_{-s,0}\alpha_{\lambda}\beta_{\mu} = U_{s,0}e^{is\lambda}\alpha_{\lambda}\beta_{\mu}T_{-s,0}$$
$$= \alpha_{\lambda}\beta_{\mu}U_{s,0}T_{(-s,0)},$$

where $T_{s,t}$ is the translation operator such that $(T_{s,t}f)(x, y) = f(x - s, y - t)$. Hence $U_{s,0}T_{-s,0}$ is a multiplication operator on $L^2(\mathbf{R}^2)$. Since $U_{s,0}T_{-s,0}$ maps $T_{s,0}\chi_G L^2(\mathbf{R}^2)$ to $\chi_G L^2(\mathbf{R}^2)$, we have $T_{s,0}\chi_G L^2(\mathbf{R}^2) = \chi_G L^2(\mathbf{R}^2)$. By the same argument for β_{μ} , we have $T_{0,t}\chi_G L^2(\mathbf{R}^2) = \chi_G L^2(\mathbf{R}^2)$, that is, $T_{s,t}\chi_G L^2(\mathbf{R}^2) = L^2(\mathbf{R}^2)$ for all s, t in \mathbf{R} . Hence G is a null set or $G = \mathbf{R}^2$, and we have

$$\operatorname{ran}\left(\lim_{\lambda \to +\infty} E_{\lambda}\right) = \operatorname{ran}\left(\lim_{\mu \to +\infty} F_{\mu}\right) = \overline{\bigcup_{\lambda,\mu} \alpha_{\lambda} \beta_{\mu} \mathcal{M}} = L^{2}(\mathbf{R}^{2}),$$
$$\operatorname{ran}\left(\lim_{\lambda \to -\infty} E_{\lambda}\right) = \overline{\bigcap_{\lambda} \alpha_{\lambda} \bigcup_{\mu} \beta_{\mu} \mathcal{M}} = \{o\},$$
$$\operatorname{ran}\left(\lim_{\mu \to -\infty} F_{\mu}\right) = \overline{\bigcap_{\mu} \beta_{\mu} \bigcup_{\lambda} \alpha_{\lambda} \mathcal{M}} = \{o\}.$$

Therefore $\{E_{\lambda}\}$ and $\{F_{\mu}\}$ are the spectral families.

By virtue of Lemma 3.2, for any simple submodule of $L^2(\mathbf{R}^2)$, there exists a spectral measure $dE_{\lambda,\mu} = dE_{\lambda}dF_{\mu}$ on \mathbf{R}^2 and we have a two-parameter continuous unitary group $\{U_{s,t}\}$ on $L^2(\mathbf{R}^2)$ as follows:

$$U_{s,t} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(s\lambda+t\mu)} dE_{\lambda} dF_{\mu} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(s\lambda+t\mu)} dE_{\lambda,\mu}.$$

DEFINITION 3.3. A family $\{A_{s,t}\}$ of functions on \mathbb{R}^2 which are individually measurable is said to be a cocycle of \mathbb{R}^2 if

- (i) $|A_{s,t}(x, y)| = 1$ almost everywhere in x, y, for each s, t,
- (ii) $A_{s,t}f$ moves continuously in $L^2(\mathbf{R}^2)$ as s and t varies, for each f in $L^2(\mathbf{R}^2)$,
- (iii) $A_{s+u,t+v} = A_{s,t}T_{s,t}A_{u,v}$ almost everywhere, for each s, t, u and v.

EXAMPLE 3.1 (cf. [1]). In Lemma 5.3, we showed the following commutation relation:

$$U_{s,0}T_{-s,0}\alpha_{\lambda}\beta_{\mu} = \alpha_{\lambda}\beta_{\mu}U_{s,0}T_{-s,0}$$

Using the same argument with respect to the variable x_2 , we have

$$U_{s,t}T_{-s,-t}\alpha_{\lambda}\beta_{\mu} = \alpha_{\lambda}\beta_{\mu}U_{s,t}T_{-s,-t}.$$

Therefore $U_{s,t}T_{-s,-t}$ is the multiplication operator by some unimodular function $A_{s,t}$. We shall show $\{A_{s,t}\}$ is a cocycle of \mathbb{R}^2 . Identifying bounded functions with multiplication operators, we have

$$A_{s+u,t+v} = U_{s+u,t+v}T_{-s-u,-t-v}$$
$$= U_{s,t}U_{u,v}T_{-u,-v}T_{-s,-t}$$
$$= U_{s,t}A_{u,v}T_{-s,-t}$$
$$= A_{s,t}T_{s,t}A_{u,v}T_{-s,-t}.$$

Hence

$$A_{s+u,t+v}(x, y) = A_{s,t}(x, y)A_{u,v}(x-s, y-t)$$

PROPOSITION 3.1. There exists a one-to-one correspondence between simple submodules of $L^2(\mathbf{R}^2)$ and cocycles of \mathbf{R}^2 .

