A Fixed Point Formula for 0-pseudofree S^{1}-actions on Kähler Manifolds of Constant Scalar Curvature

Kenji TSUBOI
Tokyo University of Marine science and technology
(Communicated by K. Shinoda)

Abstract

Let M be an m-dimensional compact complex manifold and Ω a Kähler class of M. Assume that M admits an Ω-preserving 0 -pseudofree S^{1}-action and that Ω contains a Kähler metric of constant scalar curvature. Then using the fixed point formula for the Bando-Calabi-Futaki character obtained in [5], we can obtain information on the fixed point data of the S^{1}-action. Our main result is Theorem 2.

1. Introduction

Let M be an m-dimensional compact complex manifold, $\operatorname{Aut}(M)$ the complex Lie group consisting of all biholomorphic automorphisms of M and $\mathfrak{h}(M)$ the Lie algebra of $\operatorname{Aut}(M)$, which consists of all holomorphic vector fields on M. Let Ω be a Kähler class of M and $\omega \in \Omega$ a Kähler form, which is identified with the Kähler metric in this paper. Let s_{ω} be the scalar curvature of ω and μ_{Ω} a real number defined by

$$
\mu_{\Omega}=\frac{\Omega^{m-1} \cup c_{1}(M)[M]}{\Omega^{m}[M]}
$$

where $c_{1}(M)$ is the first Chern class of M and $[M]$ is the fundamental cycle of M. Then a Lie algebra character $f_{\Omega}: \mathfrak{h}(M) \rightarrow \mathbf{C}$ is defined by

$$
f_{\Omega}(X)=\frac{1}{2 \pi} \int_{M} X F_{\omega} \omega^{m}
$$

where F_{ω} is a function which satisfies $\Delta_{\omega} F_{\omega}=s_{\omega}-m \mu_{\Omega}$. Then in [1], [2], [4], it is proved that f_{Ω} does not depend on the choice of the Kähler metrics $\omega \in \Omega$ and that $f_{\Omega}(X)=0$ for any $X \in \mathfrak{h}(M)$ if Ω contains a Kähler metric of constant scalar curvature.

Assume that $\operatorname{Aut}(M)$ contains a positive dimensional compact connected subgroup G and let \mathfrak{g} be the Lie algebra of G. Then, under the assumption that Ω is equal to the first Chern class $c_{1}(L)$ of a holomorphic G-line bundle L, Nakagawa [10] defined a group character $\widehat{f_{\Omega}}: G \rightarrow \mathbf{C} /\left(\mathbf{Z}+\mu_{\Omega} \mathbf{Z}\right)$ which is a lift of $f_{\Omega} \mid \mathfrak{g}$ by using a Simons character of a certain
foliation. Then $f_{\Omega}(X)=0$ for any $X \in \mathfrak{g}$ implies that $\widehat{f_{\Omega}}(\sigma)=0$ for any $\sigma \in G$ and hence $\widehat{f_{\Omega}}(\sigma)=0$ for any $\sigma \in G$ if Ω contains a Kähler metric of constant scalar curvature.

In this paper, a faithful biholomorphic action of S^{1} on M is called simply an S^{1}-action. An S^{1}-action is called 0-pseudofree when the action is not free and the fixed point set

$$
M^{S^{1}}=\left\{x \in M \mid g \cdot x=x \text { for all } g \in S^{1}\right\}
$$

consists only of points (cf. [6], [9]). Let $R\left(S^{1}\right)=\mathbf{Z}\left[t, t^{-1}\right]$ be the representation ring of S^{1} where t is the standard 1-dimensional representation of S^{1} defined by the natural inclusion $S^{1} \subset G L(1 ; \mathbf{C})$.

Now we assume that M admits a 0 -pseudofree S^{1}-action. Suppose that the fixed point set $M^{S^{1}}$ consists of r points q_{1}, \ldots, q_{r} and that

$$
T_{q_{j}} M=\sum_{s=1}^{m} t^{p_{j s}} \in R\left(S^{1}\right) \quad(1 \leq j \leq r)
$$

as an S^{1}-representation space where $p_{j s}$ are integers. Let β_{j} be an integer defined by

$$
\beta_{j}=\sum_{s=1}^{m} p_{j s} \quad(1 \leq j \leq r)
$$

Set $M^{g}=\{x \in M \mid g \cdot x=x\}$ for $g \in S^{1}$ and let P be the set defined by

$$
P=\left\{\text { odd prime numbers } p \mid M^{\sigma_{p}}=M^{S^{1}}\right\}
$$

where $\sigma_{p} \in S^{1}$ is the primitive p-th root of unity. Note that none of $p_{j s}(1 \leq j \leq r, 1 \leq s \leq$ $m)$ is a multiple of p if $p \in P$ and that the set of prime numbers p which are not contained in P is a finite set because the number of orbit types of an S^{1}-action on a compact manifold is finite.

