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Abstract. The existence of a Markov partition of a hyperbolic group automorphism generated by an integral
matrix with determinant ±1 is established by Sinai (see [22]). After that, there are many articles to construct Markov
partitions of group automorphisms generated by non-negative matrices satisfying Pisot condition by the tiling method
from substitutions (see [1], [7], [16], [19], [5]). One of the purpose of this paper is to establish the construction
method of a Markov partition for a group automorphism generated by a non-positive matrix satisfying “negative
Pisot” condition. An anti-homomorphic extension of a substitution, called AH -substitution, is introduced in the
paper. Owing to this new substitution, the Markov partition of the group automorphism from the non-positive integral
matrix is constructed.

1. Introduction

A substitution σ is a mapping from a (finite) alphabet A with d letters to the free
monoid A∗ which consists of finite words by the letters of A. For each j ∈ A, we note

σ(j) = W
(j)

1 · · · W(j)
k · · · W(j)

lj
(W

(j)
k ∈ A), where lj (> 0) is the length of σ(j). A sub-

stitution extends to mappings on A∗ in two natural ways, that is, homomorphically and anti-
homomorphically; its extensions are called H -substitution and AH -substitution, respectively
in this paper. An H -substitution, that is, a substitution in the usual sense has been studied by
many articles (see [3], [5], [9], [15], [17], [21], [23]), and many remarkable applications have
been obtained for unimodular Pisot substitutions recently (see [2], [4], [13], [14], [16]). The
following are the main parts of them.

(1) The existence of the set equations for the partial atomic surfaces, that is, there exists
a collection of compact sets {X′

1, . . . , X
′
d } with fractal boundaries and positive

measure on the Lσ -invariant stable subspace Ws such that

L−1
σ X′

i =
⋃

(
j
k

)
:W(j)

k =i

(
X′

j + L−1
σ (πs(f (P

(j)
k ))

)
,
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where Lσ , πs , f and P
(j)

k are the incidence matrix of σ , a projection of Rd to Ws ,
a canonical homomorphism and the prefix of σ(j), respectively (see section 2 for
detail).

(2) The existence of a quasi-periodic tiling T′ of Ws with the protoset {X′
1, . . . , X

′
d }

and that of a tiling substitution E1(σ )∗ on T′ given by

E1(σ )∗(πs(x) + X′
i ) = L−1

σ πs(x) +
∑

(
j
k

)
:W(j)

k =i

(
X′

j + L−1
σ πs(f (P

(j)
k )

)

for x ∈ Zd .
(3) The construction of a Markov partition of a group automorphism on d-dimensional

torus generated by the non-negative matrix Lσ .
In the present paper, on the assumption that an AH -substitution is of unimodular irre-

ducible negative Pisot type, we obtain a series of results for AH -substitution similar to (1),
(2), and (3) for H -substitution. One of the reason why we study AH -substitution in detail
is that a Markov partition of a group automorphism on d-dimensional torus which is deter-
mined by a non-positive matrix has not been constructed in general. We give an answer of this
problem by using an AH -substitution. Another reason is that we expect an AH -substitution,
which is a new substitution, can bring us new results.

FIGURE 1. The figures above are the atomic surfaces of σH and σAH induced from the
substitution σ : 1 �→ 112, 2 �→ 32, 3 �→ 1.
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The outline of the paper is as follows. The basic concepts and definitions about an AH -
substitution are introduced in section 2. In section 3, the Markov transformation and the
natural extension for AH -substitution are discussed, and the existence of the partial atomic
surfaces {X1, . . . , Xd} of AH -substitution is showed. They are defined by projecting the
geometrical fixed point of AH -substitution to Ws , and satisfy the set equation by the negative
integral matrix −Lσ as follows:

(−Lσ )−1Xi =
⋃

(
j
k

)
:W(j)

k =i

(Xj + b
j
k )

where b
j
k ∈ Ws . In the last section, the existence of a quasi-periodic tiling T on Ws with

the protoset {X1, . . . , Xd} under the some condition is showed and also the Markov partition
of the group automorphism on d-dimensional torus which is determined by the non-positive
matrix −Lσ is constructed.

2. AH -substitution

2.1. AH -substitution. Let A = {1, 2, . . . , d} be an alphabet with d ≥ 2, and A∗ the
set of finite words over A. A∗ is a free monoid, whose product is concatenation, with the
empty word as the unit element denoted by ε.

If σ is a mapping from A to A∗ satisfying the condition

σ(j) �= ε for any j ∈ A ,

then σ is called a substitution on A. We denote by W
(j)
σ,k the letter at the position k in σ(j),

that is,

σ(j) = W
(j)

σ,1W
(j)

σ,2 · · · W(j)
σ,lj

(W
(j)
σ,k ∈ A) ,

and also denote

σ(j) = P
(j)
σ,k W

(j)
σ,k · · ·W(j)

σ,lj

by using the k-th prefix P
(j)
σ,k of σ(j)

P
(j)
σ,k :=

{
W

(j)

σ,1 · · · W(j)

σ,k−1 (2 ≤ k ≤ lj ) ,

ε (k = 1) .

We omit the subscript σ in W
(j)
σ,k and P

(j)
σ,k , and denote them by W

(j)
k and P

(j)
k as usual through-

out this paper.
We can construct the extension of σ , whose domain is A∗, in two natural ways. One way

is to extend homomorphically, that is, its extension σH : A∗ → A∗ is defined by σH (ε) := ε,
and for a1, a2, . . . , an ∈ A (n ∈ N),

σH (a1a2 · · · an) := σ(a1)σ (a2) · · · σ(an) .
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We call σH a homomorphic substitution or an H-substitution on A∗, which is well-known as
substitution. Another is to extend anti-homomorphically.

