Токуо Ј. Матн. VOL. 31, NO. 2, 2008

Hilbert-Schmidt Hankel Operators and Berezin Iteration

Wolfram BAUER* and Kenro FURUTANI[†]

Science University of Tokyo

(Communicated by K. Uchiyama)

Abstract. Let H be a reproducing kernel Hilbert space contained in a wider space $L^2(X, \mu)$. We study the Hilbert-Schmidt property of Hankel operators H_q on H with bounded symbol g by analyzing the behavior of the iterated Berezin transform. We determine symbol classes S such that for $g \in S$ the Hilbert-Schmidt property of H_g implies that $H_{\bar{q}}$ is a Hilbert-Schmidt operator as well and there is a norm estimate of the form $||H_{\bar{q}}||_{\text{HS}} \leq C \cdot ||H_{q}||_{\text{HS}}$. Finally, applications to the case of Bergman spaces over strictly pseudo convex domains in \mathbb{C}^n , the Fock space, the pluri-harmonic Fock space and spaces of holomorphic functions on a quadric are given.

1. Introduction

Let X be a set with a measure μ and H be a closed subspace of $L^2(X, \mu)$. For any bounded measurable function g on X and the orthogonal projection P from $L^2(X, \mu)$ onto H the Hankel operator H_g resp. the Toeplitz operator T_g on H are define by:

$$H_q f := (I - P)(fg) \text{ and } T_q := P(fg).$$
 (1.1)

Among a variety of examples the operators (1.1) have been treated intensively in the case of Bergman and Hardy spaces and spaces of harmonic or pluri-harmonic functions. The study of Toeplitz operators T_q or algebras generated by those require an analysis of the Hankel operators H_g and $H_{\bar{g}}$. In particular, the compactness or Schatten-p-properties of H_g and $H_{\bar{g}}$ are of importance to obtain spectral results and to determine Fredholmness of T_q , c.f. [10], [18], [21], [23], [24]. For a reproducing kernel Hilbert space H a general symbol calculus was introduced by Berezin [8], [9] which can be regarded as an inverse quantization and frequently has been applied to the analysis of the operators (1.1). In particular, the *Berezin symbol* \tilde{g} of T_q was used to introduce the notion of *mean oscillation* MO(g) of g. At least for Bergman spaces over bounded symmetric domains or the Segal-Bargmann space there are characterizations in terms of the function MO(g) for H_g and $H_{\bar{g}}$ to belong to the ideals of Schatten-p-class or

Received October 27, 2006; revised February 22, 2007 2000 Mathematics Subject Classification: 47B35, 47B10, 32A25, 32Q15, 53D50 Key words: Hilbert-Schmidt Hankel operators, Berezin transform, reproducing kernel, pairing of polarizations, sphere, complex projective space, kernel asymptotic

^{*}has been supported by a JSPS (Japanese Society for the Promotion of Science) postdoctoral fellowship (PE 05570) for North American and European Researchers.

[†]has been partially supported by the Grant-in-aid Scientific Research (C) (No. 17540202), Japan Society for the Promotion of Science

compact operators, c.f. [7], [10], [23]. As a matter of fact the assignment $g \mapsto MO(g)$ is invariant under complex conjugation such that these characterizations hold for H_g and $H_{\bar{g}}$ simultaneously. In [24] the compactness of H_g and $H_{\bar{g}}$ was proved in the case of Bergman spaces over strictly pseudo convex domains Ω in \mathbb{C}^n and smooth symbols g on Ω continuous up to the boundary. An analog theorem for the case of weighted harmonic Bergman spaces over the unit ball in \mathbb{R}^n can be found in [22]. Schatten-p-class properties of the Hankel operators do not follow automatically, c.f. [22], [25]. On the one hand it was observed in [10], [21] (resp. [4]) that for the Segal-Bargmann space H and bounded symbol g the operator H_g is compact (resp. Hilbert-Schmidt) if and only if $H_{\bar{g}}$ is compact (resp. Hilbert-Schmidt). On the other hand, the existence of non-constant bounded holomorphic functions implies that such a result in general can not be true for Bergman spaces over bounded domains $X \subset \mathbb{C}^n$, c.f. [25]. Let $\mathcal{L}^2(H, H^{\perp})$ denote the Hilbert-Schmidt operators from H to its orthogonal complement H^{\perp} in $L^2(X, \mu)$ and with norm $\|\cdot\|_{\text{HS}}$. Here, we determine spaces S of bounded measurable symbols such that:

(P) For $g \in S$ and $H_g \in \mathcal{L}^2(H, H^{\perp})$ it follows that $H_{\bar{g}} \in \mathcal{L}^2(H, H^{\perp})$ and there is a constant C > 0 with $\|H_{\bar{q}}\|_{HS} \leq C \|H_q\|_{HS}$.

Following ideas in [4], we express $||H_g||_{\text{HS}}$ by integral conditions on g and \tilde{g} . No further assumptions on X are required besides the existence of a reproducing kernel K. For a finite measure μ property (P) holds with $S := L^2(X, V)$ and C = 1 where the *Berezin measure* V is defined by $dV(z) = K(z, z)d\mu(z)$ (c.f. Proposition 4.1).

There is a natural metric d on X induced by K and equivalent to the Bergman distance in the case of Bergman spaces H over bounded domains $X \subset \mathbb{C}^n$. We assume that a priori there is a second metric \mathbf{d} on X related to d and turning the space C(X) of continuous functions on X equipped with the compact-open topology into a Fréchet space. For symbols $g \in L^{\infty}(X)$ such that $||H_g||_{\text{HS}} < \infty$ the following can be said about the sequence of iterated Berezin transforms. Theorem I is essential in the proof of the Theorems II and III.

THEOREM I. The sequence $(B^j g)_{j \in \mathbb{N}} \subset C(X, \mathbf{d})$, where B denotes the Berezin transform, has cluster points $h \in C(X, \mathbf{d})$ with Bh = h.

We observe that $S := L^2(X, V)$ is an *invariant space* for the Berezin transform. Moreover, for any symbol $g \in S$ the invariance $g = \tilde{g}$ implies that $g \equiv 0$ (see example 3.1). In fact this observation can be used to obtain a defining property for S in (P):

- THEOREM II. Let $S_0 \subset L^{\infty}(X)$ such that:
- (i) S_0 is asymptotically invariant under the Berezin transform (c.f. Definition 3.2).
- (ii) For $h \in S_0$ the equality $h = \tilde{h}$ implies that $H_{\tilde{h}} = 0$.
- Then (P) holds with $S := S_0$ and C := 2.

In the case of the Segal-Bargmann space H_h assumptions (i) and (ii) of Theorem II are fulfilled with $S_0 := L^{\infty}(\mathbb{C}^n)$. Here S_0 is invariant under complex conjugation and (P) holds in a symmetric way, c.f. [4] (for invariance under Berezin transform [1], [15]). In our analysis

iteration of the Berezin transform *B* plays a crucial role. Let $\Omega \subset \mathbb{C}^n$ be a *strictly pseudo* convex domain with C^3 -boundary and $H = H^2(\Omega, \mu)$ a weighted Bergman space over Ω with K(x, x) > 0. For $f \in C(\overline{\Omega})$ the sequence of iterated Berezin transforms converges uniformly on the closure $\overline{\Omega}$ to a unique fix point $f_0 \in C(\overline{\Omega})$ of *B* preserving the boundary values of *f*, c.f. [2]. Let $C_0(\Omega)$ denote the space of continuous functions on $\overline{\Omega}$ vanishing at the boundary.

THEOREM III. $S_0 := C_0(\Omega)$ fulfills the condition (i) and (ii) of Theorem II.

