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Abstract. The existence of a Markov partition of a hyperbolic group automorphism generated by an integral
matrix with determinant £1 is established by Sinai (see [22]). After that, there are many articles to construct Markov
partitions of group automorphisms generated by non-negative matrices satisfying Pisot condition by the tiling method
from substitutions (see [1], [7], [16], [19], [5]). One of the purpose of this paper is to establish the construction
method of a Markov partition for a group automorphism generated by a non-positive matrix satisfying “negative
Pisot” condition. An anti-homomorphic extension of a substitution, called A H-substitution, is introduced in the
paper. Owing to this new substitution, the Markov partition of the group automorphism from the non-positive integral
matrix is constructed.

1. Introduction

A substitution o is a mapping from a (finite) alphabet A with d letters to the free
monoid A* which consists of finite words by the letters of A. For each j € A, we note
o(j)y =W wd ... W,‘/_f) W e A), where I; (> 0) is the length of o'(j). A sub-
stitution extends to mappings on .A* in two natural ways, that is, homomorphically and anti-
homomorphically; its extensions are called H -substitution and A H -substitution, respectively
in this paper. An H -substitution, that is, a substitution in the usual sense has been studied by
many articles (see [3], [5], [9], [15], [17], [21], [23]), and many remarkable applications have
been obtained for unimodular Pisot substitutions recently (see [2], [4], [13], [14], [16]). The
following are the main parts of them.

(1) The existence of the set equations for the partial atomic surfaces, that is, there exists

a collection of compact sets {X{, ..., X/} with fractal boundaries and positive
measure on the L, -invariant stable subspace W* such that

7xi= J (X +L @),

(1):w =i
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where L., s, f and Pk(j ) are the incidence matrix of o, a projection of R? to W*,
a canonical homomorphism and the prefix of o (j), respectively (see section 2 for
detail).

The existence of a quasi-periodic tiling T of W* with the protoset {X], ..., X/}
and that of a tiling substitution Ej(c)* on ¥’ given by

E\(0)*(t(x) + X) = L' m) + Y (X;- + L;lns(f(P,f”))
(o=
forx € Z¢.
The construction of a Markov partition of a group automorphism on d-dimensional
torus generated by the non-negative matrix L.

In the present paper, on the assumption that an A H-substitution is of unimodular irre-
ducible negative Pisot type, we obtain a series of results for A H-substitution similar to (1),
(2), and (3) for H-substitution. One of the reason why we study A H-substitution in detail
is that a Markov partition of a group automorphism on d-dimensional torus which is deter-
mined by a non-positive matrix has not been constructed in general. We give an answer of this
problem by using an A H-substitution. Another reason is that we expect an A H-substitution,
which is a new substitution, can bring us new results.

the atomic surface of o, the atomic surface of o,

FIGURE 1. The figures above are the atomic surfaces of oy and o4 g induced from the
substitution o : 1 — 112, 2+ 32, 3+ 1.
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The outline of the paper is as follows. The basic concepts and definitions about an A H -
substitution are introduced in section 2. In section 3, the Markov transformation and the
natural extension for A H-substitution are discussed, and the existence of the partial atomic
surfaces {X1, ..., X4} of AH-substitution is showed. They are defined by projecting the
geometrical fixed point of A H -substitution to W*, and satisfy the set equation by the negative
integral matrix — L, as follows:

—Lo)'xi= |J &Xj+b)
()W =i
where b,f € W9, In the last section, the existence of a quasi-periodic tiling ¥ on W* with
the protoset { X1, ..., X4} under the some condition is showed and also the Markov partition

of the group automorphism on d-dimensional torus which is determined by the non-positive
matrix — L is constructed.

2. A H -substitution

2.1. AH-substitution. Let A= {1,2,...,d} be an alphabet with d > 2, and A* the
set of finite words over A. A* is a free monoid, whose product is concatenation, with the
empty word as the unit element denoted by ¢.

If o is a mapping from A to A* satisfying the condition

o(j)#¢ foranyje€ A,

then o is called a substitution on A. We denote by Wé] k) the letter at the position k in o (j),
that is,

o) = W Wl - Well, (Wil € A,
and also denote

o) = PEWel - W)

by using the k-th prefix P} of o (j)

G ._wihwle<k<ip),
kT ek =1).
‘We omit the subscript o in Wé’ k) and P;’k), and denote them by W,fj ) and Pk(j ) as usual through-
out this paper.