DEFINITION 2.1. Let a transformation σAH : A∗ → A∗ be defined as follows:
σAH (ε) := ε, and for a1, a2, . . . , an ∈ A (n ∈ N),

σAH (a1a2 · · · an) := σ(an) · · · σ(a2)σ (a1) . (2.1)

We call this transformation an AH-substitution or an anti-homomorphic substitution on A∗.

It is evident that an AH-substitution σAH is anti-homomorphic, that is,

σAH (w1w2) = σAH (w2)σAH (w1) for any w1, w2 ∈ A∗ . (2.2)

The incidence matrix Lσ of a substitution σ (or an H -substitution σH ) is defined as the
d ×d matrix, whose (i, j)-entry is the number of the occurrence of i in σ(j). Since the matrix
concerned with σAH intrinsically is −Lσ , we call −Lσ the incidence matrix of σAH , which
is an integral and non-positive matrix.

A mapping f : A∗ → Zd defined by f (ε) := 0 and

f (a1a2 · · · an) := ea1 + ea2 + · · · + ean for any a1a2 · · · an ∈ A∗\{ε}
is said to be a canonical homomorphism or a homomorphism of abelianization, where (ej )j∈A
is the canonical basis of Rd . It is clear that f is homomorphic. The following properties are
trivial from the definitions:

Lσ = (f (σ (1)), . . . , f (σ (d))) , (2.3)

f ◦ σAH = f ◦ σH = Lσ ◦ f on A∗. (2.4)

An algebraic integer α is called a Pisot number (and a negative Pisot number) if α > 1
(and α < −1) and all the conjugates except α are less than 1 in modulus, respectively.

DEFINITION 2.2. Let σ be a substitution on A.
(1) σ ( or σH ) is of Pisot type if the Perron-Frobenius root λ of Lσ is a Pisot number,
(2) σAH is of negative Pisot type if the Perron-Frobenius root λ of Lσ is a Pisot number

(by the fact −Lσ is the incidence matrix of σAH ).
(3) σ ( σH or σAH ) is unimodular if det Lσ = ±1,
(4) σ ( σH or σAH ) is irreducible if the characteristic polynomial of Lσ is irreducible

over Q,
(5) σ ( σH or σAH ) satisfies the fixed point condition if there exists j ∈ A such that

σ(j) = jw for some w ∈ A∗ \ {ε}.
(6) σ ( σH or σAH ) is primitive if Lσ is primitive.

REMARK 2.1. We can set j = 1 without loss of generality in the definition of fixed
point condition. The definition of the substitution of Pisot type in [8] is different from ours.

Since an AH -substitution σAH of irreducible negative Pisot type is primitive, we have
the well-known proposition by Perron-Frobenius theorem.
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PROPOSITION 2.1. Given an AH -substitution σAH of irreducible negative Pisot type,
then we have that Rd is decomposed into the direct sum

Rd = Wu ⊕ Ws ,

where Wu is a 1-dimensional eigenspace of −Lσ corresponding to −λ , and Ws is a (d-1)-
dimensional contractive invariant subspace with respect to −Lσ . Moreover we can take a
positive vector as an eigenvector of Wu.

We denote by πu (and πs ) the projection to Wu (and Ws ) with respect to this direct
decomposition, respectively.

2.2. Fixed point of AH -substitution. In the rest of the paper, we shall consider the
class of AH -substitutions on A∗ satisfying the following conditions:

(NP) σAH is of negative Pisot type,
(UM) σAH is unimodular,
(IR) σAH is irreducible,
(FP) σAH satisfies the fixed point condition.
We set, for k, l ∈ N ∪ {0}

Ãk,l := {a−k · · · a−1.a0a1 · · · al | aj ∈ A, j = −k,−k + 1, . . . , l} ,

which is the set of finite words of length (k, l + 1) with the decimal point, and

Ã :=
⋃

k,l≥0

Ãk,l .

Since uwv ∈ Ã for u, v ∈ A∗, w ∈ Ã, the free monoid A∗ acts on the set Ã from the left and
the right.

We shall also consider σAH as a transformation on Ã defined by

σAH (a−k · · · a−1.a0a1 · · · al) := σ(al) · · ·σ(a1).σ (a0)σ (a−1) · · · σ(a−k) ,

and we have that for u, v ∈ A∗, w ∈ Ã

σAH (uwv) = σAH (v)σAH (w)σAH (u) .

We can extend σAH to the transformation on AZ similarly. We define a relation � on Ã
as follows. Let w1, w2 ∈ Ã. Then we write w1 � w2 if there exist u, v ∈ A∗ such that
w2 = uw1v, in addition we write w1 ≺ w2 if w1 �= w2 and w1 � w2.

DEFINITION 2.3. If s ∈ AZ satisfies σAH (s) = s, then s is called the fixed point of
σAH .

By Assumption (FP), we have σ(1) = 1w (w ∈ A∗ \ {ε}). Let us iterate σn
AH (.1) (n =

1, 2, 3, . . . ). Then we have

σAH (.1) = .σ (1) = .1w ,
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σ 2
AH (.1) = σAH (w)σAH (.1) = σAH (w).1w ,

σ 3
AH (.1) = σAH (w).1wσ 2

AH (w) ,

...

