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Abstract. Let (A,m) denote a Noetherian local ring with maximal ideal m, J an m-primary ideal, I1, . . . , Is

ideals of A; M a finitely generated A-module. This paper will answer when mixed multiplicities of the multi-graded
fiber cone

FM(J, I1, . . . , Is) =
⊕

n1,...,ns�0

I
n1
1 · · · Ins

s M

JI
n1
1 · · · Ins

s M

are positive and characterize them in terms of the length of modules.

1. Introduction

Throughout this paper, (A,m) denotes a Noetherian local ring with maximal ideal m,
infinite residue field k = A/m; M a finitely generated A-module with Krull dimension
dim M = dim A = d > 0.

Let J be m-primary and I1, . . . , Is ideals of A such that I = I1 · · · Is is not contained in√
AnnM . Define

FM(J, I1, . . . , Is) =
⊕

n1,...,ns�0

I
n1
1 · · · Ins

s M

JI
n1
1 · · · Ins

s M
; � = dim

(⊕
n�0

InM

mInM

)

to be the multi-graded fiber cone of M with respect to J, I1, . . . , Is and the analytic spread
of I with respect to M , respectively. The multi-graded fiber cone FM(J, I1, . . . , Is) is an
important object of Commutative Algebra and Algebraic Geometry.

Set f (n1, . . . , ns) = lA

(
I

n1
1 ···Ins

s M

J I
n1
1 ···Ins

s M

)
. Then by [HHRT], f (n1, . . . , ns) is a polynomial

for all large n1, . . . , ns, and the degree of this polynomial is (� − 1)(see Proposition 3.1,
Section 3). The terms of total degree � − 1 in this polynomial have the form

∑
d1+···+ds = �−1

EJ (I
[d1]
1 , . . . , I [ds ]

s ; M)
n

d1
1 · · · nds

s

d1! · · · ds ! .
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Here EJ (I
[d1]
1 , . . . , I

[ds ]
s ; M) are non-negative integers not all zero, called the mixed multi-

plicity of the multi-graded fiber cone FM(J, I1, . . . , Is) of the type (d1, . . . , ds) [HHRT].

We emphasize that EJ (I
[d1]
1 , . . . , I

[ds ]
s ; M) is not only an important object in computing

the multiplicity of multi-graded fiber cones(see [HHRT, Theorem 4.3]) but also a generalized
object of mixed multiplicities in [Ve2] (see Remark 3.2, Section 3).

The purpose of this paper is to answer to the question when

EJ (I
[d1]
1 , . . . , I [ds ]

s ; M)

is positive and characterize it in terms of the length of modules (see Theorem 3.5, Section 3).
This paper is divided into three sections. In Section 2, we give some results on weak-

(FC)-sequences of modules. Section 3 investigates mixed multiplicities of multi-graded fiber
cones.

2. On Weak-(FC)-Sequences of Modules

In this section, we present some results on weak-(FC)-sequences of modules and reduc-
tions of ideals with respect to modules which will be used in the paper. Set

a : b∞ =
⋃
n�0

(a : bn) .

The notion of weak-(FC)-sequences in [Vi1] is extended to modules as follows.

DEFINITION 2.1 (see [MV, Definition 2.1]). Let U = (I1, . . . , Is ) be a set of ideals

of A such that I = I1 · · · Is is not contained in
√

AnnM . Set M∗ = M
0M :I∞ . We say that an

element x ∈ A is a weak-(FC)-element of M with respect to U if there exist an ideal Ii of U

and a positive integer n′
i such that

(FC1) : x ∈ Ii \ mIi and

I
n1
1 · · · Ins

s M∗ ∩ xM∗ = xI
n1
1 · · · Ini−1

i−1 I
ni−1
i I

ni+1
i+1 · · · Ins

s M∗

for all ni � n′
i and all non-negative integers n1, . . . , ni−1, ni+1, . . . , ns .

(FC2) : 0M : x ⊆ 0M : I∞.
Let x1, . . . , xt be a sequence in

⋃s
i=1 Ii . For each i = 0, 1, . . . , t − 1, set Ā = A

(x1,...,xi )
,

Ī1 = I1Ā, . . . , Īs = IsĀ, M = M
(x1,...,xi )M

. Let x̄i+1 denote the image of xi+1 in Ā. Then

x1, . . . , xt is called a weak-(FC)-sequence of M with respect to U if x̄i+1 is a weak-(FC)-

element of M with respect to (Ī1, . . . , Īs ) for i = 0, 1, . . . , t − 1.

REMARK 2.2. If I is contained in
√

AnnM, then the conditions (FC1) and (FC2) are
usually true for all x ∈ ⋃s

i=1 Ii . This only obstructs and does not carry useful. That is why in

Definition 2.1, one has to exclude the case that I is contained in
√

AnnM .
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In [MV], the authors showed the existence of weak-(FC)-sequences of modules. The
important key to the proof of this result is the following lemma.

LEMMA 2.3 (see [MV, Lemma 2.2]). Let (A,m) be a Noetherian local ring with max-
imal ideal m, infinite residue field k = A/m and M a finitely generated A-module. Let
U = (I1, . . . , Is) be a set of ideals of A and

∑
a finite set of prime ideals non containing

I1 · · · Is . Then for each 1 � i � s, there exists an element xi of Ii not contained in any prime
ideal in

∑
, and a positive integer ki such that

I
r1
1 · · · I ri

i · · · I rs
s M ∩ xiM = xiI

r1
1 · · · I ri−1

i−1 I
ri−1
i I

ri+1
i+1 · · · I rs

s M

for any ri � ki and all non-negative integers r1, . . . , ri−1, ri+1, . . . , rs .