To give an example of a non-symmetric situation we consider the Banach algebra:

 $\mathcal{A}_{ah}(\Omega) := \left\{ f \in C(\overline{\Omega}) : f_{\mid \Omega} \text{ is anti-holomorphic} \right\}$

and set $S_0 := C_0(\Omega) \oplus \mathcal{A}_{ah}(\Omega)$. This choice again leads to a solution of (P) whereas the symbol space $S_{0,c} := \{\bar{g} : g \in S_0\}$ in general does not. This can be seen by the fact that there are no non-zero Hilbert-Schmidt Hankel operators on the Bergman space of the open unit ball in \mathbb{C}^n with anti-holomorphic symbols when $n \ge 2$, c.f. [25]. We examine the *pluri-harmonic Fock space* H_{ph} on \mathbb{C}^n . With $g \in L^{\infty}(\mathbb{C}^n)$ and the pluri-harmonic Hankel operator H_g^{ph} it holds $\|H_{\bar{g}}^{ph}\|_{\text{HS}} \le \sqrt{2} \cdot \|H_g^{ph}\|_{\text{HS}}$ and the Hilbert-Schmidt property of the corresponding Hankel operators H_g^{p} on the *Fock space* H_h and H_g^{ph} on H_{ph} are related. As an application of Theorem II we show that $H_g^h \in \mathcal{L}^2(H_h, H_h^{\perp})$ implies that H_g^{ph} and $H_{\bar{g}}^{ph}$ are of Hilbert-Schmidt type as well and

$$\max\left\{ \left\| H_{g}^{\mathrm{ph}} \right\|_{\mathrm{HS}}, \left\| H_{\bar{g}}^{\mathrm{ph}} \right\|_{\mathrm{HS}} \right\} \le \sqrt{5 \cdot \min\left\{ \left\| H_{g}^{\mathrm{h}} \right\|_{\mathrm{HS}}^{2}, \left\| H_{\bar{g}}^{\mathrm{h}} \right\|_{\mathrm{HS}}^{2} \right\}}.$$
 (1.2)

It was remarked in [20] that H_h arises naturally by pairing of polarizations from the real and Käler polarization on the cotangent bundle $T^*(\mathbf{R}^n) \cong \mathbf{C}^n$. The Euclidean space \mathbf{R}^n can be replaced with the *n*-dimensional sphere \mathbf{S}^n in \mathbf{R}^{n+1} or the complex projective space $P\mathbf{C}^n$. Then this method leads to a family of reproducing kernel Hilbert spaces of holomorphic functions on a quadric in \mathbf{C}^{n+1} resp. on a space of $(n + 1) \times (n + 1)$ complex matrices parametrized by two real parameters. Several aspects of the analysis on these spaces are treated in [5]. In the final part of this paper we are interested in the asymptotic behavior of the *Berezin measure* in these examples. As an application of the general theory we determine a class of Hilbert-Schmidt Hankel operators in the sphere and complex projective space case.

2. Preliminaries

Let $L^2(X, \mu)$ denote the classes of μ -square integrable functions on a measure space (X, \mathcal{F}, μ) . We write $\langle \cdot, \cdot \rangle$ (resp. $\|\cdot\|$) for the inner product (resp. norm) of $L^2(X, \mu)$.

A linear space *H* of μ -square integrable functions on *X* is said to be closed in $L^2(X, \mu)$ iff the canonical projection $p : H \to L^2(X, \mu)$ is injective with closed range and *H* is identified with p(H). We write $P : L^2(X, \mu) \to H$ and Q := I - P for the orthogonal projection onto *H* and its orthogonal complement H^{\perp} respectively. Assume, that *H* admits a *reproducing kernel* function, i.e. there is a $\mathcal{F} \otimes \mathcal{F}$ -measurable function $K : X \times X \to \mathbb{C}$ such that $X \ni x \mapsto K(x, x) \in (0, \infty)$ is measurable and for all $x, y \in X$:

- (i) $K(\cdot, x) \in H$,
- (ii) $\overline{K(x, y)} = K(y, x)$,
- (iii) *Reproducing property*: For all $f \in H$ it holds $f(x) = \langle f, K(\cdot, x) \rangle$.

By (i) and for any $x \in X$ the *normalized kernel* is given by

$$k_{x} := K(\cdot, x) \cdot \|K(\cdot, x)\|^{-1} \in H$$
(2.1)

where by (i), (iii): $||K(\cdot, x)|| = K(x, x)^{\frac{1}{2}} > 0$. We define a symbol space:

$$\mathcal{T}(X) := \{ f : L^2(X,\mu) : fk_x \in L^2(X,\mu), \ \forall \ x \in X \}.$$

DEFINITION 2.1 (Berezin transform). For $f \in \mathcal{T}(X)$ the Berezin transform (BT) \tilde{f} : $X \to \mathbb{C}$ is defined by:

$$\tilde{f}(\lambda) := \langle fk_{\lambda}, k_{\lambda} \rangle.$$
(2.2)

Naturally (2.2) extends to operators on H such that \tilde{f} and \tilde{T}_f coincide and it can be regarded as an *inverse quantization*. If T_f is bounded \tilde{f} clearly is bounded by $||T_f||$. On functions (BT) is an integral operator with positive kernel and commutes with the complex conjugation: $\tilde{f} = \tilde{f}$. We write M_g for the multiplication with a symbol g and $\mathcal{L}(V, W)$ for the continuous operators between topological vector spaces V and W. We also use the shorter notation $\mathcal{L}(V) := \mathcal{L}(V, V)$.

DEFINITION 2.2 (Hankel and Toeplitz operators). For $g \in L^{\infty}(X)$ the Hankel operator H_g and the Toeplitz operator T_g with symbols g are given by $H_g := QM_g \in \mathcal{L}(H, H^{\perp})$ and $T_g := PM_g \in \mathcal{L}(H)$.

Definition 2.2 can be generalized to classes of unbounded symbols. Then H_g and T_g will be unbounded in general. On X we consider the *Berezin measure V*:

$$dV(x) := K(x, x)d\mu(x).$$
 (2.3)

There is a *trace formula* for positive operators on *H* which leads to a characterization of the Hilbert-Schmidt Hankel operators by an integral condition with respect to *V*. We write $\|\cdot\|_{\text{HS}}$ for the *Hilbert-Schmidt norm*.

LEMMA 2.1. Let g be a measurable function on X such that $M_g P$ is a bounded operator on $L^2(X, \mu)$, then (a) and (b) below are equivalent:

- (a) $H_q: H \to H^{\perp}$ is a Hilbert-Schmidt operator (we write $H_q \in \mathcal{L}^2(H, H^{\perp})$).
- (b) $I := \int_X \|H_g k_x\|^2 dV(x) < \infty$.

If (a) and (b) are valid, then $\sqrt{I} = ||H_q||_{HS}$.

PROOF. Fix an orthonormal basis (ONB) $[e_j : j \in \mathbf{N}_0]$ in H. Because QM_gP is bounded, there is $T \in \mathcal{L}(H)$ such that $(QM_gP)^*(QM_gP) = T^*T$ on H. Hence

$$I = \int_X \left\| H_g k_x \right\|^2 dV(x) = \int_X \left\langle T K(\cdot, x), T K(\cdot, x) \right\rangle d\mu(x)$$

From (i)–(iii) we obtain for all $x \in X$:

$$TK(\cdot, x) = \sum_{j=0}^{\infty} \langle TK(\cdot, x), e_j \rangle e_j = \sum_{j=0}^{\infty} \overline{[T^*e_j](x)} e_j.$$
(2.4)

By inserting (2.4) into the integral above and using the monotone convergence theorem together with $||T^*||_{\text{HS}} = ||T||_{\text{HS}}$ one obtains that:

$$I = \int_X \sum_{j=0}^{\infty} \left\| \left[T^* e_j \right](x) \right\|^2 d\mu(x) = \sum_{j=0}^{\infty} \left\| T^* e_j \right\|^2 = \sum_{j=0}^{\infty} \left\| H_g e_j \right\|^2.$$

Hence the equivalence of (a) and (b) and $\sqrt{I} = ||H_g||_{HS}$ are proved.

REMARK 2.1. The analogous result of Lemma 2.1 holds if we replace H_g by the Toeplitz operator T_g in (a) and (b) above. Note that $T_g^* = T_{\bar{g}}$ in Lemma 2.1.

By a further decomposition of the integral expression in Lemma 2.1 (b), the Berezin symbol of g naturally appears.

LEMMA 2.2. For $g \in L^{\infty}(X)$ and with I defined as in Lemma 2.1 (b), it holds:

$$I = \int_{X} \left\{ \left\| P[\bar{g}k_{z}] - \overline{\tilde{g}(z)}k_{z} \right\|^{2} + \left| g(z) - \tilde{g}(z) \right|^{2} \right\} dV(z) \,.$$
(2.5)

The right hand side of (2.5) is finite if and only if the left hand side is finite.