In general, we get

σn
AH (.1) =

{
σn−2

AH (w)σn−4
AH (w) · · · σAH (w).1wσ 2

AH (w) · · · σn−1
AH (w) (n : odd) ,

σn−1
AH (w)σn−3

AH (w) · · · σAH (w).1wσ 2
AH (w) · · · σn−2

AH (w) (n : even) .

Therefore we have

σn
AH (.1) ≺ σn+1

AH (.1)

for n ∈ N, which induces a bi-infinite sequence s

s := lim
n→∞ σn

AH (.1) = · · · s−2s−1.s0s1s2 · · ·
where s0 = 1. It is clear that s is the fixed point of σAH .

2.3. Geometrical fixed point of AH -substitution. Next we shall give the geometri-
cal representation of the fixed point s of σAH . We denote an oriented unit line segment with
the base point x and the orientation ej by

(x, j) := {
x + tej

∣∣ 0 ≤ t < 1
}

for x ∈ Zd and j ∈ A. We set Λ := {
(x, j)

∣∣ x ∈ Zd , j ∈ A
}
, and let G1 = G1(Λ) be a

Z-free module generated by Λ. The action on G1 by Zd (denote by +) is defined by

y + (x, j) := (y + x, j) (y ∈ Zd , (x, j) ∈ Λ) .

A homomorphism E1(σAH ) on G1 is defined as follows:

E1(σAH )(x, j) := (−Lσ )(x + ej − e1) +
lj∑

k=1

(f (P
(j)
k ),W

(j)
k )

for any generator (x, j) of G1.

By the calculation of E1(σAH )n(0, j) (n ∈ N), we obtain

E1(σAH )n(0, j) =
∑

(
j0···jn−1
k0···kn−1

)
:Gσ -admissible, j0=j

(s
(
j0···jn−1
k0···kn−1

)
,W

(jn−1)

kn−1
) , (2.5)

where

s
(
j0···jn−1
k0···kn−1

) :=
n∑

α=1

(−Lσ )α−1((−Lσ )(ejn−α − e1) + f (P
(jn−α)

kn−α
)
)
, (2.6)



AH -SUBSTITUTION AND MARKOV PARTITION 381

and the summation of the right hand side of (2.5) means the sum of all Gσ -admissible se-

quences
(j0···jn−1
k0···kn−1

)
with j0 = j . The term “Gσ -admissible” is defined in the next section.

If λ ∈ G1 is represented by

λ = (x1, j1) + · · · + (xk, jk) , ((xi , ji) ∈ Λ, i = 1, 2, . . . , k) ,

then we denote the union of (xi , ji)’s by |λ|, that is, |λ| := ⋃k
i=1(xi , ji ). Let Ḡ1 be a set of

the finite or countable unions of the elements of Λ. Since for any L ∈ Ḡ1, there exist some
finite or countable index set A and (xα, jα) ∈ Λ (α ∈ A) such that

L =
⋃
α∈A

(xα, jα) ,

a mapping Ē1(σAH ) : Ḡ1 → Ḡ1 can be defined by

Ē1(σAH )(L) :=
⋃
α∈A

|E1(σAH )(xα, jα)| .

Thus we have for any n ∈ N and j ∈ A

Ē1(σAH )n(0, j) = |E1(σAH )n(0, j)| .
From (2.5) and (2.6), we have that Ē1(σAH )n(0, 1) is a connected oriented broken line seg-
ment through the origin satisfying

Ē1(σAH )n(0, 1) ⊂ Ē1(σAH )n+1(0, 1) (n ∈ N) .

Therefore there exists the limit s̄ of the sequence (Ē1(σAH )n(0, 1))n∈N:

s̄ := lim
n→∞ Ē1(σAH )n(0, 1) =

∞⋃
n=0

Ē1(σAH )n(0, 1) .

It holds that Ē1(σAH )(s̄) = s̄. The limit s̄ is called the geometrical fixed point of σAH .

EXAMPLE 2.1. Let σ be a substitution as follows:

σ :
{

1 �→ 112

2 �→ 12 .

Then the incidence matrix of σ is

Lσ =
(

2 1
1 1

)
,

the characteristic polynomial of Lσ is t2 − 3t + 1, and σAH satisfies the conditions (NP),
(UM), (IR) and (FP). The words with decimal point σn

AH (.1) (n = 1, 2, 3, . . . ) are given by

σAH (.1) =.112
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σ 2
AH (.1) =σ(2)σ (1).σ (1) = 12112.112

σ 3
AH (.1) =12112.1121211211212112

...

By the definition of E1(σAH ), we obtain

E1(σAH )(0, 1) = (0, 1) + (e1, 1) + (2e1, 2)

E1(σAH )(0, 2) = (e1, 1) + (2e1, 2) ,

therefore we have

E1(σAH )2(0, 1) = (0, 1) + (e1, 1) + (2e1, 2)

+ (
(−2
−1

)
, 1) + (

(−1
−1

)
, 1) + (

( 0
−1

)
, 2)

+ (
(−3
−2

)
, 1) + (

(−2
−2

)
, 2) ,

...

FIGURE 2. Ē1(σAH )n(0, 1) (n = 1, 2, 3, 4).
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The geometric representations of σn
AH (.1), that is, Ē1(σAH )n(0, 1) (n = 1, 2, 3, 4) is

given by Figure 2 which draw only base points.