Using the same argument as in Remark 1 [Vi1], the paper [MV] proved the following.

LEMMA 2.4 (see [MV, Proposition 2.3]). Let (I1, . . . , Is) be a set of ideals such that

I = I1 · · · Is is not contained in
√

AnnM . Then for any 1 � i � s, there exists a weak-(FC)-
element x ∈ Ii of M with respect to (I1, . . . , Is).

So the existence of weak-(FC)-sequences is universal.
In the case where I1, . . . , Is are m-primary ideals, by an argument analogous to that used

for Remark 3 [Vi1], we have the following result.

LEMMA 2.5 (see [MV, Proposition 2.5]). Let U = (I1, . . . , Is) be a set of m-primary
ideals. Then for all non-negative integers k1, . . . , ks such that k1 +· · ·+ks = d , there exists a
weak-(FC)-sequence x1, . . . , xd in

⋃s
i=1 Ii of M with respect to U consisting of k1 elements

of I1, . . . , ks elements of Is .

Set RA(I) = ⊕
n�0 Intn, RM(I) = ⊕

n�0 InMtn. RA(I) and RM(I) are called the

Rees algebra and the Rees module of I , respectively.

Note that if I = I1 · · · Is is contained in
√

AnnM then weak-(FC)-element of M with
respect to U = (I1, . . . , Is) does not exist, and the analytic spread of I with respect to M(
� = dim

(⊕
n�0

InM
mInM

))
is zero. Then Theorem 3.4 [Vi3] is stated in terms of modules as

follows.

LEMMA 2.6 (see[Vi3, Theorem 3.4]). Let J1, . . . , Jt be m-primary ideals and
I1, . . . , Is arbitrary ideals. Set I = I1 · · · Is, U = (J1, . . . , Jt , I1, . . . , Is ), � =
dim

(⊕
n�0

InM
mInM

)
. Let LU(I1, . . . , Is; M) denote the set of lengths of maximal weak-

(FC)-sequences in
⋃s

i=1 Ii of M with respect to U . For any 1 � j � s, set Îj =
I1 · · · Ij−1Ij+1 · · · Is if s > 1 and Îj = A if s = 1; Rj = RA(Ij ), Rj (M) = RM(Ij ).

Then the following statements hold.
(i) For any 1 � j � s, the length of maximal weak-(FC)-sequences in Ij of M with

respect to U is an invariant and this invariant does not depend on t and J1, . . . , Jt .
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(ii) If I is not contained in
√

AnnM and p is the length of maximal weak-(FC)-
sequences in Ij of M with respect to U , then

p = dim

(
Rj⋃

k≥0[m(mÎj )kRj (M) : (mÎj )kRj (M)]
)

� �j ,

where �j = dim
(⊕

n�0
In
j M

mIn
j M

)
.

(iii) If x1, . . . , xp is a maximal weak-(FC)-sequence in Ij of M with respect to U , then

I
n1
1 · · · Inj

j · · · Ins
s M = (x1, . . . , xp)I

n1
1 · · · Inj −1

j · · · Ins
s M

for all large n1, . . . , ns .
(iv) maxLU (I1, . . . , Is; M) = �.

Let I be an ideal of A. An ideal 	 of A is called a reduction of I with respect to M if
	 ⊆ I and In+1M = 	InM for all sufficiently large n [NR].

As an immediate consequence of Lemma 2.6, we have the following result.

LEMMA 2.7 (see [Vi3, Theorem 3.5]). Let J be an m-primary ideal and I an ideal

is not contained in
√

AnnM . Set � = dim
(⊕

n�0
InM

mInM

)
. Suppose that p is the length of

maximal weak-(FC)-sequences in I of M with respect to (J, I) and x1, . . . , xp is a maximal
weak-(FC)-sequence in I of M with respect to (J, I). Then

(i) p = �.
(ii) (x1, . . . , xp) is a reduction of I with respect to M .

Let 	 be a reduction of I with respect to M i.e., 	 ⊆ I and

In+1M = 	InM

for all sufficiently large n. A reduction 	 of I is called a minimal reduction if it does not

properly contain any other reduction of I [NR]. The least integer n such that In+1M = 	InM

is called the reduction number of I with respect to 	 and M , and we denote it by r	(I ; M).
The reduction number of I with respect to M is defined by

r(I ; M) = min{r	(I ; M)|	 is a minimal reduction of I with respect to M} .

Let J be an m-primary ideal and I an ideal is not contained in
√

AnnM . Set � =
dim

(⊕
n�0

InM
mInM

)
. By Lemma 2.7(i), the length of maximal weak-(FC)-sequences in I of

M with respect to (J, I) is �. Assume that 	 is a minimal reduction of I with respect to M .
It can be verified that if x1, . . . , xt is a maximal weak-(FC)-sequence in 	 of M with respect
to (J, I,	), then x1, . . . , xt is also a maximal weak-(FC)-sequence in I of M with respect to
(J, I). By Lemma 2.7, t = � and (x1, . . . , x�) ⊆ 	 is a reduction of I with respect to M .
Since 	 is a minimal reduction of I with respect to M , we get 	 = (x1, . . . , x�). So we have:
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LEMMA 2.8. Let J be m-primary and I an ideal is not contained in
√

AnnM. Then
	 is a minimal reduction of I with respect to M if and only if 	 is generated by a maximal
weak-(FC )-sequence in I of M with respect to (J, I).

