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Abstract. In the upper bound graph of a poset P with the vertex set V (P ), xy is an edge if there exists an
m ∈ V (P ) such that x, y ≤P m. We obtain some properties of edge operations of UB-graphs. According to these
properties, we consider transformations on split UB-graphs.

1. Introduction

In this paper, we deal with graphs on finite posets. For a poset P = (X,≤P ) and x ∈ X,

LP (x) = {u ∈ X; u ≤P x} and UP (x) = {u ∈ X; x ≤P u}. For a poset P = (X,≤P ) and
S ⊆ X, LP (S) = ⋃

x∈S LP (x) and UP (S) = ⋃
x∈S UP (x). Max(P ) is the set of maximal

elements of a poset P and Min(P ) is the set of minimal elements of a poset P.

For a poset P = (X,≤P ), the upper bound graph (UB-graph) of P is the graph
UB(P ) = (X,EUB(P )), where xy ∈ EUB(P ) if and only if x �= y and there exists m ∈ X such
that x, y ≤P m. McMorris and Zaslavsky [6] introduced this concept and gave a characteri-
zation of upper bound graphs. A clique in a graph G is the vertex set of a maximal complete
subgraph of G. In some cases, we consider that a clique is a maximal complete subgraph. In
the same way, we occasionally abuse terms of induced subgraphs and the vertex set of induced
subgraphs, especially for complete subgraphs. A family E of complete subgraphs edge covers
G if and only if for each edge uv ∈ E(G), there exists Q ∈ E such that u, v ∈ Q.

THEOREM 1 (McMorris and Zaslavsky [6]). A graph G is a UB-graph if and only if
there exists a family E = {Q1,Q2, . . . ,Qn} of complete subgraphs of G such that

(1) E edge covers G, and
(2) for each Qi, there is a vertex vi ∈ Qi − (

⋃
j �=i Qj ).

Furthermore, such a family E must consist of cliques of G and is the only such family if G has
no isolated vertices.

In the proof of this result, McMorris and Zaslavsky use a fact that principal order ideals of
a poset correspond to complete subgraphs of a UB-graph. For a UB-graph G, an edge clique
cover E(G) = {Q1,Q2, . . . ,Qn} satisfying the conditions of Theorem 1 is called a UB edge
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clique cover. For a UB-graph G and its UB edge clique cover E(G) = {Q1,Q2, . . . ,Qn},
a kernel of G is a vertex subset {v1, v2, . . . , vn} such that vi ∈ Qi − (

⋃
j �=i Qj ) for each

i = 1, 2, . . . , n. A kernel is not uniquely defined for a UB-graph. However, we know a
fact that for a UB-graph G and a kernel K , there exists a poset P with UB(P) = G and
Max(P ) = K .

For a graph G and v ∈ V (G), NG(v) = {u ; uv ∈ E(G)} and NG[v] = NG(v) ∪ {u}.
Furthermore, v ∈ V (G) is called a simplicial vertex if NG(v) is the vertex set of a complete
subgraph of G.

Lundgren and Maybee [5] obtained another characterization of upper bound graphs in
terms of ordered edge cover. Using their results, Bergstrand and Jones [1] obtained some
properties on transformations of upper bound graphs. Iwai et al. [3] and [4] considered con-
struction methods of upper bound graphs and double bound graphs. In these papers, they use
contractions of edges and splits of vertices for constructions of bound graphs.

Ogawa et al. [2], [7], [8] and [9] considered properties of transformations between posets
with the same UB-graph. In these papers, they use operations on posets, that is, x < y-
additions and x < y-deletions. In this paper, we deal with properties of transformations
between UB-graphs in terms of edge operations.

2. Main results

In this section, we deal with properties of edge operations on UB-graphs. First we con-
sider edge additions on UB-graphs. For a graph G and non adjacent vertices u and v, G + uv

is a graph where V (G + uv) = V (G) and E(G + uv) = E(G) ∪ {uv}.
PROPOSITION 2. Let G be a connected UB-graph with non adjacent vertices u and v.