We can construct the extension of o, whose domain is A*, in two natural ways. One way
is to extend homomorphically, that is, its extension oy : A* — A* is defined by o (¢) := ¢,
and foray, an, ...,a, € A(n € N),

op(aiay---ap) :=o(ay)o(az)---o(an).
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We call o a homomorphic substitution or an H-substitution on A*, which is well-known as
substitution. Another is to extend anti-homomorphically.

DEFINITION 2.1. Let a transformation o4y : A* — A* be defined as follows:
oag(¢) :=¢,and foray,az,...,a, € A(n €N),

oan(aiay---ap) :=o(ay)---o(a2)o(a). (2.1
We call this transformation an AH-substitution or an anti-homomorphic substitution on A*.
It is evident that an AH-substitution o4 g is anti-homomorphic, that is,
oag(wiw2) = oap(w2)oay (wy) forany wi, wy € A*. (2.2)

The incidence matrix L, of a substitution o (or an H -substitution o) is defined as the
d x d matrix, whose (i, j)-entry is the number of the occurrence of i in o (j). Since the matrix
concerned with o4y intrinsically is —L,, we call — L, the incidence matrix of o4y, which
is an integral and non-positive matrix.

A mapping f : A* — Z¢ defined by f(¢) := 0 and

flaraz---an) :=eq + €q, + -+ +e, forany ajaz---a, € A*\{e}

is said to be a canonical homomorphism or a homomorphism of abelianization, where (€;) jc A

is the canonical basis of R?. It is clear that f is homomorphic. The following properties are
trivial from the definitions:

Lo =(f(c(1)),..., f(o(d))), (2.3)
fooag = foog=Lso fonA". 2.4)

An algebraic integer « is called a Pisot number (and a negative Pisot number) if « > 1
(and ¢ < —1) and all the conjugates except « are less than 1 in modulus, respectively.

DEFINITION 2.2. Let o be a substitution on A.

(1) o (oroy ) is of Pisot type if the Perron-Frobenius root A of L, is a Pisot number,

(2) oap is of negative Pisot type if the Perron-Frobenius root A of L is a Pisot number
(by the fact — L is the incidence matrix of o4 g).

(3) o (ogoroayg)isunimodularif det L, = +1,

(4) o (og oroapy ) is irreducible if the characteristic polynomial of L is irreducible
over Q,

(5) o (opy or oay ) satisfies the fixed point condition if there exists j € A such that
o(j) = jw for some w € A* \ {e}.

(6) o (og oroay )is primitive if Ly is primitive.

REMARK 2.1. We can set j = 1 without loss of generality in the definition of fixed
point condition. The definition of the substitution of Pisot type in [8] is different from ours.

Since an A H-substitution o4p of irreducible negative Pisot type is primitive, we have
the well-known proposition by Perron-Frobenius theorem.
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PROPOSITION 2.1. Given an A H -substitution o4 of irreducible negative Pisot type,
then we have that R? is decomposed into the direct sum

Rd:Wu@Ws’

where W is a 1-dimensional eigenspace of — L, corresponding to —X , and W* is a (d-1)-
dimensional contractive invariant subspace with respect to —Ly. Moreover we can take a
positive vector as an eigenvector of W*.

We denote by 7, (and 7y) the projection to W* (and W¥) with respect to this direct
decomposition, respectively.

2.2. Fixed point of A H-substitution. In the rest of the paper, we shall consider the
class of A H-substitutions on .A* satisfying the following conditions:

(NP) o4pg is of negative Pisot type,

(UM) o0 4p is unimodular,

(IR) o4y isirreducible,

(FP) o4p satisfies the fixed point condition.

We set, for k,l € N U {0}

Ak,l ={a_y---a_1.a0a1---a|aj € A, j=—k,—k+1,...,1},
which is the set of finite words of length (k, / 4+ 1) with the decimal point, and

A = U Akgz .
k,[>0

Since uwv € A for u,v e A*, w e A, the free monoid .A* acts on the set A from the left and
the right.