Denote by LU(I1, . . . , Is; M) the set of the lengths of maximal weak-(FC)-sequences in⋃s
i=1 Ii of M with respect to U = (J, I1, . . . , Is). We have the following proposition.

PROPOSITION 2.9. Let J be an m-primary ideal and I1, . . . , Is ideals such that I =
I1 · · · Is is not contained in

√
AnnM . Set U = (J, I1, . . . , Is) and � = dim

(⊕
n�0

InM
mInM

)
.

Suppose that x1 is a weak-(FC)-element of M with respect to U . Set Ā = A/(x1),M =
M/x1M,m = mĀ, J̄ = J Ā, Ī = IĀ, Īi = IiĀ (i = 1, . . . , s), U = (J̄ , Ī1, . . . , Īs ), �

′ =
dim

(⊕
n�0

Ī nM

mĪ nM

)
. Then the following statements hold.

(i) max LU(Ī1, . . . , Īs; M) � max LU(I1, . . . , Is ; M) − 1, the equality holds iff there

exist x2, . . . , x� such that x1, . . . , x� is a weak-(FC)-sequence in
⋃s

i=1 Ii of M with
respect to U .

(ii) The length of maximal weak-(FC)-sequences in I of M with respect to (J, I) is
max LU(I1, . . . , Is; M).

(iii) If max LU(Ī1, . . . , Īs; M) = max LU (I1, . . . , Is; M) − 1, then �′ = � − 1.

PROOF. The proof of (i): Set p = max LU(Ī1, . . . , Īs; M). Let y1, . . . , yp be a se-

quence in
⋃s

i=1 Ii such that y ′
1, . . . , y

′
p is a maximal weak-(FC)-sequence in

⋃s
i=1 Īi of M

with respect to U , where y ′
k the initial form of yk in Ā (k = 1, . . . , p). By Definition 2.1,

x1, y1, . . . , yp is a maximal weak-(FC)-sequence in
⋃s

i=1 Ii of M with respect to U . Thus

p + 1 � max LU(I1, . . . , Is; M)

or p � max LU(I1, . . . , Is ; M) − 1. By Lemma 2.6 (iv),

� = max LU(I1, . . . , Is; M) .

Hence

max LU(Ī1, . . . , Īs; M) = max LU(I1, . . . , Is ; M) − 1

iff max LU(Ī1, . . . , Īs; M) = � − 1. This condition is equivalent to the existence of elements

x2, . . . , x� ∈ ⋃s
i=1 Ii such that x̄2, . . . , x̄� is a weak-(FC)-sequence in

⋃s
i=1 Īi of M with

respect to U , where x̄2, . . . , x̄� are the initial forms of x2, . . . , x� in Ā, respectively. It is clear
that x1, x2, . . . , x� is a weak-(FC)-sequence in

⋃s
i=1 Ii of M with respect to U .

The proof of (ii): Denote by p the length of maximal weak-(FC)-sequences in I

of M with respect to (J, I). By Lemma 2.7, p = �. On the other hand, we have
� = max LU (I1, . . . , Is; M) by Lemma 2.6 (iv). Hence

p = max LU(I1, . . . , Is; M) .



404 NGUYEN TIEN MANH AND DUONG QUOC VIET

The proof of (iii): By Lemma 2.6 (iv), we have

� = max LU (I1, . . . , Is; M) and �′ = max LU(Ī1, . . . , Īs; M) .

Since

max LU (Ī1, . . . , Īs; M) = max LU(I1, . . . , Is; M) − 1 ,

we get �′ = � − 1. �

3. Mixed Multiplicities of Multi-graded Fiber cones

Using the results on weak-(FC)-sequences of modules in Section 2, this section answers
to the question when mixed multiplicities of multi-graded fiber cones are positive and charac-
terizes them in terms of the length of modules.

If we assign the degree −1 to the zero polynomial then we have the following proposi-
tion.

PROPOSITION 3.1. Let J be an m-primary ideal and I1, . . . , Is arbitrary ideals. Set
I = I1 · · · Is,

� = dim

(⊕
n�0

InM

mInM

)
, f (n1, . . . , ns) = lA

(
I

n1
1 · · · Ins

s M

JI
n1
1 · · · Ins

s M

)
.

Then f (n1, . . . , ns) is a polynomial of degree � − 1 for all large n1, . . . , ns .

PROOF. If I is contained in
√

AnnM then the analytic spread of I is zero and
f (n1, n2, . . . , ns) is the zero polynomial for all large n1, n2, . . . , ns . Hence, the degree of
this polynomial is −1 = 0 − 1. So the proposition is true. The case that I is not con-

tained in
√

AnnM . By Theorem 4.1 [HHRT], f (n1, . . . , ns) is a polynomial for all suffi-
ciently large n1, . . . , ns . Moreover, all monomials of highest degree in this polynomial have
non-negative coefficients. Denote this polynomial by P(n1, . . . , ns). We will prove that
deg P(n1, . . . , ns ) = � − 1. Set Q(n) = P(n, . . . , n). It is clear that deg P(n1, . . . , ns) =
deg Q(n). We have

Q(n) = P(n, . . . , n) = lA

(
In

1 · · · In
s M

JIn
1 · · · In

s M

)
= lA

(
InM

JInM

)

for all sufficiently large n. Thus

deg Q(n) = dim

(⊕
n�0

InM

JInM

)
−1 = dim

(⊕
n�0

InM

mInM

)
−1 = � − 1 .