If u and v are simplicial vertices of G and NG(u) = NG(v), then G + uv is a UB-graph.

PROOF. By Theorem 1, there exists the UB edge clique cover E(G) =
{Q1,Q2, . . . ,Qk} of G. Then NG[u] and NG[v] are cliques of G, NG[u], NG[v] ∈ E(G)

and NG[u] ∪ NG[v] is a clique of G + uv. Let

E(G + uv) = (E(G) − {NG[u], NG[v]}) ∪ {NG[u] ∪ NG[v]} .

Then E(G + uv) is an edge clique cover of G + uv. A simplicial vertex in each Qi ∈
E(G) − {NG[u], NG[v]} is also a simplicial vertex in G + uv. Moreover, u is a simplicial
vertex of G + uv and only belongs to NG[u] ∪ NG[v]. Therefore, E(G + uv) is a UB edge
clique cover of G + uv and G + uv is a UB-graph. �

PROPOSITION 3. Let G be a connected UB-graph with non adjacent vertices u and v.
If u and v are simplicial vertices of G, NG(u) ⊃ NG(v) and there exists a simplicial vertex
w( �= u, v) of G in NG(u) − NG(v), then G + uv is a UB-graph.

PROOF. By Theorem 1, there exists the UB edge clique cover E(G) =
{Q1,Q2, . . . ,Qk} of G. Then NG[v], NG[u] ∈ E(G) and NG[v] ∪ {u} is a clique of G + uv.
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Let

E(G + uv) = (E(G) − {NG[v]}) ∪ {NG[v] ∪ {u}} .

For each Qi ∈ E(G) − {NG[u], NG[v]}, Qi is a clique of G + uv and a simplicial vertex of
Qi is also a simplicial vertex of G+uv. Moreover, v is a simplicial vertex of G+uv and does
not belong to any cliques of E(G + uv) other than NG[v] ∪ {u}. Since w ∈ NG(u) − NG(v)

is a simplicial vertex of G, w is also a simplicial vertex of G + uv and NG[u] is also a clique
of G + uv with a simplicial vertex w. Thus E(G + uv) is a UB edge clique cover of G + uv

and G + uv is a UB-graph. �

PROPOSITION 4. Let G be a connected UB-graph with non adjacent vertices u and v.
If u is not a simplicial vertex of G, v is a simplicial vertex of G and NG(u) ⊃ NG(v), then
G + uv is a UB-graph.

PROOF. By Theorem 1, there exists the UB edge clique cover E(G) = {Q1, . . . ,Qk} of
G. Then NG[v] is a clique of G and NG[v] ∪ {u} is a clique of G + uv. v is also a simplicial
vertex of G + uv. Let

E(G + uv) = (E(G) − {NG[v]}) ∪ {NG[v] ∪ {u}}.
Then E(G + uv) is a UB edge clique cover of G + uv and G + uv is a UB-graph. �

PROPOSITION 5. Let G be a connected UB-graph with non adjacent vertices u and v.
If u and v are not simplicial vertices of G, then G + uv is not a UB-graph.

PROOF. We assume that G + uv is UB-graph. Then there exists a kernel K∗ of G + uv

and a simplicial vertex m ∈ K∗ which is adjacent to u and v. Since u and v are non adjacent
vertices in G, m is not a simplicial vertex of G. Therefore, there exists a simplicial vertices
u′ and v′ of G such that u′ is adjacent to u,m and v′ is adjacent to v,m. Since m is a simpli-
cial vertex of G + uv, u′v′ ∈ E(G + uv) and u′v′ ∈ E(G). Since u′ is a simplicial vertex
of G, uv′ ∈ E(G). Thus v′ is adjacent to non adjacent vertices u, v in G, which is a contra-
diction. �

PROPOSITION 6. Let G be a connected UB-graph with non adjacent vertices u and v,
where u is not a simplicial vertex of G and v is a simplicial vertex of G. If NG(u) �⊃ NG(v),
then G + uv is not a UB-graph.