3. Markov transformation

3.1. Markov transformation on J . Associated to a substitution σ on A, a directed
graph Gσ = (Vσ , Eσ , ∂+

σ , ∂−
σ ) is defined in the following way. The vertex set Vσ of Gσ is the

alphabet A. The following is the edge set Eσ of Gσ :

Eσ := {(
j
k

) ∣∣ 1 ≤ j ≤ d, 1 ≤ k ≤ lj
}
.

Two mappings ∂+
σ : Eσ → Vσ and ∂−

σ : Eσ → Vσ are defined by ∂+
σ (
(
j
k

)
) := j and ∂−

σ (
(
j
k

)
) :=

W
(j)

k , respectively.

The graph Gσ is primitive, and the adjacency matrix of Gσ is tLσ . The edge shift space

Ω̂σ of Gσ is defined by

Ω̂σ := {(···j−1j0j1···jn···
···k−1k0k1···kn···

) ∈ EZ
σ

∣∣W(jn)
kn

= jn+1, n ∈ Z
}
,

and its shift map Sσ on Ω̂σ

Sσ : Ω̂σ → Ω̂σ , Sσ

((
jn

kn

)
n∈Z

)
:= (j ′

n

k′
n

)
n∈Z

,

where
(j ′

n

k′
n

) = (jn+1
kn+1

)
. It is clear that (Ω̂σ , Sσ ) is a shift of finite type (see [18]) and it is well-

known that there exists an Sσ -invariant maximal measure µσ on Ω̂σ and that (Ω̂σ , Sσ , µσ ) is
the measure preserving dynamical system (see [12]). Similarly we define the one-sided shift
space of Gσ by

Ωσ := {(
j0j1···jn···
k0k1···kn···

) ∈ EN∪{0}
σ

∣∣W(jn)
kn

= jn+1, n ∈ N ∪ {0}} ,

and denote its shift map by the same letter Sσ . A finite or infinite sequence of Eσ which occurs

some element of Ω̂σ is called Gσ -admissible .

FIGURE 3. A directed graph Gσ associated to a substitution σ.
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Let v ∈ Wu be the Perron-Frobenius vector, which can be taken as the positive and unit
eigenvector of Lσ corresponding to λ. We define the closed intervals of Wu as follows: for
a, b ∈ Wu with a = av, b = bv (a, b ∈ R), if a ≤ b, we set

[a, b] := {
x
∣∣ x = tv, a ≤ t ≤ b

}
.

Let Jj (j ∈ A) be the following closed intervals on Wu:

Jj :=
[

− λ

1 + λ
πue1,− λ

1 + λ
πue1 + πuej

]
.

Then we have

(−λ)Jj =
[

− λ

1 + λ
πue1 − λπu(ej − e1),

λ2

1 + λ
πue1

]
.

From (2.4), we can obtain the following decomposition of (−λ)Jj

(−λ)Jj =
lj⋃

k=1

(J
W

(j)
k

+ a
j

k ) (3.1)

where a
j
k := (−λ)πu(ej − e1) + πu(f (P

(j)
k )). Let J be the direct sum of Jj (j ∈ A), that is,

J := ∐
j∈A Jj . By giving the 1-dimensional Lebesgue measure | · | to J , we can consider J

as a measure space.
By (3.1), a Markov transformation TσAH : J → J is defined for almost all points of J as

follows:

TσAH x := (−λ)x − a
j

k ∈ J
W

(j)
k

(x ∈ Jj ) .

Thus we have the following theorem.

THEOREM 3.1. TσAH has the following properties:
(1) There exists a TσAH -invariant probability measure µ on J which is absolutely con-

tinuous with respect to the Lebesgue measure | · |,
(2) For almost all x ∈ Jj (j ∈ A), there exists a Gσ -admissible sequence

(
j0j1···jn···
k0k1···kn···

) ∈
Ωσ with j0 = j such that

x =
∞∑

n=0

a
jn

kn

(−λ)n+1 .

PROOF. (1) is trivial from the Markov structure. We shall show (2) next. Let x ∈ Jj ,
and put j0 := j . Then there exists a k0 such that

TσAH x := (−λ)x − a
j0
k0

∈ J
W

(j0)

k0
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Set j1 := W
(j0)

k0
. Similarly for some k1, it holds

T 2
σAH

x := (−λ)TσAH x − a
j1
k1

∈ J
W

(j1)

k1

.

Repeatedly we get

T n
σAH

x := (−λ)T n−1
σAH

x − a
jn−1
kn−1

∈ J
W

(jn−1)

kn−1

for any n ∈ N. Therefore we have

x =
n−1∑
s=0

a
js

ks

(−λ)s+1
+ 1

(−λ)n
T n

σAH
x ,

which means that the conclusion holds when n tends to ∞. �

We can define ϕ: Ωσ → J by

ϕ
((

j0j1···jn···
k0k1···kn···

)) :=
∞∑

n=0

a
jn

kn

(−λ)n+1 ,

and see that ϕ : Ωσ → J is bijective almost everywhere. Therefore we have the following
theorem.

THEOREM 3.2. Dynamical system (J, TσAH , µ) is isomorphic (a.e.) to Markov shift
(Ωσ , S,µσ ) by the isomorphism ϕ.

3.2. Atomic surface of AH -substitution. We shall recall the basic concepts. The

closure and the interior of a subset A in Ws are denoted by Ā and by Int A respectively.
| · | denotes Lebesgue measure on Ws . If A1, . . . , An are Lebesgue measurable sets with
|Ai ∩ Aj | = 0 (i �= j), then we call ∪n

j=1Aj a non-overlapping union of A1, . . . , An and

denote it by ∪n
j=1Aj (non-overlapping).