Hence deg P(n1, . . . , ns) = � − 1. �

REMARK 3.2. If set q = dim
(⊕

n�0
(J I )nM

m(J I )nM

)
then by Proposition 3.1,

lA

(
J nI

n1
1 ···Ins

s M

Jn+1I
n1
1 ···Ins

s M

)
is a polynomial of degree q − 1 for all large n, n1, . . . , ns . One writes
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the terms of total degree q − 1 in this polynomial in the form

∑
k0+k1+···+ks = q−1

eA(J [k0+1], I [k1]
1 , . . . , I [ks ]

s ; M)
nk0n

k1
1 · · ·nks

s

k0!k1! · · · ks ! ,

then eA(J [k0+1], I [k1]
1 , . . . , I

[ks ]
s ; M) is called the mixed multiplicity of M with respect to

(J, I1, . . . , Is) [Ve2] and [HHRT]. Since

lA

(
J nI

n1
1 · · · Ins

s M

Jn+1I
n1
1 · · · Ins

s M

)
= lA

(
J nI

n1
1 · · · Ins

s M

JJ nI
n1
1 · · · Ins

s M

)
,

it follows that EJ (J [k0], I [k1]
1 , . . . , I

[ks ]
s ; M) = eA(J [k0+1], I [k1]

1 , . . . , I
[ks ]
s ; M) for all non-

negative integers k0, k1, . . . , ks such that k0+k1+· · ·+ks = q−1. This equality proves that the
mixed multiplicity is a particular case of the mixed multiplicity of multi-graded fiber cones.

So EJ (I
[d1]
1 , . . . , I

[ds ]
s ; M) is not only an important object in computing the multiplicity of

multi-graded fiber cones but also a generalized object of mixed multiplicities.

Next, we need the following proposition.

PROPOSITION 3.3. Let J be an m-primary ideal and I1, . . . , Is ideals such that I =
I1 · · · Is is not contained in

√
AnnM . Set U = (J, I1, . . . , Is) and � = dim

(⊕
n�0

InM
mInM

)
.

Assume that x1 ∈ Ij is a weak-(FC)-element of M with respect to U for some j . Set M∗ =
M

0M :I∞ , M = M/x1M. Denote by P(n1, . . . , ns) and Q(n1, . . . , ns) the polynomials such

that

P(n1, . . . , ns ) = lA

(
I

n1
1 · · · Ins

s M

JI
n1
1 · · · Ins

s M

)
, Q(n1, . . . , ns) = lA

(
I

n1
1 · · · Ins

s M

JI
n1
1 · · · Ins

s M

)

for all large n1, . . . , ns . Then the following statements hold.
(i) Q(n1, . . . , ns) = P(n1, . . . , nj , . . . , ns) − P(n1, . . . , nj − 1, . . . , ns).

(ii) If there exist x2, . . . , x� ∈ A such that x1, . . . , x� is a weak-(FC)-sequence in⋃s
i=1 Ii of M with respect to U , then

deg Q(n1, . . . , ns) = deg P(n1, . . . , ns) − 1 .

(iii) If EJ (I
[d1]
1 , . . . , I

[ds ]
s ; M) 
= 0 and dj > 0, then

deg Q(n1, . . . , ns) = deg P(n1, . . . , ns) − 1 .

PROOF. Set N = 0M : I∞ and M
∗ = M

x1M:I∞ .

The proof of (i): It is clear that M
∗ � M

0M :I∞ . We have

lA

(
I

n1
1 · · · Ins

s M
∗

J I
n1
1 · · · Ins

s M
∗
)

= lA

(
I

n1
1 · · · Ins

s M + (x1M : I∞)

J I
n1
1 · · · Ins

s M + (x1M : I∞)

)
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= lA

(
I

n1
1 · · · Ins

s M + x1M + N

JI
n1
1 · · · Ins

s M + (I
n1
1 · · · Ins

s M + x1M + N)
⋂

(x1M : I∞)

)

= lA

(
I

n1
1 · · · Ins

s M + x1M + N

JI
n1
1 · · · Ins

s M + x1M + N + I
n1
1 · · · Ins

s M
⋂

(x1M : I∞)

)
.

By Artin-Rees Lemma, I
n1
1 · · · Ins

s M
⋂

(x1M : I∞) ⊆ x1M for all sufficiently large
n1, . . . , ns . Thus

lA

(
I

n1
1 · · · Ins

s M
∗

J I
n1
1 · · · Ins

s M
∗
)

= lA

(
I

n1
1 · · · Ins

s M + x1M + N

JI
n1
1 · · · Ins

s M + x1M + N

)

= lA

(
I

n1
1 · · · Ins

s M + N

JI
n1
1 · · · Ins

s M + (x1M + N)
⋂

(I
n1
1 · · · Ins

s M + N)

)

= lA

(
I

n1
1 · · · Ins

s M + N

JI
n1
1 · · · Ins

s M + x1I
n1
1 · · · Inj −1

j · · · Ins
s M + N

)

= lA

(
I

n1
1 · · · Ins

s M + N

JI
n1
1 · · · Ins

s M + N

)

− lA

(
J I

n1
1 · · · Ins

s M + x1I
n1
1 · · · Inj −1

j · · · Ins
s M + N

JI
n1
1 · · · Ins

s M + N

)

= lA

(
I

n1
1 · · · Ins

s M∗

J I
n1
1 · · · Ins

s M∗

)