PROOF. Since there exists a vertex w ∈ NG(v)−NG(u), NG(v)∪{u} is not a complete
subgraph in both G and G + uv. Thus v is not a simplicial vertex of G + uv and each vertex
of NG(v) ∩ NG(u) is not a simplicial vertex of G + uv. Since vertices adjacent to u and v

are only those in NG(v) ∩ NG(u), there exists no simplicial vertices of G + uv for a clique
containing an edge uv. Thus G + uv is not a UB-graph. �

PROPOSITION 7. Let G be a connected UB-graph with non adjacent vertices u and v,
where u and v are simplicial vertices of G. If NG(u) �⊇ NG(v) and NG(v) �⊇ NG(u), then
G + uv is not a UB-graph.
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PROOF. First we consider the case NG(u)∩NG(v) �= ∅. Then {u, v}∪(NG(u)∩NG(v))

is a clique of G + uv containing u and v. Moreover, any vertex of {u, v} ∪ (NG(u) ∩ NG(v))

is not a simplicial vertex of G + uv. Thus G + uv is not a UB-graph.
Next we consider the case NG(u) ∩ NG(v) = ∅. Then, the edge uv is a clique of

G + uv. Nevertheless, both u and v are not simplicial vertices of G + uv, since NG+uv[u]
and NG+uv[v] do not induce complete subgraphs in G+uv. Thus there does not exist the UB
edge clique cover of G + uv, and G + uv is not a UB-graph. �

PROPOSITION 8. Let G be a connected UB-graph with non adjacent vertices u and v,
where u and v are simplicial vertices of G and NG(u) ⊃ NG(v). If there exist no simplicial
vertices in NG(u) − NG(v), then G + uv is not a UB-graph.

PROOF. Let w ∈ NG(u)−NG(v). If G+uv is a UB-graph, then there exists a simplicial
vertex z which is adjacent to u and w. Since w and v are non adjacent vertices, z ∈ NG(u) −
NG(v), which is a contradiction. �

By these propositions, we obtain the following result.

THEOREM 9. Let G be a connected UB-graph with non adjacent vertices u and v. A
graph G + uv = (V (G),E(G) ∪ {uv}) is a UB-graph if and only if u and v satisfy one of the
following conditions;

(1) u and v are simplicial vertices of G and NG(u) = NG(v),
(2) u and v are simplicial vertices of G, NG(u) ⊃ NG(v) and there exists a simplicial

vertex w( �= u, v) of G in NG(u) − NG(v), or
(3) u is not a simplicial vertex of G, v is a simplicial vertex of G and NG(u) ⊃ NG(v).

PROOF. By Proposition 2, 3 and 4, if u and v satisfy one of the conditions (1), (2) or
(3), then G + uv is a UB-graph.

Conversely, we assume that G + uv is a UB-graph. By Proposition 5, both u and v are
simplicial vertices or either u and v is a simplicial vertex. By Proposition 6, if u is not a
simplicial vertex and v is a simplicial vertex, then u and v satisfy the condition (3). In the
case that both u and v are simplicial vertices, NG(u) ⊇ NG(v) or NG(u) ⊆ NG(v) by
Proposition 7. If NG(u) = NG(v), then u and v satisfy the condition (1). If NG(u) �= NG(v),
then NG(u) ⊂ NG(v) or NG(v) ⊂ NG(u), and u and v satisfy the condition (2) by Proposition
8. �

Next we consider edge deletions on UB-graphs. For a graph G and an edge uv of G,
G − uv is a graph where V (G − uv) = V (G) and E(G − uv) = E(G) − {uv}.

PROPOSITION 10. Let G be a connected UB-graph and uv be an edge of G. If u and
v are simplicial vertices of G, then G − uv is a UB-graph.