PROOF. By *Fubini's theorem* and using (2.3):

$$I = \int_{X} \|H_{g}K(\cdot,\lambda)\|^{2} d\mu(\lambda)$$

$$= \int_{X} \int_{X} |g(z)K(z,\lambda) - P[gK(\cdot,\lambda)](z)|^{2} d\mu(z) d\mu(\lambda)$$

$$= \int_{X} \int_{X} |\overline{g(z)}K(\lambda,z) - P[\overline{g}K(\cdot,z)](\lambda)|^{2} d\mu(\lambda) d\mu(z) .$$
(2.6)

In the last equality we have used (ii) as well as

$$\overline{P[gK(\cdot,\lambda)](z)} = P[\bar{g}K(\cdot,z)](\lambda)$$
(2.7)

which can be deduced from (i)–(iii) by a straightforward calculation. Using $\tilde{\bar{g}} = \tilde{\bar{g}}$ we have:

$$\left\langle P\left[\bar{g}K(\cdot,z)\right],K(\cdot,z)\right\rangle = \left\langle \bar{g}K(\cdot,z),K(\cdot,z)\right\rangle = \left\langle \bar{\tilde{g}}(z)K(\cdot,z),K(\cdot,z)\right\rangle$$

which can be written as $\langle P[\bar{g}K(\cdot, z)] - \overline{\tilde{g}(z)}K(\cdot, z), K(\cdot, z) \rangle = 0$. From the *Pythagorean theorem* we obtain for the inner integral on the right hand side of (2.6) and fixed $z \in X$:

$$\begin{split} &\int_{X} \left| \overline{g(z)} K(\lambda, z) - P \big[\bar{g} K(\cdot, z) \big](\lambda) \big|^{2} d\mu(\lambda) \\ &= \int_{X} \left| \left\{ \overline{g(z)} - \overline{\tilde{g}(z)} \right\} K(\lambda, z) - \left\{ P \big[\bar{g} K(\cdot, z) \big](\lambda) - \overline{\tilde{g}(z)} K(\lambda, z) \right\} \right|^{2} d\mu(\lambda) \\ &= \int_{X} \left| \left\{ \overline{g(z)} - \overline{\tilde{g}(z)} \right\} K(\lambda, z) \big|^{2} d\mu(\lambda) \\ &+ \int_{X} \left| P \big[\bar{g} K(\cdot, z) \big](\lambda) - \overline{\tilde{g}(z)} K(\lambda, z) \big|^{2} d\mu(\lambda) \\ &= K(z, z) \Big\{ \left| \overline{g(z)} - \overline{\tilde{g}(z)} \right|^{2} + \left\| P \big[\bar{g} k_{z} \big] - \overline{\tilde{g}(z)} k_{z} \right\|^{2} \Big\} \,. \end{split}$$

Finally, by inserting this expression into (2.6) the assertion follows.

COROLLARY 2.1. Let $g \in L^{\infty}(X)$ such that $H_g \in \mathcal{L}^2(H, H^{\perp})$, then $g - \tilde{g} \in L^2(X, V)$.

PROOF. Lemma 2.1 (b) holds and the assertion directly follows from Lemma 2.2. \Box In order to derive some further decomposition of the integral I we prove:

LEMMA 2.3. Let $g \in L^{\infty}(X)$, then:

$$I_1 := \int_X \|P[\bar{g}k_z] - \overline{\tilde{g}(z)}k_z\|^2 dV(z) = \int_X \|P[gk_\lambda] - \tilde{g}k_\lambda\|^2 dV(\lambda).$$

The right hand side is finite if and only if the left hand side is finite.

PROOF. By using Fubini's theorem and (2.7) again one concludes that:

$$I_{1} = \int_{X} \int_{X} \left| P[\bar{g}K(\cdot, z)](\lambda) - \overline{\tilde{g}(z)}K(\lambda, z) \right|^{2} d\mu(\lambda) d\mu(z)$$

$$= \int_{X} \int_{X} \left| P[gK(\cdot, \lambda)](z) - \tilde{g}(z)K(z, \lambda) \right|^{2} d\mu(z) d\mu(\lambda)$$

$$= \int_{X} \left\| P[gk_{\lambda}] - \tilde{g}k_{\lambda} \right\|^{2} dV(\lambda).$$

Combinings Lemmas 2.1, 2.2 and 2.3 we can prove a *decomposition formula* for the Hilbert-Schmidt norm of Hankel operators:

PROPOSITION 2.4. Let $g \in L^{\infty}(X)$ such that H_g is a Hilbert-Schmidt operator. Then $H_{\tilde{g}}, T_{g-\tilde{g}}$ and $H_{g-\tilde{g}}$ are of Hilbert-Schmidt type as well and:

$$\left\|H_{g}\right\|_{HS}^{2} = \left\|T_{g-\tilde{g}}\right\|_{HS}^{2} + \left\|H_{\tilde{g}}\right\|_{HS}^{2} + \left\|g - \tilde{g}\right\|_{L^{2}(X,V)}^{2}.$$
(2.8)

PROOF. From Lemma 2.1, 2.2 and 2.3 we have:

$$\begin{aligned} \left\|H_{g}\right\|_{\mathrm{HS}}^{2} &- \left\|g - \tilde{g}\right\|_{L^{2}(X,V)}^{2} = \int_{X} \left\|P\left[\bar{g}k_{z}\right] - \overline{\tilde{g}(z)}k_{z}\right\|^{2} dV(z) \\ &= \int_{X} \left\|P\left[gk_{\lambda}\right] - \tilde{g}k_{\lambda}\right\|^{2} dV(\lambda) \,. \end{aligned}$$

After decomposing the integrand into an orthogonal sum:

$$\|P[gk_{\lambda}] - \tilde{g}k_{\lambda}\|^{2} = \|T_{g-\tilde{g}}k_{\lambda}\|^{2} + \|H_{\tilde{g}}k_{\lambda}\|^{2}$$

and using Lemma 2.1 and Remark 2.1 we conclude that:

$$\|H_g\|_{\mathrm{HS}}^2 - \|g - \tilde{g}\|_{L^2(X,V)}^2 = \int_X \left\{ \|T_{g-\tilde{g}}k_\lambda\|^2 + \|H_{\tilde{g}}k_\lambda\|^2 \right\} dV(\lambda)$$

= $\|T_{g-\tilde{g}}\|_{\mathrm{HS}}^2 + \|H_{\tilde{g}}\|_{\mathrm{HS}}^2.$

3. Iteration of the Berezin transform

For $\lambda \in X$ we consider the *rank one projection* $P_{\lambda} := \langle \cdot, k_{\lambda} \rangle k_{\lambda}$ on $L^2(X, \mu)$ where k_{λ} denotes the normalized kernel (2.1), c.f. [11], [12]. With this notation the Berezin transform \tilde{f} of a symbols $f \in L^{\infty}(X)$ can be expressed as an *operator trace*:

$$\tilde{f}(\lambda) = \langle fk_{\lambda}, k_{\lambda} \rangle = \langle M_f P_{\lambda}k_{\lambda}, k_{\lambda} \rangle = \operatorname{trace}(M_f P_{\lambda}).$$
(3.1)

In particular, it was observed in [11], [12] that \tilde{f} has some Lipschitz property. Recall that the *trace norm* $\|\cdot\|_{\text{trace}}$ is defined by $\|A\|_{\text{trace}} := \text{trace}\sqrt{A^*A}$ where $\sqrt{A^*A}$ is the unique square root of A^*A . By a standard estimate it follows from (3.1):

$$\left|\tilde{f}(\lambda_1) - \tilde{f}(\lambda_2)\right| \le \|f\|_{\infty} \|P_{\lambda_1} - P_{\lambda_2}\|_{\text{trace}}.$$
(3.2)

Motivated by (3.2) we consider the function $d : X \times X \rightarrow \mathbf{R}$ given by:

$$d(\lambda_1, \lambda_2) := \left\| P_{\lambda_1} - P_{\lambda_2} \right\|_{\text{trace}}$$

The following formula was proved in [11], THEOREM 1 and the case of any reproducing kernel Hilbert space $H \subset L^2(X, \mu)$ of the type we are considering here:

PROPOSITION 3.1 ([11]). For $a, b \in X$ it holds:

$$d(a,b) = 2\left\{1 - \left|\langle k_a, k_b \rangle\right|^2\right\}^{\frac{1}{2}} = 2\left\{1 - \frac{\left|K(a,b)\right|^2}{K(a,a)K(b,b)}\right\}^{\frac{1}{2}}.$$
(3.3)

COROLLARY 3.1. *d* is a metric if for $a, b \in X$ there is $h \in H$ with $h(a) = 0 \neq h(b)$.