‘We shall also consider o4y as a transformation on A defined by

oagla—g---a—r.a0a1---a)) :=o(a)---o(ay).oap)o(a-1)---oa—x),
and we have that foru, v € A*, w € A
oA (uwv) = oag(W)oag(w)oay (u) .

We can extend o4p to the transformation on A% similarly. We define a relation < on A
as follows. Let wy, wr € A. Then we write w; < w, if there exist u, v € A* such that
wy = uw1v, in addition we write w1 < wy if w; # wy and w; < ws.

DEFINITION 2.3. Ifs € AZ satisfies o4y (s) = s, then s is called the fixed point of
OAH-

By Assumption (FP), we have o (1) = 1w (w € A*\ {¢}). Let us iterate o{ ;,(.1) (n =
1,2,3,...). Then we have

oag()=.0(1) =.1w,
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o3y (D) =oagw)oan (1) = oap(w).lw,

aiH(.l) = OAH(w).lwcriH(w),

In general, we get

-2
ohy() =
Therefore we have
oy () <ot
for n € N, which induces a bi-infinite sequence s

s:= lim o ,(1) =" 5_25_1.508152 -
Jim ag (D 25-1.505152

where so = 1. Itis clear that s is the fixed point of c45.

oW W) - oan(w). lwo? ; (w) - - oy (w) (n : 0dd)

UX;Il(w)aZj(w) . -UAH(w).lwaiH(w) e azgz(w) (n : even) .

2.3. Geometrical fixed point of A H-substitution. Next we shall give the geometri-
cal representation of the fixed point s of 045. We denote an oriented unit line segment with

the base point x and the orientation e; by

(x,j):={x+tej|0=<1 <1}

forx € 74 and j € A. Weset A := {(x,j) |x eZd,j GA}, and let G| = Gi(A) be a

Z-free module generated by A. The action on G; by Z¢ (denote by +) is defined by

YH@ D i=0+x0) (el (x,j)eq).
A homomorphism E|(o4pg) on G is defined as follows:
j

E\(oan)(x. ) 1= (—Lo)(x +e; —e)) + Y_(f(P), W)
k=1

for any generator (x, j) of Gj.

By the calculation of E1(cag)" (0, j) (n € N), we obtain

Ev(oan)" (0, j) = 3 (=), wien)y,

jO"'jnfl . - L
(k0~-~kn,1)'GWadmlSSlb]Q Jo=J

where

SO = (L) T (Lo (e, — e1) + F(P))

a=1

2.5)

(2.6)
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and the summation of the right hand side of (2.5) means the sum of all G,-admissible se-

quences (,ig:::i”ﬂ) with jo = j. The term “G,-admissible” is defined in the next section.
n—

If » € G is represented by
)":(xlvjl)—i_"’—i_(xksjk)s ((xivji) GA, l: 1721~-~7k) )

then we denote the union of (x;, j;)’s by |A|, that is, [A| := Uf:l (x;, ji). Let G be a set of
the finite or countable unions of the elements of A. Since for any L € G 1, there exist some
finite or countable index set A and (xq, jy) € A (@ € A) such that

L=J&a ja),

aeA

amapping E1(oap) : Gi — Gi can be defined by

Ev(oam)(L) := | J |E\(0an) (X, jo)! -

acA

Thus we have foranyn € Nand j € A
Ei(oan)" (0, j) = |E1(oan)" (0, j)].

From (2.5) and (2.6), we have that E1(oag)" (0, 1) is a connected oriented broken line seg-
ment through the origin satisfying

Ei(oam)"(0,1) C E1(ocam)" (0, 1) (n € N).

Therefore there exists the limit 5 of the sequence (E1(o47)" (0, 1)) eN:
o
§:= lim Ei(oam)"0,1) =] Ei(0am)™(0,1).
n—0o0
n=0
It holds that E; (0an)(5) = 5. The limit 5 is called the geometrical fixed point of 4.
EXAMPLE 2.1. Leto be a substitution as follows:

1112
12— 12.