PROOF. By Theorem 1, there exists the UB edge clique cover E(G) =
{Q1,Q2, . . . ,Qk} of G. Then u and v belong to the same clique Q of E(G), Q − {u} and
Q − {v} are cliques of G − uv. Since each vertex of Q − {u, v} is adjacent to non adjacent
vertices u, v in G − uv, Q − {u} has the unique simplicial vertex v in G − uv and Q − {v}
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has the unique simplicial vertices u in G − uv. Let

E(G − uv) = (E(G) − {Q}) ∪ {Q − {u},Q − {v}} .

Each Qi ∈ E(G) − {Q} is a clique of G − uv containing a simplicial vertex of G − uv which
is not included in other cliques of E(G − uv). Then E(G − uv) is a UB edge clique cover of
G − uv and G − uv is a UB-graph. �

PROPOSITION 11. Let G be a connected UB-graph with a kernel K and uv be an edge
of G. If u is not a simplicial vertex of G, v is a simplicial vertex of G and there exists a subset
{wi ∈ K; wi �= v, uwi ∈ E(G)} of K such that NG(v) ⊆ ⋃

i NG(wi), then G − uv is a
UB-graph.

PROOF. By Theorem 1, there exists the UB edge clique cover E(G) =
{Q1,Q2, . . . ,Qk} whose kernel is K . Assume that u, v ∈ Q ∈ E(G), then Q − {u} is a
clique of G − uv with v as a simplicial vertex. Each Qi ∈ E(G) − {Q} is also a clique in
G − uv with a simplicial vertex belonging to no other Qj(i �= j). Therefore, a sufficient
condition for G − uv being a UB-graph is that each edge incident to u is covered by some
clique other than Q − {u} in G − uv, which means that each edge incident to u is covered
by some clique other than Q in G. By Theorem 1 and the definition of a kernel, this con-
dition implies that there exists a subset {wi ∈ K; wi �= v, uwi ∈ E(G)} of K such that
NG(v) ⊆ ⋃

i NG(wi). Under such condition

E(G − uv) = (E(G) − {Q}) ∪ (Q − {u})
is a UB edge clique cover of G − uv with a kernel K and G − uv is a UB-graph. �

PROPOSITION 12. Let G be a connected UB-graph with a kernel K and uv be an edge
of G. If u and v are not simplicial vertices of G, then G − uv is not a UB-graph.

PROOF. Since G is a UB-graph, there exists a vertex w of K which is adjacent to both
u and v. Since NG[w] is a clique of G, NG[w] − {u} and NG[w] − {v} are cliques of G − uv.

Since u and v are not simplicial vertices of G, u is adjacent to a vertex of K without
w, and v is adjacent to a vertex of K without w. Then u and v are not simplicial vertices of
G − uv. Since each vertex of NG[w] − {u, v} is adjacent to non adjacent vertices u and v

in G − uv, all vertices of NG[w] − {u, v} are not simplicial vertices of G − uv. Therefore
NG[w] − {u} and NG[w] − {v} have no simplicial vertices of G − uv. So there does not exist
a UB edge clique cover of G − uv and G − uv is not a UB-graph. �

PROPOSITION 13. Let G be a connected UB-graph with a kernel K and uv be an edge
of G, where u is not a simplicial vertex of G and v is a simplicial vertex of G. If there exist no
subsets {wi ∈ K; wi �= v, uwi ∈ E(G)} of K such that NG(v) ⊆ ⋃

i NG(wi), then G − uv

is not a UB-graph.

PROOF. By Theorem 1, there exists the UB edge clique cover E(G) =
{Q1,Q2, . . . ,Qk} whose kernel is K . By the assumption, there exists z ∈ NG(v) such that
the edge uz is covered by no cliques in E(G) other than NG[v]. If there exists a clique Q′
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with a simplicial vertex w �= v in G − uv such that u, z ∈ Q′, then Q′ is also a clique with a
simplicial vertex w in G and the edge uz is covered by Q′, which contradicts the assumption.
Thus G − uv has no cliques which contain u, z and a simplicial vertex, that is G − uv is not
a UB-graph. �

By these propositions, we obtain the following result.