− lA

(
x1I

n1
1 · · · Inj −1

j · · · Ins
s M + N

(J I
n1
1 · · · Ins

s M + N)
⋂

(x1I
n1
1 · · · Inj −1

j · · · Ins
s M + N)

)

= lA

(
I

n1
1 · · · Ins

s M∗

J I
n1
1 · · · Ins

s M∗

)

− lA

(
x1I

n1
1 · · · Inj −1

j · · · Ins
s M + N

(J I
n1
1 · · · Ins

s M + N)
⋂

(I
n1
1 · · · Inj

j · · · Ins
s M + N)

⋂
(x1M + N)

)

= lA

(
I

n1
1 · · · Ins

s M∗

J I
n1
1 · · · Ins

s M∗

)
−lA

(
x1I

n1
1 · · · Inj −1

j · · · Ins
s M + N

x1J I
n1
1 · · · Inj −1

j · · · Ins
s M + N

)

= lA

(
I

n1
1 · · · Ins

s M∗

J I
n1
1 · · · Ins

s M∗

)
−lA

(
x1I

n1
1 · · · Inj −1

j · · · Ins
s M∗

x1J I
n1
1 · · · Inj −1

j · · · Ins
s M∗

)
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for all large n1, . . . , ns . Since x1 is a weak-(FC)-element, x1 is a non-zero-divisor in M∗.
This follows that

lA

(
x1I

n1
1 · · · Inj −1

j · · · Ins
s M∗

x1J I
n1
1 · · · Inj −1

j · · · Ins
s M∗

)
= lA

(
I

n1
1 · · · Inj −1

j · · · Ins
s M∗

J I
n1
1 · · · Inj −1

j · · · Ins
s M∗

)
.

From these facts, we get

lA

(
I

n1
1 · · · Ins

s M
∗

J I
n1
1 · · · Ins

s M
∗
)

= lA

(
I

n1
1 · · · Ins

s M∗

J I
n1
1 · · · Ins

s M∗

)
−lA

(
I

n1
1 · · · Inj −1

j · · · Ins
s M∗

J I
n1
1 · · · Inj −1

j · · · Ins
s M∗

)

for all large n1, . . . , ns . It is clear that

lA

(
I

n1
1 · · · Ins

s M∗

J I
n1
1 · · · Ins

s M∗

)
= lA

(
I

n1
1 · · · Ins

s M + N

JI
n1
1 · · · Ins

s M + N

)

= lA

(
I

n1
1 · · · Ins

s M

JI
n1
1 · · · Ins

s M + I
n1
1 · · · Ins

s M
⋂

N

)
.

By Artin-Rees Lemma, I
n1
1 · · · Ins

s M
⋂

N = 0 for all large n1, . . . , ns . Thus

lA

(
I

n1
1 · · · Ins

s M∗

J In
1 · · · Ins

s M∗

)
= lA

(
I

n1
1 · · · Ins

s M

JIn
1 · · · Ins

s M

)

for all large n1, . . . , ns . Using the result just obtained, we also have

lA

(
I

n1
1 · · · Ins

s M

JI
n1
1 · · · Ins

s M

)
= lA

(
I

n1
1 · · · Ins

s M
∗

J I
n1
1 · · · Ins

s M
∗
)

for all sufficiently large n1, . . . , ns . Therefore

lA

(
I

n1
1 · · · Ins

s M

JI
n1
1 · · · Ins

s M

)
= lA

(
I

n1
1 · · · Ins

s M

JI
n1
1 · · · Ins

s M

)
−lA

(
I

n1
1 · · · Inj −1

j · · · Ins
s M

JI
n1
1 · · · Inj −1

j · · · Ins
s M

)

for all large n1, . . . , ns . Hence

Q(n1, . . . , nj , . . . , ns ) = P(n1, . . . , nj , . . . , ns) − P(n1, . . . , nj − 1, . . . , ns) .

The proof of (ii): Set Ā = A/(x1), J̄ = J Ā,m = mĀ, Īi = IiĀ for all i = 1, . . . , s

and U = (J̄ , Ī1, . . . , Īs ). Denote by LU(I1, . . . , Is; M) the set of lengths of maximal weak-

(FC)-sequences in
⋃s

i=1 Ii of M with respect to U and LU (Ī1, . . . , Īs; M) the set of lengths

of maximal weak-(FC)-sequences in
⋃s

i=1 Īi of M with respect to U . By Proposition 2.9 (i),

max LU(Ī1, . . . , Īs; M) = max LU (I1, . . . , Is; M) − 1 .
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Set �′ = dim
(⊕

n�0
Ī nM

mĪ nM

)
. By Lemma 2.6(iv), we have

max LU(Ī1, . . . , Īs ; M) = �′ and max LU(I1, . . . , Is ; M) = �.

Thus �′ = � − 1. By Proposition 3.1,

deg P(n1, . . . , ns) = � − 1 and deg Q(n1, . . . , ns) = �′ − 1 .

Hence

deg Q(n1, . . . , ns) = deg P(n1, . . . , ns) − 1 .

The proof of (iii): By (i),

Q(n1, . . . , nj , . . . , ns) = P(n1, . . . , nj , . . . , ns) − P(n1, . . . , nj − 1, . . . , ns) .

Since EJ (I
[d1]
1 , . . . , I

[ds ]
s ; M) 
= 0 and dj > 0,

deg Q(n1, . . . , ns) = deg P(n1, . . . , ns) − 1 . �

The following lemma makes up an important role in the proof of our second main result.