Then the incidence matrix of o is

the characteristic polynomial of L, is 12 — 3t + 1, and o4y satisfies the conditions (NP),
(UM), (IR) and (FP). The words with decimal point 0;{ (1) (m=1,2,3,...) are given by

oan (1) =112
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o2y (1) =0(o(1).0(1) = 12112.112
o3, (1) =12112.1121211211212112

By the definition of E1(c4x), we obtain
E1(0an)(0,1) = (0, 1) + (e1, 1) + (2e1,2)
E1(can)(0,2) = (e1, 1) + (2e1,2),

therefore we have

E1(oam)*(0,1) = (0,1) + (e1, 1) + (2e1,2)

(@D D+ (D). L+(%).2

+((2). v+,

5 5
-25 -20 -15 -10 -5 5 10 -25 -20 -15 -10 -5 s 5 10
-5 -5
-10 -10
-15 -15
n=1 n=2
5 e 5 e
L] L]
LX) LX)
L] (X ]
L]
-25 -20 -15 -10 -5 s 5 10 -25 -20 -15 -10 -5 s 5 10
(X ]
L]
-5 oo -5
L]
L]
(X ]
L]
-10 . -10
(X ]
L]
(X ]
L]
-15 . -15
n=3 n=4
FIGURE 2. E[(o4p)*(0,1) (n=1,2,3,4).
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The geometric representations of o, (.1), that is, Ei(oap)"(0,1) (n = 1,2,3,4) is
given by Figure 2 which draw only base points.

3. Markov transformation

3.1. Markov transformation on J. Associated to a substitution o on A, a directed
graph G, = (V,, &y, a; , 0, ) is defined in the following way. The vertex set V,; of G is the
alphabet A. The following is the edge set &, of G :

So={()|1=j=d 1=k=<l}.

Two mappings 9, & — Vs and 8 : &, — Vs are defined by 8, ((J)) := j and 9; (({)) :=
W,fj ), respectively.

The graph G, is primitive, and the adjacency matrix of G, is ' L,. The edge shift space
2o of G, is defined by

Qo = (P ) € E2 | W = jusr, ne 2},

and its shift map S, on !}U

So: Qg‘ — QU o So ((lg)nel) = (]{Z)neZ ’

where (ljj) = (,ﬁ"i;) It is clear that (S}g, S ) is a shift of finite type (see [18]) and it is well-
known that there exists an S, -invariant maximal measure (s on !}U and that (!}U, So s Uo) 18
the measure preserving dynamical system (see [12]). Similarly we define the one-sided shift
space of G, by

2o = {(lh) € &V WL = i, n e NU O},

and denote its shift map by the same letter S;. A finite or infinite sequence of £, which occurs

some element of QU is called G -admissible .

FIGURE 3. A directed graph G4 associated to a substitution o.
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Let v € W* be the Perron-Frobenius vector, which can be taken as the positive and unit
eigenvector of L, corresponding to A. We define the closed intervals of W* as follows: for
a,be W" witha =av,b=>bv (a,b € R),ifa < b, we set

l[a,b]:={x |x=1v, a <t <b}.

Let J; (j € A) be the following closed intervals on W*:

A A
Jj = [— I—F—knuel’ —mnuel +nueji| .

Then we have

N 22
(=)Jj =] — l—i-_)»nu81 — Amy(e; — ey), 1 +Anue1 .

From (2.4), we can obtain the following decomposition of (—A)J;

L

(=MJj = U(kam —i—a,{) 3.1)
k=1

where a,{ = (=M)my(ej —ey)+ rru(f(Pk(j))). Let J be the direct sum of J; (j € A), that is,
J =11 jea Jj- By giving the 1-dimensional Lebesgue measure | - | to J, we can consider J
as a measure space.

By (3.1), a Markov transformation 7,,,,: J — J is defined for almost all points of J as
follows:

Topyx = (—A)x — a,{ eJ (x € Jj).

w
Thus we have the following theorem.
THEOREM 3.1. T5,, has the following properties:

(1) There exists a T, ,, -invariant probability measure w on J which is absolutely con-

tinuous with respect to the Lebesgue measure | - |,
2) Foralmostallx € J; (j € A), there exists a G ,-admissible sequence (/1))
AY) q koky -k -
24 with jo = j such that

jll

o ak
X = Z (_)L)n+1 :
n=0

PROOF. (1) is trivial from the Markov structure. We shall show (2) next. Let x € J;,
and put jo := j. Then there exists a ko such that

. Jo
TouuyXx = (—A)x — aj, € JWk(jO)
0
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Set ji := W,f(')")). Similarly for some k1, it holds

2 — Ji _
I5, % = (=0T, x —aj, € JW;,,) .
1

Repeatedly we get

n e (_ n—1 _ .jn—l X
Ty, % = (=0T, x ap " € JWk(,,,_1>
n—1

for any n € N. Therefore we have

n—1 a]{s 1
— S n
*= 2 Syt S
s=0
which means that the conclusion holds when n tends to oo. O

We can define ¢: 2, — J by

o (@) =X S
n=0

and see that ¢: 2, — J is bijective almost everywhere. Therefore we have the following
theorem.