Assume moreover that a Kähler class Ω is equal to the first Chern class $c_{1}(L)$ of a holomorphic S^{1}-line bundle L and suppose that $\left.L\right|_{q_{j}}=t^{\gamma_{j}} \in R\left(S^{1}\right)$ for $\gamma_{j} \in \mathbf{Z}, 1 \leq j \leq r$. Then μ_{Ω} is a rational number and there exists an integer q such that $q \mu_{\Omega}$ is an integer. Let $\alpha \in \mathbf{C}$ denote the primitive p-th root of unity.

Then using Theorem 2.1, Lemma 2.3 and Theorem 2.5 in [5], we have the next theorem.
Theorem 1. For any $p \in P$, set

$$
\begin{gathered}
F_{\Omega}\left(\sigma_{p}\right)=(m+1) \sum_{i=0}^{m}(-1)^{i}\binom{m}{i}\left(S_{+1}(m-2 i)-S_{-1}(m-2 i)\right) \\
-m \mu_{\Omega} \sum_{i=0}^{m+1}(-1)^{i}\binom{m+1}{i} S_{0}(m+1-2 i)
\end{gathered}
$$

where

$$
S_{\varepsilon}(n)=\frac{1}{p} \sum_{k=1}^{p-1} \sum_{j=1}^{r} \frac{1}{1-\alpha^{k}}\left(\alpha^{\varepsilon \beta_{j} k+n \gamma_{j} k}-1\right)^{m+1} \prod_{s=1}^{m} \frac{1}{1-\alpha^{-p_{j s} k}}
$$

for $\varepsilon=+1,-1,0$. Then $\widehat{f_{\Omega}}(\sigma)$ is equal to $F_{\Omega}\left(\sigma_{p}\right) \bmod \mathbf{Z}+\mu_{\Omega} \mathbf{Z}$.

2. Main result

For any $p \in P$, let \vec{u}_{p} be an element of \mathbf{Z}^{r} defined by

$$
\vec{u}_{p}=\left(\overline{\prod_{s=1}^{m} p_{1 s}}, \ldots, \overline{\prod_{s=1}^{m} p_{r s}}\right)
$$

where $\bar{n}(1 \leq \bar{n} \leq p-1)$ denotes the $\bmod p$ inverse of the integer n which is not a multiple of p. Then we have the next theorem.

ThEOREM 2. Assume that $\Omega=c_{1}(L)$ contains a Kähler metric of constant scalar curvature and suppose that $q \mu_{\Omega} \in \mathbf{Z}$ for $q \in \mathbf{Z}$. Let \vec{v}_{q} be an element of \mathbf{Z}^{r} defined by

$$
\vec{v}_{q}=q\left((m+1) \beta_{1} \gamma_{1}^{m}-m \mu_{\Omega} \gamma_{1}^{m+1}, \ldots,(m+1) \beta_{r} \gamma_{r}^{m}-m \mu_{\Omega} \gamma_{r}^{m+1}\right) .
$$

Then the inner product $\vec{u}_{p} \cdot \vec{v}_{q} \in \mathbf{Z}$ is a multiple of p for any $p \in P$ such that $p>m+1$.
We need the following lemmas to prove Theorem 2.
LEMMA 1. Let p be an odd prime number, ρ_{j}, λ_{j} integers and μ_{j} an integer which is not a multiple of p. Then we have

$$
\frac{1}{p} \sum_{k=1}^{p-1} \prod_{j=1}^{N} \alpha^{k \rho_{j}} \frac{\alpha^{k \lambda_{j}}-1}{\alpha^{k \mu_{j}}-1} \equiv-\frac{1}{p} \prod_{j=1}^{N} \lambda_{j} \overline{\mu_{j}} \quad(\bmod \mathbf{Z}) .
$$