LEMMA 3.4. Let J be an m-primary ideal and I1, . . . , Is ideals such that I = I1 · · · Is

is not contained in
√

AnnM . Set U = (J, I1, . . . , Is) and � = dim
(⊕

n�0
InM

mInM

)
. Then the

following statements hold.

(i) Assume that EJ (I
[d1]
1 , . . . , I

[dj ]
j , . . . , I

[ds ]
s ; M) 
= 0 and dj > 0 for some j . Then

for any weak-(FC)-element x ∈ Ij of M with respect to U , we have

EJ (I
[d1]
1 , . . . , I

[dj ]
j , . . . , I [ds ]

s ; M) = EJ (I
[d1]
1 , . . . , I

[dj −1]
j , . . . , I [ds ]

s ; M/xM) .

(ii) If EJ (I
[d1]
1 , . . . , I

[ds ]
s ; M) 
= 0 and x1, . . . , x�−1 is a weak-(FC)-sequence in⋃s

i=1 Ii of M with respect to U consisting of d1 elements of I1, . . . , ds elements
of Is , then

EJ (I
[d1]
1 , . . . , I [ds ]

s ; M) = lA

(
InM

JInM

)

for large n, where M = M
(x1,...,x�−1)M

.

PROOF. The proof of (i): Set M ′ = M/xM . Denote by P(n1, . . . , ns) and
Q(n1, . . . , ns) the polynomials such that

P(n1, . . . , ns) = lA

(
I

n1
1 · · · Ins

s M

JI
n1
1 · · · Ins

s M

)
, Q(n1, . . . , ns ) = lA

(
I

n1
1 · · · Ins

s M ′

J I
n1
1 · · · Ins

s M ′

)

for all large n1, . . . , ns . By Proposition 3.3(i) and (iii), we have

Q(n1, . . . , nj , . . . , ns) = P(n1, . . . , nj , . . . , ns) − P(n1, . . . , nj − 1, . . . , ns)
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and deg Q(n1, . . . , ns) = deg P(n1, . . . , ns) − 1. Consequently,

EJ (I
[d1]
1 , . . . , I

[dj ]
j , . . . , I [ds ]

s ; M) = EJ (I
[d1]
1 , . . . , I

[dj −1]
j , . . . , I [ds ]

s ; M ′) .

The proof of (ii): By (i) and the proof of (i), we have

EJ (I
[0]
1 , . . . , I

[0]
j , . . . , I [0]

s ; M) = EJ (I
[d1]
1 , . . . , I

[dj ]
j , . . . , I [ds ]

s ; M) 
= 0

and lA

(
I

n1
1 ···Ins

s M

J I
n1
1 ···Ins

s M

)
is a polynomial of degree 0 for all large n1, . . . , ns . Conse-

quently, EJ (I
[0]
1 , . . . , I

[0]
j , . . . , I

[0]
s ; M) = lA

(
I

n1
1 ···Ins

s M

J I
n1
1 ···Ins

s M

)
for all large n1, . . . , ns . By

taking n1 = · · · = ns = n, where n is a sufficiently large integer, we obtain

EJ (I
[0]
1 , . . . , I

[0]
j , . . . , I

[0]
s ; M) = lA

(
InM

JInM

)
. Hence

EJ (I
[d1]
1 , . . . , I [ds ]

s ; M) = lA

(
InM

JInM

)

for all large n. �
Let I be an ideal of A. Denote by r = r(I ; M) the reduction number of I with respect to

M . The vanishing and non-vanishing of mixed multiplicities of multi-graded fiber cones and
determining them in terms of the length of modules are showed by the following theorem.

THEOREM 3.5. Let J be an m-primary ideal and I1, . . . , Is ideals such that I =
I1 · · · Is is not contained in

√
AnnM. Set U = (J, I1, . . . , Is) and � = dim

(⊕
n�0

InM
mInM

)
.

Then the following statements hold.

(i) EJ (I
[d1]
1 , . . . , I

[ds ]
s ; M) 
= 0 if and only if there exists a weak-(FC)-sequence

x1, . . . , x�−1 in
⋃s

i=1 Ii of M with respect to U consisting of d1 elements of

I1, . . . , ds elements of Is and �M(I) = 1, where M = M
(x1,...,x�−1)M

, �M(I) =
dim

(⊕
n�0

InM

mInM

)
.

(ii) Suppose that EJ (I
[d1]
1 , . . . , I

[ds ]
s ; M) 
= 0. Let x1, . . . , x�−1 be a weak-(FC)-

sequence in
⋃s

i=1 Ii of M with respect to U consisting of d1 elements of I1, . . . , ds

elements of Is . Set M = M
(x1,...,x�−1)M

, Ā = A
(x1,...,x�−1)

, Ī = IĀ and r = r(Ī ; M).

Then

EJ (I
[d1]
1 , . . . , I [ds ]

s ; M) = lA

(
InM + (x1, . . . , x�−1)M : I∞

J InM + (x1, . . . , x�−1)M : I∞

)

for all n � r .

PROOF. The proof of (i): We first prove the necessity. The proof is by induction on
� � 1. For � = 1, the result is trivial. Suppose that the result has been proved for � − 1 � 1.
As the next step, we claim that the result is true for �. Since d1 + · · · + ds = � − 1 > 0, there
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exists 1 � j � s such that dj > 0. By Lemma 2.4, there exists a weak-(FC)-element x1 ∈ Ij

of M with respect to U . Set

A′ = A/(x1) , M ′ = M/x1M , J ′ = JA′ , m′ = mA′ , I ′
i = IiA

′ (i = 1, . . . , s) ,

I ′ = IA′ , U ′ = (J ′, I ′
1, . . . , I

′
s ) .