THEOREM 3.2. Dynamical system (J, T5,,, 4) is isomorphic (a.e.) to Markov shift
(825, S, o) by the isomorphism ¢.

3.2. Atomic surface of AH-substitution. We shall recall the basic concepts. The
closure and the interior of a subset A in W* are denoted by A and by Int A respectively.
| - | denotes Lebesgue measure on W* . If Ay, ..., A, are Lebesgue measurable sets with
[AiNA;| =0 (@G # j), then we call U;leAj a non-overlapping union of Ay, ..., A, and
denote it by U;?ZIA j (non-overlapping).

Setting ¥; (j € A), Y by
Yi={yeZ'| (. j) 5},
Yi={yeZ|(y,j)C5 jeAl,

we shall define the partial atomic surfaces X; (j € A) and the atomic surface X of AH-
substitution o4y as follows:

X =nY;, X:=mn,Y.

Then we have X = U?:l X;.

THEOREM 3.3. We have the following properties about the atomic surfaces.
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(1) X, X; (j € A) are compact,
(2) Foreachi € A,

Lo 'Xi= |J Xj+8)). (3.2)

(=

where bj = m,(ej — e1) + (—Lo) ™' (r; (£ (P,
() IntX; #¢(j €A,
4) IntX; =X;(jeA.
REMARK 3.1. (3.2) is called the set equation with respect to the partial atomic sur-
faces of o4y . The right hand side of (3.2) means the union of X; + bk"s with respect to all
(i) € &, such that Wk(j U

PROOF. The proof can be obtained by the analogy of [11], [15]. Therefore we will give
a sketch of the proof here. We show (1) first. Set for eachn € N,

Y® = {y eZ'| (y.j) C Ex(oan)"(0, 1), j € A},
then we get from (2.5) and (2.6)
Y = {s(fo ) | () - Go-admissible, jo = 1}
Let I be
{(~Lo)ej —e) + F(P) | (]) € €}

and 6 the maximum of the eigenvalues of L, except A in modulus, then there exists a constant
C >O0foranyy € [ andanyn € N

|(_Lcr)n(7tsy)| < Co".

Therefore we have

A C
This means that the X is compact and that so are X; (i € A).
We show (2) next. Let (¥;,i) denote the set {(y,i) | (y,i) C5}. Then we have § =

4_1 (Y}, j), and

;i) ={(y,i) | (y,) C 5}

d
= {(y, i (i) C El(am( U, j))}

j=1

d
= J{0.0 | 0.0 € Ex(oam)(¥;. )}

j=1
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= U (Lo +ej—en+ L) (). 0) |y el

()):w =i
which shows the set equation (3.2).
We show (3). Let’(1, vy, ..., vg—1) be the positive eigenvector of A. Since the character-
istic polynomial of L, is the minimal polynomial of the algebraic integer A, {1, vy, ..., vg—1}

is a Q-basis of the algebraic number field Q(1), which means 7,Z¢ = W*. We shall consider
the following hyperplane:

pi= {xGRd\<x,t(1,1,...,1))=o},

where ( , ) is the inner product of R¢. By considering the lattice

d
L:= {an(ej—e1)|ni ez}
j=2

on P, we get Z¢ = U,ﬁ](Y(”) + L) =Y + L, which shows W* = X + nyL. From Baire
category theorem, we have Int X # ¢. By the set equation and the primitivity of L., we have
IntX; # ¢ (j € A.

(4) is clear from the set equation and (3). |
The following lemma can be found in [5], [20].

LEMMA 3.4. Let A be a primitive matrix with the largest eigenvalue ). Suppose that
v is a positive vector such that Av > Av. Then the inequality becomes equality and v is the
eigenvector of A corresponding to A.