Proof. For any integers n, ℓ, we have

$$
\sum_{k=1}^{p-1} n\left(\alpha^{k}\right)^{\ell}= \begin{cases}n \frac{1-\alpha^{p \ell}}{1-\alpha^{\ell}}-n=-n & (\text { if } \ell \text { is not a multiple of } p) \\ n(p-1)=-n+n p & (\text { if } \ell \text { is a multiple of } p)\end{cases}
$$

and hence it follows that

$$
\sum_{k=1}^{p-1} \Phi\left(\alpha^{k}, \alpha^{-k}\right) \equiv-\Phi(1,1) \quad(\bmod p)
$$

for any polynomial $\Phi(x, y)$ with integer coefficients. Therefore we have

$$
\frac{1}{p} \sum_{k=1}^{p-1} \prod_{j=1}^{N} \alpha^{k \rho_{j}} \frac{\alpha^{k \lambda_{j}}-1}{\alpha^{k \mu_{j}}-1}=\frac{1}{p} \prod_{j=1}^{N} \sum_{k=1}^{p-1} \alpha^{k \rho_{j}} \frac{\left(\alpha^{k \mu_{j}}\right)^{\overline{\mu_{j}} \lambda_{j}}-1}{\alpha^{k \mu_{j}}-1}
$$

$$
\begin{aligned}
& \equiv-\frac{1}{p} \prod_{j=1}^{N} \lim _{x \rightarrow 1} \frac{x^{\overline{\mu_{j} \lambda_{j}}}-1}{x-1} \\
& =-\frac{1}{p} \prod_{j=1}^{N} \lambda_{j} \overline{\mu_{j}} \quad(\bmod \mathbf{Z})
\end{aligned}
$$

LEmMA 2. Let λ be a positive integer and μ a non-negative integer. Then we have

$$
\sum_{i=0}^{\lambda}(-1)^{i}\binom{\lambda}{i}(\lambda-2 i)^{\mu}= \begin{cases}0 & \text { if } \mu<\lambda \text { or } \mu=\lambda+1 \\ 2^{\lambda} \lambda! & \text { if } \mu=\lambda\end{cases}
$$

Proof. Set

$$
N(\lambda, \mu)=\frac{1}{(-1)^{\lambda} \lambda!} \sum_{i=0}^{\lambda}(-1)^{i}\binom{\lambda}{i} i^{\mu} .
$$

Then since $f^{(\mu)}(-1)=0$ for $f(x)=(1+x)^{\lambda}, 0 \leq \mu<\lambda$, it follows from the binomial theorem that

$$
\sum_{i=0}^{\lambda}(-1)^{i}\binom{\lambda}{i} i(i-1) \ldots(i-\mu+1)=0
$$

if $0 \leq \mu<\lambda$. Using the equality above, we can prove that $N(\lambda, \mu)=0$ for $0 \leq \mu<\lambda$ by induction. Hence we have

$$
\begin{aligned}
N(\lambda, \lambda) & =\frac{1}{(-1)^{\lambda} \lambda!}(-\lambda) \sum_{i=1}^{\lambda}(-1)^{i-1}\binom{\lambda-1}{i-1} i^{\lambda-1} \\
& =\frac{1}{(-1)^{\lambda-1}(\lambda-1)!} \sum_{j=0}^{\lambda-1}(-1)^{j}\binom{\lambda-1}{j}(j+1)^{\lambda-1}=N(\lambda-1, \lambda-1)
\end{aligned}
$$

and therefore it follows that

$$
N(\lambda, \lambda)=N(1,1)=1 \Longleftrightarrow \sum_{i=0}^{\lambda}(-1)^{i}\binom{\lambda}{i} i^{\lambda}=(-1)^{\lambda} \lambda!.
$$

Moreover we have

$$
\begin{aligned}
N(\lambda, \lambda+1) & =\frac{1}{(-1)^{\lambda-1}(\lambda-1)!} \sum_{j=0}^{\lambda-1}(-1)^{j}\binom{\lambda-1}{j}(j+1)^{\lambda} \\
& =\frac{1}{(-1)^{\lambda-1}(\lambda-1)!} \sum_{j=0}^{\lambda-1}(-1)^{j}\binom{\lambda-1}{j}\left(j^{\lambda}+\lambda j^{\lambda-1}\right)
\end{aligned}
$$

$$
=N(\lambda-1, \lambda)+\lambda N(\lambda-1, \lambda-1)=N(\lambda-1, \lambda)+\lambda
$$

and therefore it follows that

$$
\begin{gathered}
N(\lambda, \lambda+1)=N(\lambda-1, \lambda)+\lambda=\cdots=N(1,2)+2+\cdots+(\lambda-1)+\lambda=\frac{\lambda(\lambda+1)}{2} \\
\Longleftrightarrow \sum_{i=0}^{\lambda}(-1)^{i}\binom{\lambda}{i} i^{\lambda+1}=\frac{(-1)^{\lambda} \lambda(\lambda+1)!}{2} .
\end{gathered}
$$