PROOF. We only show that $[d(a, b) = 0] \Rightarrow [a = b]$. (3.3) vanishes iff $|\langle k_a, k_b \rangle| = 1$ and by the Cauchy-Schwartz inequality together with $||k_a|| = ||k_b|| = 1$ it follows that $k_a =$ $\lambda \cdot k_b$ where $|\lambda| = 1$. For $a \neq b$ let $h \in H$ with $h(a) = 0 \neq h(b)$. Applying the reproducing property of *K* and K(b, b) > 0 we obtain the contradiction $0 = h(b) \cdot \overline{\lambda} \cdot K(b, b)^{-\frac{1}{2}}$. \Box

Hence *d* is a metric in the case where *H* is "big enough". From now on we assume that *H* satisfies the condition of Corollary 3.1 such that (X, d) becomes a metric space. In our applications *X* a priori will be a metric space carrying a second metric **d** and we also assume this in general. Both metrics **d** and *d* should be related through the assumption that the embedding

$$(X, \mathbf{d}) \hookrightarrow (X, d)$$
 (3.4)

is continuous, c.f. Corollary 3.2. Further, let (X, \mathbf{d}) fulfill (P1)–(P3):

- (P1) (X, \mathbf{d}) is *hemi-compact*, i.e. there is a *fundamental sequence* $(K_n)_{n \in \mathbb{N}}$ of *compact sets* in (X, \mathbf{d}) such that $K_n \subset K_{n+1}$ and $X = \bigcup_{n \in \mathbb{N}} K_n$.
- (P2) (X, \mathbf{d}) is a *k*-space, i.e. a functions f on (X, \mathbf{d}) is continuous if and only if its restriction to any compact subset $K \subset X$ is continuous.
- (P3) All open set in (X, \mathbf{d}) have strictly positive volume with respect to μ .

COROLLARY 3.2. Let $K : X \times X \to \mathbf{C}$ be continuous in the product topology with respect to the metric **d** on X. Then there is a continuous embedding (3.4).

We remark that the assumption of Corollary 3.2 typically holds for reproducing kernel Hilbert spaces $H := \mathcal{N} \cap L^2(X, \mu)$ where \mathcal{N} is nuclear in the *F*-space $C(X, \mathbf{d})$. In the case of a bounded domain $X \subset \mathbb{C}^n$ and with the usual Bergman space *H* over *X*, the function *d* induces the Euclidean topology $\mathbf{d}(a, b) := |a - b|$. Some relation between *d* and the *Bergman distance* are discussed in [19].

LEMMA 3.1. Let $f \in L^{\infty}(X)$, then \tilde{f} is continuous in the topology of (X, \mathbf{d}) .

PROOF. By (3.4) both *d* and **d** induce the same topology on compact sets $K \subset (X, \mathbf{d})$. From (3.2) we conclude that the restriction of \tilde{f} to *K* is continuous with respect to **d** and from (*P*2) it follows that $\tilde{f} \in C(X, \mathbf{d})$.

Let us also write $Bf := \tilde{f}$ for the Berezin transform, when it is considered as an operator. From (3.2) it follows that *B* can be regarded as bounded operator:

$$B: L^{\infty}(X) \to BC(X, d), \text{ and } ||B|| \le 1$$

where BC(X, d) (resp. BC(X, d)) are the bounded functions in C(X, d) (resp. in C(X, d)) equipped with the sup-norm. From (3.4) one has continuous embeddings:

$$C(X, d) \hookrightarrow C(X, \mathbf{d}) \text{ and } BC(X, d) \hookrightarrow BC(X, \mathbf{d}).$$
 (3.5)

Here $C(X, \mathbf{d})$ is a *Fréchet space* (F-space) with respect to the *compact-open topology* by assumptions (P1) and (P2) on the metric \mathbf{d} .

LEMMA 3.2. Let $(g_n)_n \subset BC(X, \mathbf{d})$ be a norm-bounded sequence converging in $C(X, \mathbf{d})$ to $g \in BC(X, \mathbf{d})$. Then it follows that $\lim_{n\to\infty} Bg_n = Bg$ in $C(X, \mathbf{d})$ and $Bg \in BC(X, \mathbf{d})$.

PROOF. Fix c > 0 such that $||g_n||_{\infty} \le c$ for all $n \in \mathbb{N}$ and let $T \subset (X, \mathbf{d})$ be compact. For $n \in \mathbb{N}$ and $x \in X$ one has:

$$\left| \left[Bg_n - Bg \right](x) \right| \leq \int_X \left| g_n - g \right| \frac{|K(\cdot, x)|^2}{K(x, x)} d\mu =: (*).$$

Let $(K_m)_m$ denote the sequence of compact sets in (P1) and fix $m \in \mathbf{N}$, then:

$$(*) \leq \sup_{K_m} |g_n - g| + 2c \int_{X \setminus K_m} \frac{|K(\cdot, x)|^2}{|K(x, x)|} d\mu =: C_{n,m}(x)$$

For fixed $x \in T$ and $m \to \infty$ the sequence $(q_m)_m \subset C(X, \mathbf{d})$ given by:

$$q_m(x) := \int_{X \setminus K_m} \frac{|K(\cdot, x)|^2}{K(x, x)} d\mu = \widetilde{\chi_{X \setminus K_m}}(x)$$

is monotonely decreasing to 0. By *Dini's Lemma* the convergence is uniform on *T*. For any $\varepsilon > 0$ fix $m_0 \in \mathbb{N}$ with $\sup_{x \in T} |q_m(x)| \le \varepsilon$ for all $m \ge m_0$. Finally, we can choose $n_0 \in \mathbb{N}$ with $\sup_{K_{m_0}} |g_n - g| < \varepsilon$ for $n \ge n_0$. Uniformly on *T* this leads to $C_{m_0,n}(x) \le \varepsilon(1 + 2c)$ for $n \ge n_0$. Because *g* is bounded it follows that $Bg \in BC(X, \mathbf{d})$.

DEFINITION 3.1. (Iterated Berezin transform). For $f \in L^{\infty}(X)$ we define the Berezin transforms inductively by:

$$f^{(0)} := f$$
 and $f^{(j+1)} := \widetilde{f^{(j)}}, \quad j \ge 0.$

COROLLARY 3.3. Let $g \in L^{\infty}(X)$ such that H_g is a Hilbert-Schmidt operator, then all the operators $H_{q^{(m)}}$ for $m \in \mathbb{N}$ are Hilbert-Schmidt operators with:

$$\|H_{g^{(m)}}\|_{HS} \le \|H_g\|_{HS}.$$
 (3.6)

Moreover:

$$\sum_{j=0}^{\infty} \left\| g^{(j)} - g^{(j+1)} \right\|_{L^2(X,V)}^2 \le \left\| H_g \right\|_{HS}^2 < \infty.$$
(3.7)

PROOF. Both, (3.6) and (3.7) follow by iteration of (2.8).

For $S \subset C(X, \mathbf{d})$ we write Fix $(S) := \{f \in S : Bf = f\}$ for the *fix points* of B in S. Further, let \overline{S} be the closure of S in the F-space $C(X, \mathbf{d})$. For $q \in L^{\infty}(X)$, we define

$$S_g := \left\{ g^{(j)} : j \in \mathbf{N} \right\} \subset C(X, \mathbf{d}) \tag{3.8}$$

for the *B-invariant space* of *iterated Berezin transforms* of *g*. Combining Corollary 3.3 with general properties of *B* we can prove:

PROPOSITION 3.2. Let $g \in L^{\infty}(X)$ such that the Hankel operator H_g is of Hilbert-Schmidt type, then Fix $(\overline{\mathcal{S}_g}) \neq \emptyset$. Moreover, $\overline{\mathcal{S}_g} \setminus \mathcal{S}_g \subset Fix(\overline{\mathcal{S}_g})$.