LEMMA 3.5. '(|X1|,|X2l,...,|X4l) is the positive eigenvector of L, corresponding
to A, where | - | is Lebesgue measure on W*.

PROOF. From the set equations (3.2) and the fact that the determinant of L;‘ |ws is A,

d
MXil = 1(=Lo) ™' Xil <Y Lj1Xj1 G € A), (33)
j=1
where [;; is (i, j)-entry of L. By the previous lemma, the equality of (3.3) holds. a

REMARK 3.2. The set equations (3.2) are non-overlapping unions by Lemma 3.5.

DEFINITION 3.1. The coincidence condition of AH-substitution means that we can

take jo € A, n > 1 such that for any i € A, there exist d different G*-admissible sequences
(i) (i)
Jliita

: ) satisfyin
(0)..4) satistying

@) . G
JE’,),=1, Wk(,-)] = jo,
—1
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Jio)
and Zgzl (—La)’(”’“)bkg‘)’ are constant vector for alli € A.
—a
THEOREM 3.6. Under the coincidence condition of AH-substitution o s g, we have
X = U X (non - overlapping)
jeA

PROOF. By the set equations (3.2), we have

n
(—Ly)" Xy = U (X,-_,, + Z(—LU)("“)b',i‘Z) . (34
(-,fj:::-,f:z):cj;»admissible a=l
Jo=wV

By Remark 3.2, we have that the set equations are non-overlapping, and so are (3.4). On
(i)

the other hand, we know that U?:l <Xj£,-’)l + ZZZI(_LU)—(n—a)bZ(i«)x> is a subpatch of

(—Ls)"X j, from the coincidence condition. Therefore we have the conclusion. O

EXAMPLE 3.1. Figure 1 and Figure 4 are the atomic surfaces of the H-substitution
and the A H -substitution induced by the following substitution:

o:1+— 112,22 —~ 32,3 — 1.

The set equations (3.2) say that for x € X;, there exist (,i) € &, such that W,Ej ) —

and (=Ly) x e X i+ b,{. Therefore a Markov transformation T(;"AH: X — X is defined for
almost all points of X as follows:

T* x:=(—Ly) 'x — b,{ eX;(xeX;).

OAH

Let the (backward) one-sided shift space of G, be

25 = (i) e & | W) = e n €N,

and its shift map S} on £2

Sp: 25— 25, Se((F20) = ()

A finite or infinite sequence of &, which occurs some element of £2 is called G} -admissible
sequence.
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the partial atomic surface X, of the partial atomic surface X, of
0,,in Ex 3.1 0,,in Ex 3.1
1

-7 l -
-1
the partial atomic surface X, of the atomic surface X of g, in
0,,in Ex 3.1 Ex 3.1

FIGURE 4. Xq, X5, X3, X.

THEOREM 3.7. For almost all x € Xj, (jo € A), there exists some G;-admissible
sequence (,t}]j;i) € 27 with ng;l) = jo such that
o .
x=) (—Lo)"b".

n=1
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PROOF. In the same way as Theorem 3.1, for each n € N, there exists G -admissible

sequence (/~!/2;™") € £2; such that

n
¥ = (~Lo) by + (~Lo)" (T5],x)
a=1

As L, is contractive on W*, the second term converges to 0 (n — 00). O

We can define ¢*: 27 — X by
o
.'— j_ "'.'—n”' o .j—n
o () =D Lo)'sl
n=1

and see that ¢*: 2% — X is bijective almost everywhere.

THEOREM 3.8. The transformations T;, , and S; are isomorphic by ¢* almost every-

where.
PROOEF. This is clear from the definitions. O
3.3. Natural Extension of Markov transformation. We set

A

X; ::Xi—Jiz{x—y|xeX,-, ye],-} icA,
and

X = U X; (non-overlapping) .
ieA

Let us define a realization map ¢: R —> X by

Pl s = @™ ((120) — ()

o0 jn

(@]
_ n .j—)1 #
- Z(_L") bk—n - Z (=ayrtt’
n=1 n=0
then we see that ¢ is bijective for almost all points in .
By the set equations (3.2), we have for eachi € A
Xi= |J (Lo (Xj+b)).