Setting Yj (j ∈ A), Y by

Yj := {
y ∈ Zd

∣∣ (y, j) ⊂ s̄
}
,

Y := {
y ∈ Zd

∣∣ (y, j) ⊂ s̄, j ∈ A
}
,

we shall define the partial atomic surfaces Xj (j ∈ A) and the atomic surface X of AH-
substitution σAH as follows:

Xj := πsYj , X := πsY .

Then we have X = ⋃d
j=1 Xj .

THEOREM 3.3. We have the following properties about the atomic surfaces.
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(1) X, Xj (j ∈ A) are compact,
(2) For each i ∈ A,

(−Lσ )−1Xi =
⋃

(
j
k

)
:W(j)

k =i

(Xj + b
j
k ) , (3.2)

where b
j
k = πs(ej − e1) + (−Lσ )−1(πs(f (P

(j)
k )),

(3) Int Xj �= φ (j ∈ A),

(4) Int Xj = Xj (j ∈ A).

REMARK 3.1. (3.2) is called the set equation with respect to the partial atomic sur-

faces of σAH . The right hand side of (3.2) means the union of Xj + b
j

k ’s with respect to all(
j
k

) ∈ Eσ such that W
(j)
k = i.

PROOF. The proof can be obtained by the analogy of [11], [15]. Therefore we will give
a sketch of the proof here. We show (1) first. Set for each n ∈ N,

Y (n) := {
y ∈ Zd

∣∣ (y, j) ⊂ Ē1(σAH )n(0, 1), j ∈ A
}
,

then we get from (2.5) and (2.6)

Y (n) = {
s
(
j0···jn−1
k0···kn−1

) ∣∣ (j0···jn−1
k0···kn−1

) : Gσ -admissible, j0 = 1
}

Let I be {
(−Lσ )(ej − e1) + f (P

(j)

k )
∣∣ (j

k

) ∈ E
}

and θ the maximum of the eigenvalues of Lσ except λ in modulus, then there exists a constant
C > 0 for any y ∈ I and any n ∈ N

|(−Lσ)n(πsy)| ≤ Cθn.

Therefore we have ∣∣∣∣πs

(
s
(j0···jn−1
k0···kn−1

)) ∣∣∣∣< C

1 − θ
.

This means that the X is compact and that so are Xi (i ∈ A).
We show (2) next. Let (Yi , i) denote the set

{
(y, i)

∣∣ (y, i) ⊂ s̄
}
. Then we have s̄ =⋃d

j=1(Yj , j), and

(Yi , i) = {
(y, i)

∣∣ (y, i) ⊂ s̄
}

=
{
(y, i) | (y, i) ⊂ Ē1(σAH )

( d⋃
j=1

(Yj , j)

)}

=
d⋃

j=1

{
(y, i)

∣∣ (y, i) ⊂ Ē1(σAH )(Yj , j)
}
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=
⋃

(
j
k

)
:W(j)

k =i

{
(−Lσ )(y) + (ej − e1) + (−Lσ )−1(f (P

(j)
k )), i)

∣∣ y ∈ Yj

}
,

which shows the set equation (3.2).
We show (3). Let t (1, v1, . . . , vd−1) be the positive eigenvector of λ. Since the character-

istic polynomial of Lσ is the minimal polynomial of the algebraic integer λ, {1, v1, . . . , vd−1}
is a Q-basis of the algebraic number field Q(λ), which means πsZd = Ws . We shall consider
the following hyperplane:

P := {
x ∈ Rd

∣∣ 〈x, t (1, 1, . . . , 1)〉 = 0
}
,

where 〈 , 〉 is the inner product of Rd . By considering the lattice

L :=
{ d∑

j=2

nj (ej − e1) | ni ∈ Z
}

on P , we get Zd = ⋃∞
n=1(Y

(n) + L) = Y + L, which shows Ws = X + πsL. From Baire
category theorem, we have Int X �= φ. By the set equation and the primitivity of Lσ , we have
Int Xj �= φ (j ∈ A).

(4) is clear from the set equation and (3). �

The following lemma can be found in [5], [20].

LEMMA 3.4. Let A be a primitive matrix with the largest eigenvalue λ. Suppose that
v is a positive vector such that Av ≥ λv. Then the inequality becomes equality and v is the
eigenvector of A corresponding to λ.

LEMMA 3.5. t (|X1|, |X2|, . . . , |Xd |) is the positive eigenvector of Lσ corresponding
to λ, where | · | is Lebesgue measure on Ws .

PROOF. From the set equations (3.2) and the fact that the determinant of L−1
σ |Ws is λ,

λ|Xi | = |(−Lσ)−1Xi | ≤
d∑

j=1

lij |Xj | (i ∈ A) , (3.3)

where lij is (i, j)-entry of Lσ . By the previous lemma, the equality of (3.3) holds. �

REMARK 3.2. The set equations (3.2) are non-overlapping unions by Lemma 3.5.

DEFINITION 3.1. The coincidence condition of AH-substitution means that we can
take j0 ∈ A, n ≥ 1 such that for any i ∈ A, there exist d different G∗-admissible sequences(j (i)

−1···j(i)
−n

k
(i)
−1···k(i)

−n

)
satisfying

j
(i)
−n = i , W

(j
(i)
−1)

k
(i)
−1

= j0 ,



388 FUMIHIKO ENOMOTO

and
∑n

α=1(−Lσ )−(n−α)b
j

(i)
−α

k
(i)
−α

are constant vector for all i ∈ A.