Using equalities above, we have

$$
\begin{aligned}
& \sum_{i=0}^{\lambda}(-1)^{i}\binom{\lambda}{i}(\lambda-2 i)^{\mu}=0 \quad \text { if } \mu<\lambda \\
& \sum_{i=0}^{\lambda}(-1)^{i}\binom{\lambda}{i}(\lambda-2 i)^{\lambda}=\sum_{i=0}^{\lambda}(-1)^{i}\binom{\lambda}{i}(-2 i)^{\lambda}=(-2)^{\lambda}(-1)^{\lambda} \lambda!=2^{\lambda} \lambda! \\
& \begin{array}{c}
\sum_{i=0}^{\lambda}(-1)^{i}\binom{\lambda}{i}(\lambda-2 i)^{\lambda+1} \\
= \\
\sum_{i=0}^{\lambda}(-1)^{i}\binom{\lambda}{i}(-2 i)^{\lambda+1}+(\lambda+1) \lambda \sum_{i=0}^{\lambda}(-1)^{i}\binom{\lambda}{i}(-2 i)^{\lambda} \\
=(-2)^{\lambda+1} \frac{(-1)^{\lambda} \lambda(\lambda+1)!}{2}+(\lambda+1) \lambda(-2)^{\lambda}(-1)^{\lambda} \lambda!=0
\end{array}
\end{aligned}
$$

Using the lemmas above, we can prove Theorem 2 as follows. Since $\bar{n} \overline{n^{\prime}} \equiv \overline{n n^{\prime}}$ $(\bmod p)$, it follows from Lemma 1 that

$$
\begin{aligned}
S_{\varepsilon}(n) & =\frac{1}{p} \sum_{k=1}^{p-1} \sum_{j=1}^{r} \frac{1}{1-\alpha^{k}}\left(\alpha^{k\left(\varepsilon \beta_{j}+n \gamma_{j}\right)}-1\right)^{m+1} \prod_{s=1}^{m} \frac{1}{1-\alpha^{-k p_{j s}}} \\
& =-\frac{1}{p} \sum_{j=1}^{r} \sum_{k=1}^{p-1} \frac{\alpha^{k\left(\varepsilon \beta_{j}+n \gamma_{j}\right)}-1}{\alpha^{k}-1} \prod_{s=1}^{m} \alpha^{k p_{j s}} \frac{\alpha^{k\left(\varepsilon \beta_{j}+n \gamma_{j}\right)}-1}{\alpha^{k p_{j s}}-1} \\
& \equiv \frac{1}{p} \sum_{j=1}^{r}\left(\varepsilon \beta_{j}+n \gamma_{j}\right)^{m+1} \prod_{s=1}^{m} p_{j s} \quad(\bmod \mathbf{Z}) .
\end{aligned}
$$

Hence it follows from Lemma 2 that

$$
\begin{aligned}
& q F_{\Omega}\left(\sigma_{p}\right) \\
& \equiv \frac{q}{p} \sum_{j=1}^{r}\left\{\begin{array}{c}
(m+1) \sum_{i=0}^{m}(-1)^{i}\binom{m}{i} \\
\left.\left\{(m-2 i) \gamma_{j}+\beta_{j}\right)^{m+1}-\left((m-2 i) \gamma_{j}-\beta_{j}\right)^{m+1}\right\} \\
-m \mu_{\Omega} \sum_{i=0}^{m+1}(-1)^{i}\binom{m+1}{i}(m+1-2 i)^{m+1} \gamma_{j}^{m+1}
\end{array}\right\} \overline{\prod_{s=1}^{m} p_{j s}} \\
& =\frac{q}{p} \sum_{j=1}^{r}\left\{2(m+1)^{2} \beta_{j} \gamma_{j}^{m} 2^{m} m!-m \mu_{\Omega} \gamma_{j}^{m+1} 2^{m+1}(m+1)!\right\} \prod_{s=1}^{m} p_{j s} \\
& =\frac{1}{p} 2^{m+1}(m+1)!\vec{u}_{p} \cdot \vec{v}_{q} \quad(\bmod \mathbf{Z}),
\end{aligned}
$$