():wi =i
We define

Xy =L)X +b)). X=X —Ji(]
() = TR X =X i)
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for every (,i) such that W,Ej ) = i. Then we have the non-overlapping decompositions:

‘ ! . (/
({):w =i ():wi =i
Set
Qo) = {(00) € 20 | o =i},
() = {0 e 20 | (2 = (D)

for every (i) such that W,Ej ) — i, then 2, is decomposed as follows:
Qaz UQU(Z.)’ Qa(i)z U Qa(i)
ieA (]):wi=i

Theorems 3.1 and 3.7 give us the following equalities for almost all points:

Xi=¢(2,0). f((j) =4 (2:()) - (3.5)
k
For almost all x € X, there exists (,{::,ﬁgﬁ) € 2, with jo = j such that
00 ) oo a]{n
_ nyJ-n n
X = Z (_LU) bkfn - Z (_)L)VH*I :
n=1 n=0
Then we have
o0 . o0 )gn-%—l
_ _ npJ-(n=1) _ n+1
(_L(r)x = Zl( La’) bk_(n_]) ZO (_}L)n+]
n= n=

~ o) —en+ £RIN)
Therefore by (3.5), we get

-Lo)X; = | ()?(j)+c,{),

1<k<l; k
where C',i = (—Ls) (ej, —e1) + f(Pk(({O)), hence we obtain a Markov transformation f‘UAH:

X — X with a Markov partition {}A((]i) | (i) € Eg} by

A

TopuX = (—Lo)x — ] (x € X))

Thus we have the following theorem.
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THEOREM 3.9. The transformations T, L and Sg are isomorphic by ¢ almost every-
where, that is, the following diagram is commutative almost everywhere.

S N
o “ll? 520

>

><)<_)

l

D> ——

7BAH

4. Tiling by atomic surfaces

4.1. Stepped surface induced by A H-substitution. For x € Z%, j € A, we define
(x, j*) by

(x, j*) = {x + ) nex

keA, k£j

O§tk<1},

that is, (d — 1)-dimensional oriented unit square with the base point x generated by
{e1,....ej_1,€jq1,...,eq} ([21]). We set

A i={x, ) | x €27, j € A},

and let G be a Z-free module generated by A*. Let us define the action on G} by Z? (denote
by +) as
Y@ = +x D ezl @ j)ea.

and a homomorphism E1(0)*: Gf — G} as

Evoam)*(x.i®) = Y ((ej—e)+ (L)' + £(PI). j*) @)
(=
for any generator (x, i*) of G}
Let us calculate

Er(oam)™ (0,i%) = 3 (s () wi) (4.2)
(,ﬁj :::i:ﬁ ) G -admissible
::Wk(f]”

n=1,2,3,...), where

k—n+ta

n—1
ST = Y L) ™ (s — €D + (LTS PIY) @)
a=0
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If A* € Gy is represented by
)"* =(x17j]*)+"'+(xk1j]z() ((xlvjl*) EA: i: 1721"'7k) )

then we denote the union of (x;, j)’s by |A*|, thatis, [A*] := Uf.‘zl(x,-, J5). Let g';‘ be a set of

the finite or countable unions of the elements of A*. Since for any C € g';‘ there exist some

finite or countable index set A and (x4, ji) € A* (¢ € A) such that

C=J&a i},
aEA
amapping E1(oan)* : Gf — G can be defined by
Ei(oam)*(C) := | IE1(0an)* (Xa, j)I -
acA
Thus we have foranyn € Nand j € A
Ei(oan)™ (0, j*) = |E1(can)™ (0, j*)|.
Therefore we have the following proposition from (4.2) and (4.3).

PROPOSITION 4.1. The partial atomic surfaces X ; (j € A) can be given by
X; = lim (—Lo)"nsE1(0an)™ (0, j*) (j € A),
n—o0

where the right hand side means the convergence with respect to Hausdorff distance.