THEOREM 14. Let G be a connected UB-graph with a kernel K and uv be an edge of
G. A graph G − uv = (V (G),E(G) − {uv}) is a UB-graph if and only if u and v satisfy one
of the following conditions ;

(1) u and v are simplicial vertices of G, or
(2) u is not a simplicial vertex of G, v is a simplicial vertex of G and there exists a

subset {wi ∈ K; wi �= v, uwi ∈ E(G)} of K such that NG(v) ⊆ ⋃
i NG(wi).

PROOF. By Proposition 10 and 11, if u and v satisfy the condition (1) or (2), then G−uv

is a UB-graph.
Conversely, we assume that G − uv is a UB-graph. By Proposition 12, both u and v

are simplicial vertices or either u and v is a simplicial vertex. In the case that both u and v

are simplicial vertices, u and v satisfy the condition (1). In the case that either u and v is a
simplicial vertex, u and v satisfy the condition (2) by Proposition 13. �

REMARK. G+uv and G−uv can be considered mutually invertible operations in each
correspondent cases, that is, the condition (1) of Theorem 14 corresponds to the condition (1)
of Theorem 9. Also, the condition (2) of the former corresponds to the conditions (2) and (3)
of the latter.

3. Split UB-graphs

In this section, we consider split UB-graphs. For a graph G, G is a split graph if and
only if there exists a partition V (G) = I ∪ Q of its vertex set into an independent set I and a
vertex set Q of a complete subgraph. In this section, for a split UB-graph G, I is a maximal
independent set of G and Q = V (G) − I . Then E(G) = {NG[vi ] ; vi ∈ I } is a UB edge
clique cover of G, because I is a maximal independent set and each vertex of I is a simplicial
vertex.

PROPOSITION 15. Let G be a split UB-graph with a maximal independent set I . For
non adjacent vertices u ∈ Q and v ∈ I , G + uv is a split UB-graph.

PROOF. It is trivial that G + uv is a split graph. Since G is a split UB-graph and I is a
maximal independent set, there exists the UB edge clique cover of G such that I is a kernel
and v is a simplicial vertex. Moreover, uv /∈ E(G) implies NG(v) ⊆ Q − {u} ⊆ NG(u) and
Q − {u} �= NG(u), that is NG(v) �= NG(u).

In the case u is a simplicial vertex, there exists a vertex w ∈ I adjacent to u by the
maximal property of I . Then u and v satisfy the condition (2) of Theorem 9 and G + uv is a
UB-graph.
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In the case u is not a simplicial vertex, u and v satisfy the condition (3) of Theorem 9
and G + uv is a UB-graph. �

The graph obtained from G by recursively joining pairs of non adjacent vertices u ∈ Q

and v ∈ I is a split graph. Thus we have the following result. For a graph G and S ⊆ V (G),
〈S〉 denotes the subgraph induced by S. For two graphs G and H , the sum G + H is the
graph with the vertex set V (G + H) = V (G) ∪ V (H) and the edge set E(G + H) =
E(G) ∪ E(H) ∪ {uv ; u ∈ V (G), v ∈ V (H)}.

COROLLARY 16. Let G be a split UB-graph with a maximal independent set I , and
H be the graph obtained from G by recursively joining pairs of non adjacent vertices u ∈ Q

and v ∈ I until no such pair remains. Then H = 〈Q〉 + 〈I 〉 and H is a split UB-graph.

PROOF. It is trivial that H = 〈Q〉 + 〈I 〉. By Proposition 15, the resulting graph at each
stage is a split UB-graph. So H is a split UB-graph. �

Since 〈Q〉 + 〈I 〉 is a split UB-graph, we have the following result by Theorem 9.