PROOF. For any $k \in \mathbf{N}$ it is clear that $||g^{(k)}||_{\infty} \leq ||g||_{\infty}$ and with $\lambda_1, \lambda_2 \in X$ it holds:

$$\left|g^{(k)}(\lambda_1) - g^{(k)}(\lambda_2)\right| \le \|g\|_{\infty} d\left(\lambda_1, \lambda_2\right)$$

This shows that $S_g \subset C(X, \mathbf{d})$ is *bounded* and *equi-continuous*. Hence there is a subsequence $(g^{(m_k)})_k$ which is uniformly compact convergent to some $h \in \overline{S_g}$. We show next that $h \in \text{Fix}(\overline{S_g})$. First let us note that by Lemma 3.2:

$$\lim_{k \to \infty} \widetilde{g^{(m_k)}}(x) = \widetilde{h}(x)$$
(3.9)

where the convergence in (3.9) is uniformly compact on (X, \mathbf{d}) . From our assumption on H_g and (3.7) we conclude that $\lim_{k\to\infty} \|g^{(m_k)} - \widetilde{g^{(m_k)}}\|_{L^2(X,V)} = 0$. Hence there is $A \subset X$ with $V(X \setminus A) = 0$ and a subsequence of $(g^{(m_k)})_k$ (which we denote by $(g^{(m_k)})_k$ again) such that for all $x \in A$:

$$\lim_{k \to \infty} \left\{ g^{(m_k)}(x) - \widetilde{g^{(m_k)}}(x) \right\} = 0.$$
(3.10)

By the definition of h, (3.9) and (3.10) it follows for $x \in A$ that:

$$h(x) = \lim_{k \to \infty} g^{(m_k)}(x) = \lim_{k \to \infty} \widetilde{g^{(m_k)}}(x) = \tilde{h}(x).$$
(3.11)

Because of K(x, x) > 0 for all $x \in X$ we obtain that $\mu(X \setminus A) = 0$ and by (P3) the complement $X \setminus A$ cannot contain an open subset of (X, \mathbf{d}) . Thus A must be dense in (X, \mathbf{d}) . Finally, the continuity of h together with (3.11) imply that $h \in \text{Fix}(\overline{S_q})$.

The second assertion follows by the same argument and the fact that the functions in the complement $\overline{S_g} \setminus S_g$ are limit points of a subsequences of $(g^{(k)})_k \subset C(X, \mathbf{d})$.

We remark that in contrary to $\operatorname{Fix}(\overline{\mathcal{S}_g})$ the set $\overline{\mathcal{S}_g} \setminus \mathcal{S}_g$ might be empty.

DEFINITION 3.2. We call a subspace $S \subset L^{\infty}(X)$ asymptotically invariant under *B* iff for any $f \in S$ the inclusion $\overline{S_f} \subset S$ holds.

By our results above it follows that symbols of Hilbert-Schmidt Hankel operators generate spaces asymptotically invariant under *B*:

COROLLARY 3.3. Let $g \in L^{\infty}(X)$ such that H_g is a Hilbert-Schmidt operator, then $\overline{S_q}$ is asymptotically invariant under B.

PROOF. Let $f \in \overline{S_g}$ be arbitrary. For $f \in S_g$ it is clear that $\overline{S_f} \subset \overline{S_g}$. In the case where $f \in \overline{S_g} \setminus S_g \subset \text{Fix}(\overline{S_g})$ it follows that $\overline{S_f} = S_f = \{f\} \subset \overline{S_g}$.

Further examples of spaces asymptotically invariant under *B* are obviously given by the fix point set Fix (S) of any subspace $S \subset L^{\infty}(X)$ or by the "*eventually fix points*":

$$\{f \in \mathcal{S} : \exists j \in \mathbf{N} \text{ such that } f^{(j)} = f^{(j+1)}\}$$

EXAMPLE 3.1. Let μ be a finite measure on X and fix $g \in L^2(X, V)$. By a straightforward calculation one obtains that:

$$\int_{X^3} \frac{1}{K(y, y)} \frac{|k_u(\lambda)|^2}{K(u, u)} \frac{|k_\lambda(y)|^2}{K(\lambda, \lambda)} dV(y) dV(\lambda) dV(u) = \mu(X) < \infty.$$

By Tonelli's theorem, the function:

$$L(u, y) := \frac{1}{K(y, y)} \int_X |k_u(\lambda)|^2 |k_\lambda(y)|^2 d\mu(\lambda)$$

is finite for a.e. $(u, y) \in X^2$ with respect to the product measure $V \otimes V$. Moreover,

$$\begin{split} \|\tilde{g}\|_{L^{2}(X,V)}^{2} &= \int_{X^{3}} g(u)\overline{g(y)}|k_{\lambda}(u)|^{2}|k_{\lambda}(y)|^{2}d\mu(u)d\mu(y)dV(\lambda) \\ &= \int_{X^{3}} g(u)\overline{g(y)}|k_{u}(\lambda)|^{2}|k_{\lambda}(y)|^{2}d\mu(\lambda)dV(u)d\mu(y) \\ &= \int_{X\times X} g(u)\overline{g(y)}L(u,y)dV \otimes V(u,y) \,. \end{split}$$

By Cauchy-Schwartz inequality and $\int_X L(u, y)dV(u) = \int_X L(u, y)dV(y) = 1$:

$$\|\tilde{g}\|_{L^{2}(X,V)}^{2} \leq \|g\|_{L^{2}(X,V)}^{2}.$$
(3.12)

Equality in (3.12) only holds if $G_1(u, y) := g(u)$ and $G_2(u, y) := g(y)$ are linear dependent showing that g is constant. By an easy consequence of Remark 2.1 together with $T_1 = id$ the measure V cannot be finite whenever H is infinite dimensional. In this case $g \equiv 0$ and there are no non-trivial functions in $L^2(X, V)$ invariant under B.

4. Hilbert-Schmidt Hankel operators

We apply our previous results to prove Theorem II of the Introduction:

PROPOSITION 4.1. For $g \in L^2(X, V)$, the operator H_g is of Hilbert-Schmidt type and:

$$\left\| H_g \right\|_{HS} = \left\| H_{\bar{g}} \right\|_{HS} \le \left\| g \right\|_{L^2(X,V)}.$$
(4.1)

PROOF. For $f \in L^2(X, \mu)$ it follows from $|[Pf](u)|^2 \le ||Pf||^2 \cdot K(u, u)$ that:

$$\left\| M_g Pf \right\|^2 \le \left\| Pf \right\|^2 \int_X |g(u)|^2 K(u, u) d\mu(u) \le \|f\|^2 \|g\|^2_{L^2(X, V)}.$$

Hence $M_g P$ is a bounded operator on $L^2(X, \mu)$ and by Lemma 2.1 it is sufficient to prove Lemma 2.1, (b).

$$\begin{split} \left\| H_g \right\|_{\mathrm{HS}}^2 &\leq \int_X \left\| gK(\cdot, x) \right\|^2 d\mu(x) \\ &= \int_X |g(\lambda)|^2 \int_X \left| K(\lambda, x) |^2 d\mu(x) d\mu(\lambda) = \left\| g \right\|_{L^2(X, V)}^2 < \infty \,. \end{split}$$

By Remark 2.1 and using the same calculation it also follows that the Toeplitz operator T_g is a Hilbert-Schmidt operator. From $T_{|g|^2} = H_g^* H_g + T_{\bar{g}} T_g$ we derive that $T_{|g|^2}, T_{\bar{g}} T_g$ and $H_g^* H_g$ are of *trace class*. Hence

$$\begin{aligned} \left\| H_g \right\|_{\mathrm{HS}}^2 &= \operatorname{trace}(T_{|g|^2} - T_{\bar{g}}T_g) \\ &= \operatorname{trace}(T_{|g|^2}) - \operatorname{trace}(T_{\bar{g}}T_g) \\ &= \operatorname{trace}(T_{|g|^2}) - \operatorname{trace}(T_g T_{\bar{g}}) = \operatorname{trace}(H_{\bar{g}}^* H_{\bar{g}}) = \left\| H_{\bar{g}} \right\|_{\mathrm{HS}}^2. \end{aligned}$$

LEMMA 4.1. Let $(g_m)_m \in L^{\infty}(X)$ be a bounded sequence and point wise convergent to g. Then $(H_{g_m})_m$ converges to H_g in the strong operator topology.