THEOREM 3.6. Under the coincidence condition of AH-substitution σAH , we have

X =
⋃
j∈A

Xj (non - overlapping)

PROOF. By the set equations (3.2), we have

(−Lσ )nXj0 =
⋃

(j−1···j−n

k−1···k−n

)
:G∗

σ -admissible

j0=W
(j−1)

k−1

(
Xj−n +

n∑
α=1

(−Lσ )−(n−α)b
j−α

k−α

)
. (3.4)

By Remark 3.2, we have that the set equations are non-overlapping, and so are (3.4). On

the other hand, we know that
⋃d

i=1

(
X

j
(i)
−n

+∑n
α=1(−Lσ )−(n−α)b

j
(i)
−α

k
(i)
−α

)
is a subpatch of

(−Lσ )nXj0 from the coincidence condition. Therefore we have the conclusion. �

EXAMPLE 3.1. Figure 1 and Figure 4 are the atomic surfaces of the H -substitution
and the AH -substitution induced by the following substitution:

σ : 1 �→ 112, 2 �→ 32, 3 �→ 1 .

The set equations (3.2) say that for x ∈ Xi , there exist
(
j
k

) ∈ Eσ such that W
(j)
k = i

and (−Lσ )−1x ∈ Xj + b
j
k . Therefore a Markov transformation T ∗

σAH
: X → X is defined for

almost all points of X as follows:

T ∗
σAH

x := (−Lσ )−1x − b
j
k ∈ Xj (x ∈ Xi) .

Let the (backward) one-sided shift space of Gσ be

Ω∗
σ := {(j−1j−2...

k−1k−2...

) ∈ EN
σ

∣∣Wj−(n+1)

k−(n+1)
= j−n, n ∈ N

}
,

and its shift map S∗
σ on Ω∗

σ

S∗
σ : Ω∗

σ → Ω∗
σ , S∗

σ

((j−1j−2j−3···
k−1k−2k−3···

)) := (j−2j−3j−4···
k−2k−3k−4···

)
.

A finite or infinite sequence of Eσ which occurs some element of Ω∗
σ is called G∗

σ -admissible
sequence.
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FIGURE 4. X1, X2, X3, X.

THEOREM 3.7. For almost all x ∈ Xj0 (j0 ∈ A), there exists some G∗
σ -admissible

sequence
(j−1j−2...
k−1k−2...

) ∈ Ω∗
σ with W

(j−1)

k−1
= j0 such that

x =
∞∑

n=1

(−Lσ )nb
j−n

k−n
.
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PROOF. In the same way as Theorem 3.1, for each n ∈ N, there exists G∗
σ -admissible

sequence
(
j−1j−2...j−n

k−1k−2...k−n

) ∈ Ω∗
σ such that

x =
n∑

α=1

(−Lσ )αb
j−α

k−α
+ (−Lσ )n

(
T ∗n

σAH
x
)

.

As Lσ is contractive on Ws , the second term converges to 0 (n → ∞). �

We can define ϕ∗: Ω∗
σ → X by

ϕ∗ ((j−1j−2···j−n···
k−1k−2···k−n···

)) :=
∞∑

n=1

(−Lσ )nb
j−n

k−n
,

and see that ϕ∗: Ω∗
σ → X is bijective almost everywhere.

THEOREM 3.8. The transformations T ∗
σAH

and S∗
σ are isomorphic by ϕ∗ almost every-

where.

PROOF. This is clear from the definitions. �

3.3. Natural Extension of Markov transformation. We set

X̂i := Xi − Ji = {
x − y

∣∣ x ∈ Xi, y ∈ Ji

}
(i ∈ A) ,

and

X̂ :=
⋃
i∈A

X̂i (non-overlapping) .

Let us define a realization map ϕ̂: Ω̂σ → X̂ by

ϕ̂
((···j−1j0j1······k−1k0k1···

)) : = ϕ∗((j−1j−2···
k−1k−2···

))− ϕ
((

j0j1···
k0k1···

))

=
∞∑

n=1

(−Lσ )nb
j−n

k−n
−

∞∑
n=0

a
jn

kn

(−λ)n+1 ,

then we see that ϕ̂ is bijective for almost all points in Ω̂σ .
By the set equations (3.2), we have for each i ∈ A

Xi =
⋃

(
j
k

)
:W(j)

k =i

(−Lσ ) (Xj + b
j

k ) .

We define

X(j
k

) := (−Lσ )(Xj + b
j
k ) , X̂(j

k

) := X(j
k

) − Ji

(
j
k

)
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for every
(
j
k

)
such that W

(j)

k = i. Then we have the non-overlapping decompositions:

Xi =
⋃

(
j
k

)
:W(j)

k =i

X(j
k

) , X̂i =
⋃

(
j
k

)
:W(j)

k =i

X̂(j
k

) .

Set

Ω̂σ (i) := {(···j−1j0j1······k−1k0k1···
) ∈ Ω̂σ

∣∣ j0 = i
}
,

Ω̂σ

(
j
k

) := {(···j−1j0j1···
···k−1k0k1···

) ∈ Ω̂σ

∣∣ (j−1
k−1

) = (
j
k

)}
for every

(
j
k

)
such that W

(j)
k = i, then Ω̂σ is decomposed as follows:

Ω̂σ =
⋃
i∈A

Ω̂σ (i) , Ω̂σ (i) =
⋃

(
j
k

)
:Wj

k =i

Ω̂σ

(
j
k

)
.