which is contained in $q\left(\mathbf{Z}+\mu_{\Omega} \mathbf{Z}\right) \subset \mathbf{Z}$ because S^{1} is connected and Ω contains a Kähler metric of constant scalar curvature. Here since p is prime to $2^{m+1}(m+1)$!, the equality above implies that $\vec{u}_{p} \cdot \vec{v}_{q}$ is a multiple of p. This completes the proof of Theorem 2.

Let \vec{w} be an element of \mathbf{Z}^{r} defined by

$$
\vec{w}=\left(\beta_{1}^{m+1}, \ldots, \beta_{r}^{m+1}\right)=\left(\left(\sum_{s=1}^{m} p_{1 s}\right)^{m+1}, \ldots,\left(\sum_{s=1}^{m} p_{r s}\right)^{m+1}\right)
$$

Corollary 1. Assume that the first Chern class $c_{1}(M)$ of M contains a Kähler metric of constant scalar curvature. Then for any $p \in P$ such that $p>m+1$, the inner product $\vec{u}_{p} \cdot \vec{w}$ is a multiple of p.

Proof. Let L be the anticanonical bundle K_{M}^{-1} of M. Then $c_{1}(L)$ is equal to $c_{1}(M)$ and the S^{1} action naturally lifts to an action on L. Since $\mu_{\Omega}=1$ and $\gamma_{j}=\beta_{j}$, we have $\vec{v}_{q}=\vec{w}$ for $q=1$ and hence it follows from Theorem 2 that $\vec{u}_{p} \cdot \vec{w}$ is a multiple of p.

3. Examples

Example 1. Let $M=\mathbf{C P}^{m}$ be the m-dimensional complex projective space. Let $\left[z_{0}: z_{1}: \cdots: z_{m}\right]$ be the homogeneous coordinate of M and H the hyperplane bundle over $M=\mathbf{C} \mathbf{P}^{m}=\left(\mathbf{C}^{m+1}-\{0\}\right) / \mathbf{C}^{*}$ which is defined by

$$
H=\left(\mathbf{C}^{m+1}-\{0\}\right) \times_{\left(\mathbf{C}^{*}, \rho\right)} \mathbf{C}
$$

where ρ is a representation of \mathbf{C}^{*} on \mathbf{C} defined by $\rho(z) w=z^{-1} w$. Set $\Omega=c_{1}(H)$. Then Ω is the positive generator of $H^{2}(M ; \mathbf{Z}), c_{1}(M)=(m+1) \Omega$ and hence we have $\mu_{\Omega}=m+1$.

Moreover Ω contains a Kähler metric of constant scalar curvature associated to a positive constant multiple of the standard metric (Fubini-Study metric) of $M . S^{1}$-actions on M, H are defined by

$$
\begin{aligned}
& g \cdot\left[z_{0}: z_{1}: \cdots: z_{m}\right]=\left[z_{0}: g z_{1}: \cdots: g^{m} z_{m}\right], \\
& g \cdot\left[\left(z_{0}, z_{1}, \ldots, z_{m}\right), h\right]=\left[\left(z_{0}, g z_{1}, \ldots, g^{m} z_{m}\right), h\right] \quad\left(g \in S^{1}\right) .
\end{aligned}
$$

Then the fixed point set $M^{S^{1}}$ of this action consists of following $m+1$ points

$$
q_{0}=[1: 0: \cdots: 0], q_{1}=[0: 1: \cdots: 0], \ldots, q_{m}=[0: \cdots: 0: 1]
$$

and P consists of all odd prime numbers which are greater than m. Then since

$$
\begin{aligned}
& g \cdot\left[\left(\tau_{1}, \ldots, \tau_{j}, 1, \tau_{j+1}, \ldots, \tau_{m}\right), h\right]=\left[\left(\tau_{1}, \ldots, g^{j-1} \tau_{j}, g^{j}, g^{j+1} \tau_{j+1}, \ldots, g^{m} \tau_{m}\right), h\right] \\
& \quad=\left[\left(g^{-j} \tau_{1}, \ldots, g^{-1} \tau_{j}, 1, g \tau_{j+1}, \ldots, g^{m-j} \tau_{m}\right), g^{-j} h\right],
\end{aligned}
$$

we have

$$
T_{q_{j}} \mathbf{C P}^{m}=t^{-j}+\cdots+t^{-1}+t+\cdots+t^{m-j} \in R\left(S^{1}\right), \quad H \mid q_{j}=t^{-j}
$$