PROPOSITION 17. Let H = 〈Q〉 + 〈I 〉 where I is a maximal independent set of H

with |I | ≥ 2 and Q = V (H) − I is a vertex set of a complete subgraph of H . For u, v ∈ I ,
H + uv is a split UB-graph.

PROOF. Since NH(u) = NH (v) = Q, u and v satisfy the condition (1) of Theorem 9.
Thus H + uv is a UB-graph. Since I − {v} is a maximal independent set of H + uv and
Q ∪ {v} is a vertex set of a complete subgraph of H + uv, H + uv is a split graph. �

For a graph G, α(G) is the cardinality of the maximal independent set of G. For a graph
H satisfying the conditions of Proposition 17, H + uv is a split UB-graph and α(H + uv) =
α(H) − 1. By Corollary 16 and Proposition 17, we have the following result.

NOTE. Let G be a split UB-graph with a maximal independent set I , and G+ be a
graph obtained from G by the following operations. Then G+ is a complete graph.

Step 1: For any non adjacent vertices pair u ∈ Q and v ∈ I , add the new edge uv

recursively until no such pair remains.
Step 2: If |I | ≥ 2, then for a pair u, v ∈ I , add the new edge uv and go to Step 1. If

|I | = 1, we obtain the graph G+.

PROPOSITION 18. Let G be a split UB-graph with a maximal independent set I , and
uv be an edge of G. If a graph G − uv is a UB-graph, then G − uv = (V (G),E(G) − {uv})
is a split graph.

PROOF. By definition of split graphs, 〈Q〉 is a complete subgraph of G. By Theorem
14, u and v are simplicial vertices of G or one of u and v is a simplicial vertex of G. So we
consider the following four cases depending on the conditions of u and v.

CASE (a): u ∈ Q, v ∈ I and u is a simplicial vertex of G.
Since u is a simplicial vertex, u is not adjacent to vertices of I without v. Thus NG[u] =

NG[v]. Therefore I ∪{u} is a maximal independent set of G−uv and 〈Q−{u}〉 is a complete
subgraph of G − uv. So G − uv is a split graph.
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CASE (b): u ∈ Q, v ∈ I and u is not a simplicial vertex of G.
Since G − uv is a UB-graph, there exists a subset {wi ∈ I ; wi �= v, uwi ∈ E(G)}

such that NG(v) ⊆ ⋃
i NG(wi) by Theorem 14. Then I is also a maximal independent set of

G − uv and 〈Q〉 is also a complete subgraph of G − uv. So G − uv is a split graph.
CASE (c): u, v ∈ Q and u, v are simplicial vertices of G.
Since G is a UB-graph and I is a maximal independent set of G, there exists a simplicial

vertex w ∈ I such that w is adjacent to u and v. Since u and v are simplicial vertices of G,
NG[u] = NG[v] = NG[w]. Thus (I − {w}) ∪ {u, v} is a maximal independent set of G − uv

and 〈(Q − {u, v}) ∪ {w}〉 is a complete subgraph of G − uv. So G − uv is a split graph.
CASE (d): u, v ∈ Q, u is not a simplicial vertex of G and v is a simplicial vertex of G.
Since G is a UB-graph and I is a maximal independent set of G, there exists a simplicial

vertex w ∈ I such that w is adjacent to u, v ∈ Q of G. Since v is a simplicial vertex of G,
NG[v] = NG[w]. Let Iu = {wi ∈ I : uwi ∈ E(G)}. Since u is not a simplicial vertex,
(NG(u) − {w}) ∩ I �= ∅. Thus Iu �= ∅. Then

⋃
wi∈Iu

NG(wi) ⊆ Q. Since w ∈ NG(v),

NG(v) �⊆ ⋃
wi∈Iu

NG(wi). Therefore G − uv is not a UB-graph by Theorem 14, which is a

contradiction. So this case does not satisfy the condition. �
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