Theorems 3.1 and 3.7 give us the following equalities for almost all points:

X̂i = ϕ̂
(
Ω̂σ (i)

)
, X̂(j

k

) = ϕ̂
(
Ω̂σ

(
j
k

))
. (3.5)

For almost all x ∈ X̂j , there exists
(···j−1j0j1······k−1k0k1···

) ∈ Ω̂σ with j0 = j such that

x =
∞∑

n=1

(−Lσ )n b
j−n

k−n
−

∞∑
n=0

a
jn

kn

(−λ)n+1 .

Then we have

(−Lσ ) x =
∞∑

n=1

(−Lσ )n b
j−(n−1)

k−(n−1)
−

∞∑
n=0

a
jn+1
kn+1

(−λ)n+1

−
{
(−Lσ ) (ej0 − e1) + f (P

(j0)
k0

)
}

.

Therefore by (3.5), we get

(−Lσ ) X̂j =
⋃

1≤k≤lj

(
X̂(j

k

) + c
j
k

)
,

where c
j
k := (−Lσ ) (ej0 − e1) + f (P

(j0)
k0

), hence we obtain a Markov transformation T̂σAH :
X̂ → X̂ with a Markov partition

{
X̂(j

k

) ∣∣ (j
k

) ∈ Eσ

}
by

T̂σAH x := (−Lσ )x − c
j

k (x ∈ X̂j )

Thus we have the following theorem.
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THEOREM 3.9. The transformations T̂σAH and Sσ are isomorphic by ϕ̂ almost every-
where, that is, the following diagram is commutative almost everywhere.

Ω̂σ
Sσ−−→ Ω̂σ

ϕ̂

� �ϕ̂

X̂ −−−→
T̂σAH

X̂

4. Tiling by atomic surfaces

4.1. Stepped surface induced by AH -substitution. For x ∈ Zd , j ∈ A, we define
(x, j∗) by

(x, j∗) :=
{
x +

∑
k∈A, k �=j

tkek

∣∣∣∣ 0 ≤ tk < 1

}
,

that is, (d − 1)-dimensional oriented unit square with the base point x generated by
{e1, . . . , ej−1, ej+1, . . . , ed} ( [21]). We set

Λ∗ := {
(x, j∗)

∣∣ x ∈ Zd , j ∈ A
}
,

and let G∗
1 be a Z-free module generated by Λ∗. Let us define the action on G∗

1 by Zd (denote
by +) as

y + (x, j∗) := (y + x, j∗) (y ∈ Zd , (x, j∗) ∈ Λ∗) .

and a homomorphism E1(σ )∗: G∗
1 → G∗

1 as

E1(σAH )∗(x, i∗) :=
∑

(
j
k

)
:W(j)

k =i

(
(ej − e1) + (−Lσ )−1(x + f (P

(j)
k )), j∗) (4.1)

for any generator (x, i∗) of G∗
1 .

Let us calculate

E1(σAH )∗n(0, i∗) =
∑

(
j−1···j−n

k−1···k−n

)
:G∗

σ -admissible

i=W
(j−1)

k−1

(
s∗(j−1···j−n

k−1···k−n

)
,W

(j−n)∗
k−n

)
(4.2)

(n = 1, 2, 3, . . . ) , where

s∗(j−1···j−n

k−1···k−n

) :=
n−1∑
α=0

(−Lσ )−α
(
(ej−n+a − e1) + (−Lσ )−1(f (P

(j−n+a)

k−n+a
))
)

. (4.3)



AH -SUBSTITUTION AND MARKOV PARTITION 393

If λ∗ ∈ G∗
1 is represented by

λ∗ = (x1, j
∗
1 ) + · · · + (xk, j

∗
k )
(
(xi , j

∗
i ) ∈ Λ, i = 1, 2, . . . , k

)
,

then we denote the union of (xi , j
∗
i )’s by |λ∗|, that is, |λ∗| := ∪k

i=1(xi , j
∗
i ). Let Ḡ∗

1 be a set of

the finite or countable unions of the elements of Λ∗. Since for any C ∈ Ḡ∗
1 , there exist some

finite or countable index set A and (xα, j∗
α) ∈ Λ∗ (α ∈ A) such that

C =
⋃
α∈A

(xα, j∗
α) ,

a mapping Ē1(σAH )∗ : Ḡ∗
1 → Ḡ∗

1 can be defined by

Ē1(σAH )∗(C) :=
⋃
α∈A

|E1(σAH )∗(xα, j∗
α)| .

Thus we have for any n ∈ N and j ∈ A

Ē1(σAH )∗n(0, j∗) = |E1(σAH )∗n(0, j∗)| .
Therefore we have the following proposition from (4.2) and (4.3).

PROPOSITION 4.1. The partial atomic surfaces Xj (j ∈ A) can be given by

Xj = lim
n→∞(−Lσ )nπsĒ1(σAH )∗n(0, j∗) (j ∈ A) ,

where the right hand side means the convergence with respect to Hausdorff distance.

PROOF. From (4.3), we have

(−Lσ )nπss
∗(j−1···j−n

k−1···k−n

) =
n∑

α=1

(−Lσ )αb
(
j−α

k−α

)
.