Hence it follows that

$$
\begin{aligned}
& \beta_{j}=\sum_{s=1}^{m} p_{j s}=(-j)+\cdots+(-1)+1+\cdots+m-j=\frac{1}{2}(m+1)(m-2 j), \\
& \prod_{s=1}^{m} p_{j s}=(-1)^{j} j!(m-j)!, \quad \gamma_{j}=-j
\end{aligned}
$$

and therefore we have

$$
\begin{aligned}
\vec{u}_{p} \cdot \vec{v}_{1} & =\sum_{j=0}^{m} \overline{(-1)^{j} j!(m-j)!}\left\{(m+1) \frac{1}{2}(m+1)(m-2 j)(-j)^{m}-m \mu_{\Omega}(-j)^{m+1}\right\} \\
& =(-1)^{m} \sum_{j=0}^{m} \overline{(-1)^{j} j!(m-j)!}\left\{\frac{1}{2}(m+1)^{2}(m-2 j) j^{m}+m(m+1) j^{m+1}\right\} .
\end{aligned}
$$

Since μ_{Ω} is an integer, it follows from Theorem 2 that $\vec{u}_{p} \cdot \vec{v}_{1}$ is a multiple of p for any prime number $p>m+1$. In fact, we have the following results.

If $m=2$ and $p=5$, we have

$$
\frac{1}{p} \vec{u}_{p} \cdot \vec{v}_{1}=\frac{1}{5}(\overline{2} \cdot 0+\overline{-1} \cdot 6+\overline{2} \cdot 12)=\frac{1}{5}(3 \cdot 0+4 \cdot 6+3 \cdot 12)=12 \in \mathbf{Z} .
$$

Further computation shows that the values of $\vec{u}_{p} \cdot \vec{v}_{1} / p$ are as follows:

	$p=5$	$p=7$	$p=11$	$p=13$	$p=17$	$p=19$
$m=2$	12	12	12	12	12	12
$m=3$	-344	-128	-344	-128	-344	-128
$m=4$		6080	6720	4480	5120	2240
$m=5$		-220080	-70080	-92580	-205080	-55080

All values in the table above are integers.
EXAMPLE 2. Let $\mathbf{C P}^{2}, \mathbf{C P}^{3}$ be complex projective spaces and set $M=\mathbf{C} \mathbf{P}^{2} \times \mathbf{C P}^{3}$, $\Omega=c_{1}\left(K_{M}^{-1}\right)$. Then Ω contains a Kähler metric of constant scalar curvature associated to the product of standard metrics. An S^{1}-action on M is defined by

$$
\begin{aligned}
& g \cdot\left(\left[z_{0}: z_{1}: z_{2}\right],\left[w_{0}: w_{1}: w_{2}: w_{3}\right]\right) \\
& \quad=\left(\left[z_{0}: g z_{1}: g^{2} z_{2}\right],\left[w_{0}: g w_{1}: g^{2} w_{2}: g^{3} w_{3}\right]\right)\left(g \in S^{1}\right)
\end{aligned}
$$

Then the fixed point set $M^{S^{1}}$ consists of following twelve points.

$$
\begin{array}{lll}
q_{1}=([1: 0: 0],[1: 0: 0: 0]), & q_{2}=([0: 1: 0],[1: 0: 0: 0]), \\
q_{3} & =([0: 0: 1],[1: 0: 0: 0]), & \\
q_{4}=([1: 0: 0],[0: 1: 0: 0]), \\
q_{5}=([0: 1: 0],[0: 1: 0: 0]), & q_{6}=([0: 0: 1],[0: 1: 0: 0]), \\
q_{7}=([1: 0: 0],[0: 0: 1: 0]), & q_{8}=([0: 1: 0],[0: 0: 1: 0]), \\
q_{9}=([0: 0: 1],[0: 0: 1: 0]), & q_{10}=([1: 0: 0],[0: 0: 0: 1]), \\
q_{11}=([0: 1: 0],[0: 0: 0: 1]), & q_{12}=([0: 0: 1],[0: 0: 0: 1])
\end{array}
$$

and P consists of all prime numbers which are greater than 3 . Since

$$
\left(\left[\tau_{1}: g \tau_{2}: g^{2}\right],\left[\tau_{3}: g \tau_{4}: g^{2} \tau_{5}: g^{3}\right]\right)=\left(\left[g^{-2} \tau_{1}: g^{-1} \tau_{2}: 1\right],\left[g^{-3} \tau_{3}: g^{-2} \tau_{4}: g^{-1} \tau_{5}: 1\right]\right),
$$