PROOF. From (4.3), we have
(—Lo)'mss™ (1 00) = D (—La) b)) -
a=1

Thus we obtain the conclusion by Theorem 3.2. a

EXAMPLE 4.1. Figure 5 depicts E(oag)*(0,i*) (n = 1,2,3,...) of the substitu-
tiongivenby o : 1 +— 112,21+ 32,3+ 1
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Ey(oam)* E\(oan)*
- —
n=0 n=1 n=>2
Ei(an)* Ei(oam)* Ey(ocam)* -+  Ei(cam)*
= - _— —
n=9
FIGURE 5. Ei(oag)* (0,1*),n=0,1,...,4,9.

Setting

1 A * + (jeA

i =|——7T————ye1, ———TmT,e Tye €

Jj 1+ u€l 1+ u€l ut€j J

A
P =W - myer
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we define the stepped-surface of P by
S:={@,j" |mxelj, jeA}.

We also call S := U(x)j*)es(x, J*) the stepped-surface of P. Let us define an affine
transformation:

/. nd .ot . A
wg i RY = P @ mw(x) :=my(x) — mnue1.

Then we have the following lemma:

LEMMA 4.2 (see [5], [10]). El(aAH)* has the following properties:
(1) Ei(oam)*(S) = S.
2) If(x,i%), (x',i"™) € S with Int(x, i*) NInt(x’, i"") = ¢, then
Int E1(oam)*(x, i) N Int Ey(oam)* (', i) = ¢,
where Int A is the interior of A for A C RY.

PROOF. As (2) is clear, we shall show (1). Setting
yi=(ej — e+ (~Lo) '+ f(P))

for any (x,i*) € G} and any (,i) with Wk(j) =i, we have myx = (—M)m,y — a,{. Take any
(x,i*) C S. By the definition of the stepped surface, 7, x € I;. Then we get

(~=Mmuy € Ly +af € (=)1; .

Therefore we obtain (y, j*) C S for any (li) with Wk(j) = i, which means E{(cag)*(x,i*) C
S. The converse is also similar. a

4.2. Tiling by atomic surfaces. Projecting the stepped surface S to P by n), we
obtain a parallelogram tiling of P:

T = {mx, j9 | (x, j*) € S},
which has {r}(0, j*) | j € A} as a protoset.
We set the parallelogram C (0, j*) by
C0, j*) = 7500, j*) = J;,
and denote these union Ul‘-lz1 c(o, Jj*) by C(0).

PROPOSITION 4.3 (see [6]). The set é(O) has the following properties:

(H €O =1

2 T'={x+C0 |xeZ}=C0) +Z%is atiling on R?.

PROOF. The assertion (1) is clear. We prove (2). We consider the intersection of P
and C(0) + Z4. By the fact C(0, J*) is between P and P + ej for each j € A, (x +
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C(0, J) NP # ¢ means (x, j*) € S forany x € Z¢. Since 7" is a tiling of P, we get
Uypezd (x + é(())) N P = P. Therefore we have

Upezd @ +CONN(P+y)=P+y(yeZ).

Hence we know R? = C(0) + Z9. From (1), we see that 7" is a tiling on RY. ]

Replacing parallelograms 7/ (x, j*) by the fractal sets 7} (x) 4+ 7/(X;), we define a col-
lection:

T = {m(x) + 7 (X)) | x € S}.

The following theorem is obtained by slight modification of the proof of Theorem 3.3 in [15].

THEOREM 4.4. The following statements are equivalent:

(1) % isatiling of P,

2 Xi| = |75(0,i%)]

(3) For some i, the radius of the largest ball contained E; (o))" (0,i%) diverges as
n— oo.

(4)  Forsome i, limy 00 3(—Ly)" 1 E1 (0 ,;)" (0, i*) = 3X;.

The following Corollary is proved in the same manner as Proposition 4.3.

COROLLARY 4.5. Under the coincidence condition, if one of the statements in Theo-
rem 4.4 holds, then T = {x + X | X € Zd} is a tilling on R

The following is the main theorem.

THEOREM 4.6. Assume that an AH-substitution oap satisfies (NP), (UM), (IR) and
(FP), that oag satisfies the coincidence condition for AH-substitution, and that one of the

statements in Theorem 4.4 holds. Then we have the following statements:
(1) X is a torus.

A

2) T,y : X — X is the group automorphism with a Markov partition
{X(i) | (1) €€}
(3) The following commutative relation holds:

R! Lo, Rd

prl lpr

X — X,

T"A H

where pr means a natural projection of R? to the torus X.
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