PROOF. Suppose that $\{A_{s,t}\}$ is a cocycle of \mathbf{R}^2 . Let $U_{s,t} = A_{s,t}T_{s,t}$. Then $\{U_{s,t}\}$ is a two-parameter unitary group on $L^2(\mathbf{R}^2)$. By Stone's theorem for \mathbf{R}^2 , there exists a unique spectral measure of $L^2(\mathbf{R}^2)$ such that

$$U_{s,t} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(s\lambda + t\mu)} \, dE_{\lambda,\mu}$$

Let $\mathcal{M} = \operatorname{ran} E_{0,0}$. Then

$$\int_{\mathbf{R}^2} e^{i(s\lambda+t\mu)} dE_{\lambda+\tau_1,\mu+\tau_2} = e^{-i(s\tau_1+t\tau_2)} \int_{\mathbf{R}^2} e^{i(s(\lambda+\tau_1)+t(\mu+\tau_2))} dE_{\lambda+\tau_1,\mu+\tau_2}$$
$$= e^{-i(s\tau_1+t\tau_2)} \int_{\mathbf{R}^2} e^{i(s\lambda+t\mu)} dE_{\lambda,\mu}$$
$$= \alpha_{\tau_1}^* \beta_{\tau_2}^* U_{s,t} \alpha_{\tau_1} \beta_{\tau_2}$$

SUBMODULES OF $L^2(\mathbf{R}^2)$

$$= \int_{\mathbf{R}^2} e^{i(s\lambda+t\mu)} d(\alpha_{\tau_1}^*\beta_{\tau_2}^*E_{\lambda,\mu}\alpha_{\tau_1}\beta_{\tau_2})$$

Hence we have

$$E_{\lambda+\tau_1,\mu+\tau_2} = \alpha_{\tau_1}^* \beta_{\tau_2}^* E_{\lambda,\mu} \alpha_{\tau_1} \beta_{\tau_2} \,.$$

Therefore \mathcal{M} is a submodule of $L^2(\mathbf{R}^2)$.

Next, we shall show that M satisfies the double commuting condition. It suffices to consider the case where $\lambda \ge 0$ and $\mu \le 0$.

$$P_{\mathcal{M}} lpha_{\lambda} P_{\mathcal{M}} eta_{\mu} P_{\mathcal{M}} = E_{0,0} lpha_{\lambda} E_{0,0} eta_{\mu} E_{0,0}$$

 $= lpha_{\lambda} E_{\lambda,0} E_{0,0} E_{0,-\mu} eta_{\mu}$
 $= lpha_{\lambda} E_{0,0} eta_{\mu} ,$

and

$$P_{\mathcal{M}}\beta_{\mu}P_{\mathcal{M}}\alpha_{\lambda}P_{\mathcal{M}} = E_{0,0}\beta_{\mu}E_{0,0}\alpha_{\lambda}E_{0,0}$$
$$= E_{0,0}E_{0,-\mu}\beta_{\mu}\alpha_{\lambda}E_{0,0}$$
$$= E_{0,0}\alpha_{\lambda}\beta_{\mu}E_{0,0}$$
$$= \alpha_{\lambda}E_{\lambda,0}E_{0,-\mu}\beta_{\mu}$$
$$= \alpha_{\lambda}E_{0,0}\beta_{\mu}.$$

Therefore $P_{\mathcal{M}}\alpha_{\lambda}P_{\mathcal{M}}\beta_{\mu}P_{\mathcal{M}} = P_{\mathcal{M}}\beta_{\mu}P_{\mathcal{M}}\alpha_{\lambda}P_{\mathcal{M}}$. This concludes the proof by Lemma 3.1.

EXAMPLE 3.2 (cf. [1]). Suppose that $\mathcal{M} = q H^2(\mathbf{R}^2)$ for some unimodular function q. Then its cocycle is $\{qT_{s,t}q^{-1}\}$.

A cocycle of the form $A_{s,t} = qT_{s,t}q^{-1}$, for some unimodular function, is called a coboundary of \mathbf{R}^2 .

COROLLARY 3.1. Every cocycle of \mathbf{R}^2 is a coboundary of \mathbf{R}^2 .

PROOF. By Theorem 2.1, for any simple submodule \mathcal{M} of $L^2(\mathbb{R}^2)$, there is a unimodular function q such that $\mathcal{M} = q H^2(\mathbb{R}^2)$. Hence the cocycle of \mathcal{M} is a coboundary.

References

- [1] H. HELSON, Lectures on invariant subspaces, Academic Press (1964).
- [2] H. HELSON, Analyticity on compact abelian groups, Algebras in analysis (Proc. Instructional Conf. and NATO Advanced Study Inst., Birmingham, 1973), Academic Press (1975), 1–62.
- [3] K. IZUCHI, Invariant subspaces on a torus, lecture notes (1998), unpublished.
- [4] P. D. LAX, Translation invariant subspaces, Acta Math. 101 (1959), 163–178.
- [5] V. MANDREKAR, The validity of Beurling theorems in polydiscs, Proc. Amer. Math. Soc. 103 (1988), 145– 148.

- [6] P. MASANI, Isometric flows on Hilbert space, Bull. Amer. Math. Soc. 68 (1962), 624–632.
- [7] T. NAKAZI, Certain invariant subspaces of H^2 and L^2 on a bidisc, Canad. J. Math. 40 (1988), 1272–1280.
- [8] T. NAKAZI, Invariant subspaces in the bidisc and commutators, J. Austral. Math. Soc. Ser. A 56 (1994), no. 2, 232–242.
- [9] M. SETO, Invariant subspaces on \mathbf{T}^N and \mathbf{R}^N , to appear in Canad. Math. Bull.

Present Address: DEPARTMENT OF MATHEMATICS, KANAGAWA UNIVERSITY, ROKKAKUBASHI, KANAGAWA-KU, YOKOHAMA, 221–8686 JAPAN. *e-mail*: seto@kanagawa-u.ac.jp