By Lemma 3.4(i), we have

EJ (I
[d1]
1 , . . . , I

[dj −1]
j , . . . , I [ds ]

s ; M ′) = EJ (I
[d1]
1 , . . . , I

[dj ]
j , . . . , I [ds ]

s ; M) 
= 0 .

It is clear that

EJ ′(I ′
1
[d1], . . . , I ′

j
[dj−1]

, . . . , I ′
s
[ds ]; M ′) = EJ (I

[d1]
1 , . . . , I

[dj −1]
j , . . . , I [ds ]

s ; M ′) .

So EJ ′(I ′
1
[d1], . . . , I ′

j
[dj−1]

, . . . , I ′
s
[ds ]; M ′) 
= 0. Denote by P(n1, . . . , ns) and

Q(n1, . . . , ns) the polynomials such that

P(n1, . . . , ns) = lA

(
I

n1
1 · · · Ins

s M

JI
n1
1 · · · Ins

s M

)
, Q(n1, . . . , ns ) = lA

(
I

n1
1 · · · Ins

s M ′

J I
n1
1 · · · Ins

s M ′

)

for all large n1, . . . , ns . By Proposition 3.1, deg P(n1, . . . , ns) = � − 1. Since

EJ (I
[d1]
1 , . . . , I

[ds ]
s ; M) 
= 0 and dj > 0, applying Proposition 3.3(iii) we have

deg Q(n1, . . . , ns) = deg P(n1, . . . , ns) − 1 = (� − 1) − 1 = � − 2 .

On the other hand, if set �′ = dim
(⊕

n�0
I ′nM ′

m′I ′nM ′
)

then by Proposition 3.1,

deg Q(n1, . . . , ns) = �′ − 1. Thus

�′ = deg Q(n1, . . . , ns) + 1 = (� − 2) + 1 = � − 1 .

By the inductive assumption applied to �′ = � − 1 � 1, there exist x2, . . . , x�−1 consisting of
d1 elements of I1, . . . , dj −1 elements of Ij , . . . , ds elements of Is such that x ′

2, . . . , x
′
�−1 is a

weak-(FC)-sequence in
⋃s

i=1 I ′
i of M ′ with respect to U ′ and �M ′′(I ′) = 1, where x ′

k the im-

age of xk in A′ (k = 2, . . . , �−1), M ′′ = M ′
(x ′

2,...,x
′
�−1)M

′ and �M ′′(I ′) = dim
(⊕

n�0
I ′nM ′′

m′I ′nM ′′
)

.

Set

M = M

(x1, . . . , x�−1)M
.

It is clear that M ′′ � M and �M(I) = �M ′′(I ′). Hence �M(I) = 1 and x1, x2, . . . , x�−1

is a weak-(FC)-sequence in
⋃s

i=1 Ii of M with respect to U consisting of d1 elements of
I1, . . . , dj elements of Ij , . . . , ds elements of Is .

We turn to the proof of sufficiency. The result is proved by induction on � � 1. For

� = 1, it implies that d1 = · · · = ds = 0 and lA

(
I

n1
1 ···Ins

s M

J I
n1
1 ···Ins

s M

)
is a polynomial of degree 0 for
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all large n1, . . . , ns . Thus

EJ (I
[d1]
1 , . . . , I [ds ]

s ; M) = EJ (I
[0]
1 , . . . , I [0]

s ; M) = lA

(
I

n1
1 · · · Ins

s M

JI
n1
1 · · · Ins

s M

)

for all large n1, . . . , ns . Since I �
√

AnnM , lA

(
I

n1
1 ···Ins

s M

J I
n1
1 ···Ins

s M

)

= 0 for all n1, . . . , ns . Hence

EJ (I
[d1]
1 , . . . , I

[ds ]
s ; M) 
= 0. The result is true for � = 1. Assume that the result is true for

� − 1 � 1. As the next step, we show that the result is true for �. Let x1, . . . , x�−1 be a weak-
(FC)-sequence in

⋃s
i=1 Ii of M with respect to U consisting of d1 elements of I1, . . . , ds

elements of Is and �M(I) = 1. Then Ī �
√

AnnĀ(M), where Ā = A/(x1, . . . , x�−1), Ī =
IĀ. By Lemma 2.4, there exists x� ∈ ⋃s

i=1 Ii such that x̄� is a weak-(FC)-element in
⋃s

i=1 Īi

of M with respect to (J̄ , Ī1, . . . , Īs ), where x̄� the image of x� in Ā, J̄ = J Ā, Īi = IiĀ for
i = 1, . . . , s. Since � − 1 � 1, there exists 1 � j � s such that dj > 0 and x1 ∈ Ij . Set

A′ = A/(x1) , M ′ = M/x1M , J ′ = JA′ , m′ = mA′ , I ′
i = IiA

′(i = 1, . . . , s) ,

I ′ = IA′ , �′ = dim

(⊕
n�0

I ′nM ′

m′I ′nM ′

)
.

Denote by P(n1, . . . , ns) and Q(n1, . . . , ns) the polynomials such that

P(n1, . . . , ns) = lA

(
I

n1
1 · · · Ins

s M

JI
n1
1 · · · Ins

s M

)
, Q(n1, . . . , ns) = lA

(
I

n1
1 · · · Ins

s M ′

J I
n1
1 · · · Ins

s M ′

)

for all large n1, . . . , ns . By Proposition 3.1, we have

deg Q(n1, . . . , ns) = �′ − 1 and deg P(n1, . . . , ns) = � − 1 .