PROOF. Let $f \in H$, then by Lebesgue's convergence theorem it follows that:

$$\left\|H_{g_m-g}f\right\|^2 \leq \int_X \left|g_m-g\right|^2 \left|f\right|^2 d\mu \xrightarrow{m \to \infty} 0.$$

Let $\mathcal{N}_{sym} := \{h \in L^{\infty}(X) : H_{\bar{h}} = 0\}$ be the kernel of the symbol map $h \mapsto H_{\bar{h}}$. Then we consider the space S of symbols defined by:

$$\mathcal{S} := \left\{ g \in L^{\infty}(X) : \overline{S}_g \cap \mathcal{N}_{\text{sym}} \neq \emptyset \right\}.$$
(4.2)

THEOREM 4.1. Let $g \in S$ such that H_g is a Hilbert-Schmidt operator, then $H_{\bar{g}}$ is a Hilbert-Schmidt operator as well and $||H_{\bar{g}}||_{HS} \leq 2||H_g||_{HS}$.

PROOF. Because H_g is a Hilbert-Schmidt operator and by applying Corollary 3.3 it follows that $g^{(m-1)} - g^{(m)} \in L^2(X, V)$ for all $m \in \mathbb{N}$. Hence one concludes that:

$$g - g^{(m)} = \{g - g^{(1)}\} + \dots + \{g^{(m-1)} - g^{(m)}\} \in L^2(X, V).$$

By Proposition 4.1 and Corollary 3.3 again one has for all $m \in \mathbb{N}$:

$$\|H_{\bar{g}-\bar{g}^{(m)}}\|_{\mathrm{HS}} = \|H_{g-g^{(m)}}\|_{\mathrm{HS}} \le \|H_g\|_{\mathrm{HS}} + \|H_{g^{(m)}}\|_{\mathrm{HS}} \le 2 \cdot \|H_g\|_{\mathrm{HS}}.$$
 (4.3)

Choose $h \in \overline{S}_g \cap \mathcal{N}_{sym} \neq \emptyset$ and assume that h belongs to S_g . Then there is $i_0 \in \mathbb{N}$ such that $h = g^{(i_0)}$ and for $i \ge i_0$ it follows from (3.6) that: $0 \le ||H_{\overline{g}^{(i)}}||_{HS} \le ||H_{\overline{h}}||_{HS} = 0$ showing that $H_{\overline{g}^{(i)}} = 0$. In particular, for $f \in H$:

$$\lim_{i \to \infty} \|H_{\bar{g}^{(i)}}f\| = 0.$$
(4.4)

For $h \in \overline{S_g} \setminus S_g$ there is a sequence $(m_k)_k \subset \mathbf{N}$ such that $\lim_{k \to \infty} g^{(m_k)} = h$ with respect to the Fréchet topology of $C(X, \mathbf{d})$. Because of $||g^{(m_k)}||_{\infty} \leq ||g||_{\infty}$ and Lemma 4.1 we obtain for $f \in H$ that:

$$\lim_{k \to \infty} \|H_{\bar{g}^{(m_k)}}f\| = \|H_{\bar{h}}f\| = 0.$$
(4.5)

Let $[e_j : j \in \mathbf{N}]$ be an ONB of H and fix $l \in \mathbf{N}$. Then by (4.3) we conclude:

$$\sum_{j=1}^{l} \|H_{\bar{g}}e_{j}\|^{2} = \lim_{k \to \infty} \sum_{j=1}^{l} \|H_{\bar{g}-\bar{g}^{(m_{k})}}e_{j}\|^{2}$$
$$\leq \limsup_{k \to \infty} \|H_{\bar{g}-\bar{g}^{(m_{k})}}\|_{\mathrm{HS}}^{2} \leq 4 \|H_{g}\|_{\mathrm{HS}}^{2}.$$

in both cases (4.4) and (4.5). For $l \to \infty$ the assertion follows.

PROPOSITION 4.2. Let $S_0 \subset L^{\infty}(X)$ be asymptotically invariant under Berezin transform such that $Fix(S_0) \subset \mathcal{N}_{sym}$. Then S in Theorem 4.1 can be replaced by S_0 .

PROOF. Fix $g \in S_0$ and let $||H_g||_{\text{HS}} < \infty$. It is sufficient to show $g \in S$ defined in (4.2). By assumption it follows that $\overline{S_g} \subset S_0$. Moreover, as a consequence of Proposition 3.2 one obtains that $\emptyset \neq \text{Fix}(\overline{S_g}) \subset \text{Fix}(S_0) \subset \mathcal{N}_{\text{sym}}$. Hence $\overline{S_g} \cap \mathcal{N}_{\text{sym}} \neq \emptyset$ and $g \in S$. \Box

Let \mathcal{K} be the ideal of compact operators on H and denote by $\sigma_e(T)$ the *essential spectrum* of $T \in \mathcal{L}(H)$. For the following result and with the reproducing kernel K we assume that the assignment

$$X \ni x \mapsto K(x, x) \in (0, \infty) \tag{4.6}$$

is continuous. Then we can prove (c.f. [10], [21]):

PROPOSITION 4.3. Let $\mu(K) < \infty$ for all compact $K \subset X$ and $g \in L^{\infty}(X)$ such that H_g and $H_{\overline{g}}$ are compact. With a sequence $(K_m)_m$ of compact sets as in (P1) it follows that:

$$\sigma_e(T_g) \subset \bigcap_{m \in \mathbf{N}} closure \ g(X \setminus K_m).$$
(4.7)

If $T_{q-q^{(m)}}$ is compact, we can replace g by $g^{(m)}$ on the right hand side of (4.7).

PROOF. Suppose that $\lambda \notin closureg(X \setminus K_m)$ for $m \in \mathbb{N}$, then consider *h* defined by:

$$h(z) := \begin{cases} \{g(z) - \lambda\}^{-1} & \text{if } z \in X \setminus K_m \\ 1 & \text{else.} \end{cases}$$

The function h clearly is bounded and it can be easily verified that:

- (a) $T_h T_{g-\lambda} = I + T_{(g-\lambda)h-1} H_{\bar{h}}^* H_g$,
- (b) $T_{g-\lambda}T_h = I + T_{(g-\lambda)h-1} H_{\bar{q}}^*H_h.$

WOLFRAM BAUER AND KENRO FURUTANI

By (4.6) it is clear that $z \mapsto K(z, z)$ and $f := (g - \lambda)h - 1$ are bounded on K_m and because of $\mu(K_m) < \infty$ we have:

$$\|f\|_{L^2(X,V)}^2 = \int_{K_m} |f(z)|^2 K(z,z) d\mu(z) < \infty \, .$$

Hence, T_f is of Hilbert-Schmidt type and so it is compact. By our assumptions on H_g and $H_{\bar{g}}$ both (a) and (b) show that $T_{g-\lambda} \in [\mathcal{L}(H)/\mathcal{K}]^{-1}$ and $\lambda \notin \sigma_e(T_g)$. The second assertion is an immediate consequence of $\sigma_e(T_g) = \sigma_e(T_{q^{(m)}})$.

5. Examples and Applications

Various aspects of the Berezin symbol have been studied c.f. [2], [4], [10], [15] and most recently [11], [12]. Below we apply some of these results to obtain examples of our assumptions in THEOREM 4.1. In particular, we prove THEOREM III and (1.2) of the introduction. All spaces X appearing in this section are metric with (P1)–(P3).

5.1. Bergman spaces over bounded domains. Let $\Omega \subset \mathbb{C}^n$ be a bounded domain with a measure μ . By $H := H^2(\Omega, \mu)$ we denote the Bergman space of all holomorphic μ -square integrable functions on Ω . We assume that the *point evaluations* on H are continuous and the reproducing kernel K is strictly positive on the diagonal. The following is due to J. Arazy and M. Englis (c.f. [2], THEOREM 2.3.):

THEOREM 5.1 ([2]). Let Ω be either a bounded domain in the complex plane with C^1 -boundary, or a strictly pseudo convex domain in \mathbb{C}^n with C^3 -boundary, then

- (a) B maps $C(\overline{\Omega})$ into itself and preserves the boundary values.
- (b) For any $f \in C(\overline{\Omega})$, the sequence $(f^{(k)})_k$ of iterated Berezin transforms converges uniformly on $\overline{\Omega}$ to a function $g \in C(\overline{\Omega})$ satisfying Bg = g and $g_{|\partial\Omega} = f_{|\partial\Omega}$.
- (c) For any $\Phi \in C(\partial \Omega)$ there exists a unique $g \in C(\overline{\Omega})$ satisfying Bg = g and $g_{|\partial\Omega} = \Phi$. The function g is called B-Poisson extension of Φ .