$g \in S^{1}$ acts on the tangent space $T_{q_{12}} M$ via multiplication by the diagonal matrix of diagonal entries $g^{-2}, g^{-1}, g^{-3}, g^{-2}, g^{-1}$ and hence we have

$$
\left\{p_{121}, p_{122}, p_{123}, p_{124}, p_{125}\right\}=\{-2,-1,-3,-2,-1\}
$$

It follows from the same argument that

$$
\begin{aligned}
& \left\{p_{11}, p_{12}, p_{13}, p_{14}, p_{15}\right\}=\{1,2,1,2,3\} \\
& \left\{p_{21}, p_{22}, p_{23}, p_{24}, p_{25}\right\}=\{-1,1,1,2,3\} \\
& \left\{p_{31}, p_{32}, p_{33}, p_{34}, p_{35}\right\}=\{-2,-1,1,2,3\} \\
& \left\{p_{41}, p_{42}, p_{43}, p_{44}, p_{45}\right\}=\{1,2,-1,1,2\} \\
& \left\{p_{51}, p_{52}, p_{53}, p_{54}, p_{55}\right\}=\{-1,1,-1,1,2\} \\
& \left\{p_{61}, p_{62}, p_{63}, p_{64}, p_{65}\right\}=\{-2,-1,-1,1,2\},
\end{aligned}
$$

$$
\begin{aligned}
& \left\{p_{71}, p_{72}, p_{73}, p_{74}, p_{75}\right\}=\{1,2,-2,-1,1\}, \\
& \left\{p_{81}, p_{82}, p_{83}, p_{84}, p_{85}\right\}=\{-1,1,-2,-1,1\}, \\
& \left\{p_{91}, p_{92}, p_{93}, p_{94}, p_{95}\right\}=\{-2,-1,-2,-1,1\}, \\
& \left\{p_{101}, p_{102}, p_{103}, p_{104}, p_{105}\right\}=\{1,2,-3,-2,-1\}, \\
& \left\{p_{111}, p_{112}, p_{113}, p_{114}, p_{115}\right\}=\{-1,1,-3,-2,-1\}, \\
& \left\{p_{12}, p_{122}, p_{123}, p_{124}, p_{125}\right\}=\{-2,-1,-3,-2,-1\}
\end{aligned}
$$

and therefore we have

$$
\begin{aligned}
& \vec{w}=\left(\left(\sum_{s=1}^{5} p_{1 s}\right)^{6}, \ldots,\left(\sum_{s=1}^{5} p_{12 s}\right)^{6}\right) \\
&=(531441,46656,729,15625,64,1,1,64,15625,729,46656,531441) \\
&\left(\prod_{s=1}^{5} p_{1 s}, \ldots, \prod_{s=1}^{5} p_{r s}\right)=(12,-6,12,-4,2,-4,4,-2,4,-12,6,-12) .
\end{aligned}
$$

Since $\overline{-n} \equiv-\bar{n}(\bmod p)$, we have

$$
\vec{u}_{p}=\left(\overline{\prod_{s=1}^{5} p_{1 s}}, \ldots, \overline{\prod_{s=1}^{5} p_{r s}}\right) \equiv(\overline{12},-\overline{6}, \overline{12},-\overline{4}, \overline{2},-\overline{4}, \overline{4},-\overline{2}, \overline{4},-\overline{12}, \overline{6},-\overline{12})
$$

$(\bmod p)$,
and hence we can see that $\vec{u}_{p} \cdot \vec{w} \equiv 0(\bmod p)$ for any $p \in P$.