Thus we obtain the conclusion by Theorem 3.2. �

EXAMPLE 4.1. Figure 5 depicts Ē1(σAH )∗n(0, i∗) (n = 1, 2, 3, . . . ) of the substitu-
tion given by σ : 1 �→ 112, 2 �→ 32, 3 �→ 1
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FIGURE 5. Ē1(σAH )∗n
(
0, 1∗), n = 0, 1, . . . , 4, 9.

Setting

Ij :=
[
− λ

1 + λ
πue1, − λ

1 + λ
πue1 + πuej

)
(j ∈ A)

P := Ws − λ

1 + λ
πue1 ,
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we define the stepped-surface of P by

S := {
(x, j∗)

∣∣ πux ∈ Ij , j ∈ A
}
.

We also call S := ⋃
(x,j∗)∈S(x, j∗) the stepped-surface of P . Let us define an affine

transformation:

π ′
s : Rd → P : π ′

s(x) := πs(x) − λ

1 + λ
πue1 .

Then we have the following lemma:

LEMMA 4.2 (see [5], [10]). Ē1(σAH )∗ has the following properties:
(1) Ē1(σAH )∗(S) = S.

(2) If (x, i∗), (x′, i ′∗) ∈ S with Int(x, i∗) ∩ Int(x′, i ′∗) = φ, then

Int Ē1(σAH )∗(x, i∗)
⋂

Int Ē1(σAH )∗(x′, i ′∗) = φ,

where Int A is the interior of A for A ⊂ Rd .

PROOF. As (2) is clear, we shall show (1). Setting

y := (ej − e1) + (−Lσ )−1(x + f (P
(j)

k ))

for any (x, i∗) ∈ G∗
1 and any

(
j
k

)
with W

(j)
k = i, we have πux = (−λ)πuy − a

j
k . Take any

(x, i∗) ⊂ S. By the definition of the stepped surface, πux ∈ Ii . Then we get

(−λ)πuy ∈ I
W

(j)
k

+ a
j
k ⊂ (−λ)Ij .

Therefore we obtain (y, j∗) ⊂ S for any
(
j
k

)
with W

(j)
k = i, which means Ē1(σAH )∗(x, i∗) ⊂

S. The converse is also similar. �

4.2. Tiling by atomic surfaces. Projecting the stepped surface S to P by π ′
s , we

obtain a parallelogram tiling of P :

T ′ := {
π ′

s(x, j∗)
∣∣ (x, j∗) ∈ S

}
,

which has
{
π ′

s (0, j∗)
∣∣ j ∈ A

}
as a protoset.

We set the parallelogram Ĉ(0, j∗) by

Ĉ(0, j∗) := πs(0, j∗) − Jj ,

and denote these union
⋃d

i=1 Ĉ(0, j∗) by Ĉ(0).

PROPOSITION 4.3 (see [6]). The set Ĉ(0) has the following properties:
(1) |Ĉ(0)| = 1

(2) T ′′ = {
x + Ĉ(0)

∣∣ x ∈ Zd
} = Ĉ(0) + Zd is a tiling on Rd .

PROOF. The assertion (1) is clear. We prove (2). We consider the intersection of P

and Ĉ(0) + Zd . By the fact Ĉ(0, j∗) is between P and P + ej for each j ∈ A, (x +
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Ĉ(0, j∗)) ∩ P �= φ means (x, j∗) ∈ S for any x ∈ Zd . Since T ′ is a tiling of P , we get

∪x∈Zd (x + Ĉ(0)) ∩ P = P . Therefore we have

∪x∈Zd (x + Ĉ(0)) ∩ (P + y) = P + y (y ∈ Zd ) .

Hence we know Rd = Ĉ(0) + Zd . From (1), we see that T ′′ is a tiling on Rd . �

Replacing parallelograms π ′
s(x, j∗) by the fractal sets π ′

s (x) + π ′
s (Xi), we define a col-

lection:

T := {
π ′

s(x) + π ′
s (Xi)

∣∣ x ∈ S
}
.

The following theorem is obtained by slight modification of the proof of Theorem 3.3 in [15].

THEOREM 4.4. The following statements are equivalent:
(1) T is a tiling of P ,
(2) |Xi | = |πs(0, i∗)|
(3) For some i, the radius of the largest ball contained Ē1(σ

∗
AH )n(0, i∗) diverges as

n → ∞.
(4) For some i, limn→∞ ∂(−Lσ )nπsĒ1(σ

∗
AH )n(0, i∗) = ∂Xi .

The following Corollary is proved in the same manner as Proposition 4.3.

COROLLARY 4.5. Under the coincidence condition, if one of the statements in Theo-

rem 4.4 holds, then T̂ := {
x + X̂

∣∣ x ∈ Zd
}

is a tilling on Rd

The following is the main theorem.

THEOREM 4.6. Assume that an AH-substitution σAH satisfies (NP), (UM), (IR) and
(FP), that σAH satisfies the coincidence condition for AH-substitution, and that one of the
statements in Theorem 4.4 holds. Then we have the following statements:

(1) X̂ is a torus.

(2) T̂σAH : X̂ → X̂ is the group automorphism with a Markov partition{
X̂(j

k

) ∣∣ (j
k

) ∈ E
}
.

(3) The following commutative relation holds:

Rd −Lσ−−→ Rd

pr

� �pr

X̂ −−−→
T̂σAH

X̂,

where pr means a natural projection of Rd to the torus X̂.
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