Let $\Omega \subset \mathbb{C}^n$ be as in Theorem 5.1 and denote by $C_0(\Omega)$ the continuous functions on $\overline{\Omega}$ vanishing at the boundary. From (b) and the uniqueness result in (c) we conclude that:

COROLLARY 5.1. Let $g \in S_0 := C_0(\Omega)$. Then $(g^{(k)})_k$ converges to 0 uniformly on $\overline{\Omega}$. In particular, S_0 fulfills the assumptions of Proposition 4.2.

PROOF. The first assertion directly follows from THEOREM 5.1 and $\overline{S_g} = S_g \cup \{0\} \subset S_0$ shows that S_0 is asymptotically invariant under B. Moreover, by the uniqueness result in Theorem 5.1 it is clear that $Fix(S_0) = \{0\} \subset \mathcal{N}_{sym}$.

Note that S_0 is symmetric under complex conjugation. In order to give an example for a non-symmetric situation we consider:

 $\mathcal{A}_{ah}(\Omega) := \{ f \in C(\overline{\Omega}) : f_{|\Omega} \text{ is anti-holomorphic} \}$

and set $S_1 := C_0(\Omega) \oplus A_{ah}(\Omega)$. With $f \in C_0(\Omega)$ and $h \in A_{ah}(\Omega)$ consider $g = f + h \in S_1$. Because of Bh = h and h = g on $\partial \Omega$ we conclude from Theorem 5.1 (b) and (c) that the sequence $(g^{(k)})_k$ is uniformly convergent on $\overline{\Omega}$ to h. Hence S_1 is asymptotically invariant under Berezin transform. Moreover, $Fix(S_1) = A_{ah}(\Omega) \subset \mathcal{N}_{sym}$ and the assumptions of Proposition 4.2 hold.

THEOREM 5.2. Let $g_1 \in S_0 := C_0(\Omega)$ and $g_2 \in S_1 := C_0(\Omega) \oplus \mathcal{A}_{ah}(\Omega)$, then

- (a) $H_{g_1} \in \mathcal{L}^2(H, H^{\perp})$ if and only if $H_{\overline{g}_1} \in \mathcal{L}^2(H, H^{\perp})$.
- (b) $H_{g_2} \in \mathcal{L}^2(H, H^{\perp})$ implies that $H_{\bar{g}_2} \in \mathcal{L}^2(H, H^{\perp})$.
- (c) For $h \in \{g_1, \bar{g}_1, \bar{g}_2\}$ there is a norm estimate: $\|H_h\|_{HS} \le 2 \cdot \|H_{\bar{h}}\|_{HS}$.

Let B_n be the unit ball in \mathbb{C}^n with $n \ge 2$. It was observed in [25] that there is no non-zero Hankel operator $H_g \in \mathcal{L}^2(H, H^{\perp})$ with anti-holomorphic symbol. Hence, in general H_{g_2} in Theorem 5.2 is not of Hilbert-Schmidt type in the case of $H_{\bar{g}_2} = 0$. Let v be the Lebesgue measure on B_n , $(n \in \mathbb{N})$ and define for $\alpha \in \mathbb{R}$ the measure μ_{α} by

$$d\mu_{\alpha}(z) = c_{\alpha} K(z, z)^{1 - \frac{\alpha}{n+1}} dv(z), \qquad c_{\alpha} > 0$$

where *K* denotes the *reproducing kernel* of the unweighted Bergman space $H^2(B_n, v)$. It is known that μ_{α} is finite if and only if $\alpha > n$ and in this case we choose c_{α} with $\mu_{\alpha}(B_n) = 1$. For $\alpha > n$ and in the case of the weighted Bergman space H^2_{α} of holomorphic functions in $L^2(B_n, \mu_{\alpha})$ we want to add some remarks on compact Hankel operators. Let *A* be a finite sum of finite products of Toeplitz operators on H^2_{α} , then it was proved in [14] that *A* is compact if and only if its Berezin symbol vanishes at the boundary of B_n . The following Lemma corresponds to LEMMA 2.1 in the compact case:

LEMMA 5.1. Let $g \in L^{\infty}(B_n)$ and $R \in \{H_g, T_g\}$ defined on H^2_{α} where $\alpha > n$. With the normalized reproducing kernel function k_{λ} in (2.1) it holds:

- (a) *R* is compact if and only if $||Rk_{\lambda}|| \to 0$ as $\lambda \to \partial B_n$.
- (b) For $\lambda \to \partial B_n$ the sequence $(k_{\lambda})_{\lambda}$ tends to 0 weakly in $L^2(B_n, \mu_{\alpha})$.

PROOF. Because R is compact if and only if R^*R is compact (a) follows from our remark above together with:

- $||T_g k_\lambda||^2 = \widetilde{T_g^* T_g}(\lambda) = \widetilde{T_g T_g}(\lambda),$
- $||H_q k_\lambda||^2 = \widetilde{H_q^* H_q}(\lambda) = (T_{|q|^2} T_{\bar{q}} T_q \tilde{j}(\lambda).$

To prove (b) let $h \in L^2(B_n, \mu_\alpha)$ and $\varepsilon > 0$. Choose a continuous function r on B_n having compact support such that $||r - h|| \le \varepsilon$. It follows that:

$$|\langle h, k_{\lambda} \rangle| \leq |\langle h - r, k_{\lambda} \rangle| + |\langle 1, T_{\bar{r}} k_{\lambda} \rangle| \leq \varepsilon + ||T_{\bar{r}} k_{\lambda}||.$$

By Proposition 4.1 the Toeplitz operator $T_{\bar{r}}$ is compact and (b) follows from (a).

As an application of Theorem 5.1 we remark (c.f. [24] in the case $\alpha := n + 1$ and [7]):

COROLLARY 5.2. For $g \in C(\overline{B_n})$ both H_g and $T_{g-\tilde{g}}$ are compact on H^2_{α} where $\alpha > n$. PROOF. For all $\lambda \in B_n$ it follows with a straightforward calculation that:

$$\left\|P\left[gk_{\lambda}\right] - \tilde{g}(\lambda)k_{\lambda}\right\|^{2} + \left\|H_{g}k_{\lambda}\right\|^{2} = \left|\tilde{g}\right|^{2}(\lambda) - \left|\tilde{g}(\lambda)\right|^{2}.$$
(5.1)

By Theorem 5.1 both sides of (5.1) vanish at ∂B_n showing that $\lim_{\lambda \to \partial B_n} ||H_g k_\lambda|| = 0$. Similarly, for $\lambda \to \partial B_n$ one has the convergence:

$$0 \le \left\| T_{g-\tilde{g}} k_{\lambda} \right\|^{2} \le \left\| (g-\tilde{g}) k_{\lambda} \right\|^{2} = \left\{ \left| g-\tilde{g} \right|^{2} \right\} (\lambda) \to 0.$$

Finally, we can apply Lemma 5.1.

An application of Theorem 5.1 leads to the results below. In case $\alpha = n + 1$ Theorem 5.3 and Corollary 5.3 have been originally proved in [13] by using different methods.

THEOREM 5.3. Let $f \in C(\overline{B_n})$, then $\sigma_e(T_f) = f(\partial B_n)$.