EXAMPLE 3. Let M be the surface obtained from $\mathbf{C} \mathbf{P}^{2}$ by blowing up two points [1: $0: 0],[0: 1: 0]$ and $\pi: M \rightarrow \mathbf{C P}^{2}$ the canonical projection. Then since \mathfrak{g} is not reductive (see [3] p.100), it follows from the result of Lichnerowicz [7], [8] that M does not admit any Kähler metric of constant scalar curvature, and therefore $c_{1}\left(K_{M}^{-1}\right)$ does not contain any Kähler metric of constant scalar curvature in particular. An S^{1}-action on M is naturally induced by the action

$$
g \cdot\left[z_{0}: z_{1}: z_{2}\right]=\left[z_{0}: g z_{1}: g^{2} z_{2}\right] \quad\left(g \in S^{1}\right)
$$

on $\mathbf{C} \mathbf{P}^{2}$. Then the fixed point set $M^{S^{1}}$ consists of five points $q_{1}, q_{2}, q_{3}, q_{4}, q_{5}$ where $q_{1}=$ $\pi^{-1}([0: 0: 1]), q_{2} \in \pi^{-1}([1: 0: 0])$ is the point in M defined by the line $z_{1}=0$ through the point $[1: 0: 0]$ in $\mathbf{C P}^{2}, q_{3} \in \pi^{-1}([1: 0: 0])$ is the point in M defined by the line $z_{2}=0$ through the point $[1: 0: 0]$ in $\mathbf{C} \mathbf{P}^{2}, q_{4} \in \pi^{-1}([0: 1: 0])$ is the point in M defined by the line $z_{0}=0$ through the point $[0: 1: 0]$ in $\mathbf{C P}^{2}$ and $q_{5} \in \pi^{-1}([0: 1: 0])$ is the point in M defined by the line $z_{2}=0$ through the point $[0: 1: 0]$ in $\mathbf{C} \mathbf{P}^{2}$. Then we can see that

$$
\begin{aligned}
& \left(p_{11}, p_{12}\right)=(-2,-1), \quad\left(p_{21}, p_{22}\right)=(-1,2), \quad\left(p_{31}, p_{32}\right)=(1,1), \\
& \left(p_{41}, p_{42}\right)=(-2,1), \quad\left(p_{51}, p_{52}\right)=(-1,2) .
\end{aligned}
$$

Hence we have

$$
\vec{u}_{p} \cdot \vec{w}=(\overline{2},-\overline{2}, \overline{1},-\overline{2},-\overline{2}) \cdot(-27,1,8,-1,1)=-14 \cdot 2 \cdot \overline{2}+8 \cdot \overline{1} \equiv-6 \quad(\bmod p),
$$

which is not a multiple of p unless $p=3$.

References

[1] S. Bando, An obstruction for Chern class forms to be harmonic, Kodai Math. J. 29, 337-345 (2006).
[2] E. Calabi, Extremal Kähler metrics II, Differential geometry and complex analysis (I. Chavel and H.M. Farkas eds.), 95-114, Springer-Verlag, Berline-Heidelberg-New York, 1985.
[3] A. Futaki, Kähler-Einstein Metrics and Integral Invariants, Lect. Note in Math., 1314, Springer-Verlag, Berline-Heidelberg-New York-London-Paris-Tokyo, 1980.
[4] A. Futaki, On compact Kähler manifold of constant scalar curvature, Proc. Japan Acad., Ser. A, 59, 401-402 (1983).
[5] A. Futaki and K. Tsuboi, Fixed point formula for characters of automorphism groups associated with Kahler classes, Math. Res. Letters. 8, 495-507 (2001).
[6] E. Laitinen and P. Traczyk, Pseudofree representations and 2-pseudofree actions on spheres, Proc. Amer. Math. Soc. 97 (1986), 151-157.
[7] A. Lichnerowicz, Sur les transformations analytiques d'une variété Kählerienne compacte, Colloque Geom. Diff. Global, Bruxelles (1958), 11-26.
[8] A.LiChNEROWICZ, Isométrie et transformations analytiques d'une variété Kählerienne compacte, Bull. Soc. Math. France 87 (1959), 427-437.
[9] D. Montgomery and C. T. Yang, Differentiable pseudo-free circle actions, Proc. Nat. Acad. Sci. USA 68 (1971), 894-896.
[10] Y. NAKAGAWA, The Bando-Calabi-Futaki character and its lifting to a group character, Math. Ann. 325 (2003), 31-53.

Present Address:
Tokyo University of Marine sciense and technology, Konan, Minato-ku, Tokyo, 108-8477 Japan.
e-mail: tsubois@kaiyodai.ac.jp