Note that x1, . . . , x� is a weak-(FC)-sequence in
⋃s

i=1 Ii of M with respect to U . By
Proposition 3.3,

Q(n1, . . . , nj , . . . , ns) = P(n1, . . . , nj , . . . , ns) − P(n1, . . . , nj − 1, . . . , ns)

and deg Q(n1, . . . , ns) = deg P(n1, . . . , ns) − 1. So that �′ = � − 1 and

EJ (I
[d1]
1 , . . . , I

[dj ]
j , . . . , I

[ds ]
s ; M) = EJ (I

[d1]
1 , . . . , I

[dj −1]
j , . . . , I

[ds ]
s ; M ′)

= EJ ′(I ′
1
[d1], . . . , I ′

j
[dj −1]

, . . . , I ′
s
[ds ]; M ′) .

By the inductive assumption applied to �′ = � − 1 � 1, it follows that

EJ ′(I ′
1
[d1], . . . , I ′

j
[dj −1]

, . . . , I ′
s
[ds ]; M ′) 
= 0 .

Hence EJ (I
[d1]
1 , . . . , I

[ds ]
s ; M) 
= 0.
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The proof of (ii): Set �∗ = dim
(⊕

n�0
Ī nM

mĪ nM

)
, J̄ = J Ā, Īi = IiĀ

(i = 1, . . . , s),M
∗ = M

(x1,...,x�−1)M:I∞ . By Lemma 3.4 (ii),

lĀ

(
Ī nM

J̄ Ī nM

)
= lA

(
InM

JInM

)
= EJ (I

[d1]
1 , . . . , I [ds ]

s ; M) 
= 0

for large n. Therefore, Ī = Ī1 · · · Īs �
√

AnnĀ(M). By Lemma 2.4, for any 1 � j � s there

exists an element x� ∈ Ij such that x̄� (the initial form of x� in Ā) is a weak-(FC)-element in

Īj of M with respect to (J̄ , Ī1, . . . , Īs ). Then x1, . . . , x� is a weak-(FC)-sequence in
⋃s

i=1 Ii

of M with respect to U. Applying Proposition 2.9, we have

�∗ = � − (� − 1) = 1 .

By Lemma 2.8, there exists a weak-(FC)-element x ∈ Ī of M with respect to (J̄ , Ī ) such that

(x) is a minimal reduction of Ī with respect to M and r = r(x)(Ī ; M). Therefore Ī nM =
xn−r Ī rM for all n � r . It follows that

Ī nM
∗ = xn−r Ī rM

∗

for all n � r . It is easy to see that

lA

(
Ī nM

∗

J̄ Ī nM
∗
)

= lA

(
Ī nM

J̄ Ī nM + Ī nM
⋂

(0M : Ī∞)

)
.

By Artin-Rees Lemma, Ī nM
⋂

(0M : Ī∞) = {0M} for all large n. Thus

lA

(
Ī nM

∗

J̄ Ī nM
∗
)

= lA

(
Ī nM

J̄ Ī nM

)
= lA

(
InM

JInM

)

for all large n. From these facts and by Lemma 3.4(ii), we have

EJ (I
[d1]
1 , . . . , I [ds ]

s ; M) = lA

(
InM

JInM

)
= lA

(
Ī nM

∗

J̄ Ī nM
∗
)

for all large n. It is clear that lA

(
Ī nM

∗

J̄ Ī nM
∗
)
= lA

(
xn−r Ī rM

∗

xn−r J̄ Ī rM
∗
)

for all n � r . Since x is a non-

zero-divisor in M
∗
,

lA

(
xn−r Ī rM

∗

xn−r J̄ Ī rM
∗
)

= lA

(
Ī rM

∗

J̄ Ī rM
∗
)

for all n � r . Thus lA

(
Ī nM

∗

J̄ Ī nM
∗
)
= lA

(
Ī rM

∗

J̄ Ī rM
∗
)

for all n � r . Hence

EJ (I
[d1]
1 , . . . , I [ds ]

s ; M) = lA

(
Ī nM

∗

J̄ Ī nM
∗
)

= lA

(
InM + (x1, . . . , x�−1)M : I∞

J InM + (x1, . . . , x�−1)M : I∞

)

for all n � r . The proof of Theorem 3.5 is complete. �
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In the case where I1, . . . , Is are m-primary ideals, it is easy to see that � = d . By
combining Lemma 2.5 and Theorem 3.5(i), we get the following result.

COROLLARY 3.6. Let J, I1, . . . , Is be m-primary ideals and d1, . . . , ds non-negative
integers such that d1 + · · · + ds = d − 1. Then the following statements hold.

(i) EJ (I
[d1]
1 , . . . , I

[ds ]
s ; M) 
= 0.

(ii) Let x1, . . . , xd−1 be a weak-(FC)-sequence in
⋃s

i=1 Ii of M with respect to

(J, I1, . . . , Is ) consisting of d1 elements of I1, . . . , ds elements of Is . Set Ā =
A

(x1,...,xd−1)
, Ī = IĀ,M = M

(x1,...,xd−1)M
and r = r(Ī ; M). Then

EJ (I
[d1]
1 , . . . , I [ds ]

s ; M) = lA

(
InM + (x1, . . . , xd−1)M : I∞

J InM + (x1, . . . , xd−1)M : I∞

)

for all n � r.
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