PROOF. The inclusion $\sigma_e(T_f) \subset f(\partial B_n)$ follows from Proposition 4.3 and Corollary 5.2. Conversely, let $\lambda = f(x_0) \in f(\partial B_n)$. By Theorem 5.1 (a) and for $R \in \mathcal{L}(H^2_{\alpha})$ it holds:

$$0 \le \|RT_{f-\lambda}k_x\|^2 \le \|R\|^2 \|T_{f-\lambda}k_x\|^2 \le \|R\|^2 \{|f-\lambda|^2\}(x) \xrightarrow{x \to x_0} 0.$$

For $\lambda \notin \sigma_e(T_f)$ one can choose $R + \mathcal{K}$ to be a left-inverse of $T_{f-\lambda} + \mathcal{K}$ in the *Calkin algebra*. Then there is $K \in \mathcal{K}$ such that $\lim_{x \to x_0} ||(I - K)k_x|| = 0$ in contradiction to Lemma 5.1, (b) and $||k_x|| = 1$ for all x. Hence $\lambda \in \sigma_e(T_f)$.

COROLLARY 5.3. For $f \in C(\overline{B_n})$ the operator T_f is Fredholm if and only if $0 \notin f(\partial B_n)$.

5.2. Pluri-harmonic Fock space. For $n \in \mathbf{N}$ and with the usual Lebesgue measure v consider the normalized Gaussian measure μ on \mathbf{C}^n defined by:

$$d\mu(z) := \pi^{-n} \exp(-|z|^2) dv(z) .$$
(5.2)

The space H_h of all entire and μ -square integrable functions is called *Fock space* or *Segal-Bargmann space*. It is known that H_h is a reproducing kernel Hilbert space with kernel function $K(x, y) = \exp(x \cdot \bar{y})$ for $x, y \in \mathbb{C}^n$ where $x \cdot y := x_1 y_1 + \dots + x_n y_n$ and $|y|^2 := y \cdot \bar{y}$. We also consider the space $H_{ah} := \{\bar{f} : f \in H_h\}$ of anti-holomorphic functions and we denote by P_h (resp. P_{ah}) the orthogonal projection from $L^2(\mathbb{C}^n, \mu)$ onto H_h (resp. H_{ah}). For $f \in L^2(\mathbb{C}^n, \mu)$ note that:

$$P_{\rm h}\bar{f} = \overline{P_{\rm ah}f} \,. \tag{5.3}$$

Considered on functions the Berezin transforms corresponding to both spaces H_h and H_{ah} coincide and we denote it by B. For $g \in L^{\infty}(\mathbb{C}^n)$ one has:

HILBERT-SCHMIDT HANKEL OPERATORS

$$\left[Bg\right](u) := \int_{\mathbf{C}^n} g(x) \exp\left(x \cdot \bar{u} + u \cdot \bar{x} - |u|^2\right) d\mu(x) \,. \tag{5.4}$$

It is readily verified that *B* can be regarded as a continuous convolution operator on the *Schwartz space* $S(\mathbb{C}^n)$, c.f. [15]:

$$Bf = f * h$$
 where $h := 2^n \exp\left(-|\cdot|^2\right)$

and $f * g := (2\pi)^{-n} \int_{\mathbb{C}^n} f(y)g(\cdot - y)dv(y)$ denotes the *convolution product* on $\mathcal{S}(\mathbb{C}^n)$. Using the Fourier transform \mathcal{F} on $\mathcal{S}(\mathbb{C}^n)$ and $g := \mathcal{F}h = \exp(-4^{-1}|\cdot|^2)$ it follows, that *B* also can be written as *pseudo-differential operator* $B = \mathcal{F}^{-1}M_g\mathcal{F}$ on $\mathcal{S}(\mathbb{C}^n)$. There is an extension of $I - B = \mathcal{F}^{-1}M_{1-g}\mathcal{F}$ to the space $\mathcal{S}'(\mathbb{C}^n)$ of tempered distributions. This observation leads to a proof of the following fact, c.f. [15]:

LEMMA 5.2. Let $u \in S'(\mathbb{C}^n)$ such that Bu = u, then u is a harmonic polynomial. In particular, any bounded function u which is reproduced under B must be constant.

PROOF. The Fourier transform of $u \in S'(\mathbb{C}^n)$ is denoted by \hat{u} . By our remarks above and with Bu = u it follows that $0 = (1 - g)\hat{u} = G| \cdot |^2\hat{u}$. Here the function

$$G(\xi) := \frac{1 - g(\xi)}{|\xi|^2} = \frac{1 - \exp\left(-4^{-1}|\xi|^2\right)}{|\xi|^2}$$

is bounded away from 0 and it can be checked that multiplication by *G* induces an isomorphism of $S'(\mathbb{C}^n)$. Hence $0 = |\cdot|^2 \hat{u}$ which is equivalent to the Laplace equation $\Delta u = 0$. Our assertion follows from a well-known extension of *Liouville's theorem*.

As an immediate consequence it follows that, c.f. [4]:

COROLLARY 5.4. Let $S_0 := L^{\infty}(\mathbb{C}^n)$, then $Fix(S_0) = \mathbb{C}$. In particular, the assumptions of Proposition 4.2 are fulfilled and for $g \in L^{\infty}(\mathbb{C}^n)$ it holds $||H_q^h||_{HS} \le 2 \cdot ||H_{\overline{a}}^h||_{HS}$.

With a symbol $g \in L^{\infty}(\mathbb{C}^n)$ and $(P, H) \in \{(P_h, H_h), (P_{ah}, H_{ah})\}$ we consider the *Hankel* and *Toeplitz operators*:

$$(I-P)M_g \in \mathcal{L}(H, H^{\perp})$$
 and $PM_g \in \mathcal{L}(H)$

and denote them by H_q^h , H_q^{ah} resp. T_q^h and T_q^{ah} . As a consequence of (5.3) we remark that:

LEMMA 5.3. Let $g \in L^{\infty}(\mathbb{C}^n)$, then:

(i)
$$||T_a^h||_{HS} = ||T_{\bar{a}}^{ah}||_{HS}$$

(i) $\|H_{g}^{h}\|_{HS} = \|H_{\bar{g}}^{a}\|_{HS}$, (ii) $\|H_{g}^{h}\|_{HS} = \|H_{\bar{g}}^{ah}\|_{HS}$

where both sides of (i) resp. (ii) may be simultaneously infinite.

PROOF. We only prove (ii). Let $[e_j : j \in \mathbf{N}_0]$ be an ONB of H_h , then an ONB of H_{ah} is given by $[\bar{e}_j : j \in \mathbf{N}_0]$. Now, it follows by (5.3) that:

$$\|H_{g}^{h}e_{j}\|^{2} = \|ge_{j}\|^{2} - \|P_{h}ge_{j}\|^{2} = \|\bar{g}\bar{e}_{j}\|^{2} - \|P_{ah}\bar{g}\bar{e}_{j}\|^{2} = \|H_{\bar{g}}^{ah}\bar{e}_{j}\|^{2}.$$

Summing up this equality over $j \in \mathbf{N}_0$ yields the desired result.

DEFINITION 5.1. The *pluri-harmonic Fock space* H_{ph} consists of all $f \in C^2(\mathbb{C}^n) \cap L^2(\mathbb{C}^n, \mu)$ such that $\frac{\partial^2 f}{\partial z_j \partial \bar{z}_k} = 0$ for all j, k = 1, ..., n.

According to [18] it holds $H_{\rm ph} = H_{\rm h} \oplus \{H_{\rm ah} \ominus \mathbb{C}\}$ and any $f \in H_{\rm ph}$ can be written as:

$$f = h + \bar{r}, \text{ with } r(0) = 0$$
 (5.5)

where *h* and *r* are holomorphic. With $g \in L^{\infty}(\mathbb{C}^n)$ and the orthogonal projection P_{ph} from $L^2(\mathbb{C}^n, \mu)$ onto H_{ph} we define the *pluri-harmonic Hankel operator* by:

$$H_g^{\mathrm{ph}} := (I - P_{\mathrm{ph}})M_g : H_{\mathrm{ph}} o H_{\mathrm{ph}}^{\perp}$$

For $f \in H_h$ it can be checked by a straightforward calculation that:

- (a) $\|H_g^{\rm ph}f\|^2 = \|H_g^{\rm h}f\|^2 \|P_{\rm ah}gf\|^2 + |\langle g, \bar{f}\rangle|^2,$ (b) $\|H_g^{\rm ph}\bar{f}\|^2 = \|H_g^{\rm ah}\bar{f}\|^2 - \|P_{\rm h}g\bar{f}\|^2 + |\langle g, f\rangle|^2.$
- As an application of Corollary 5.4 and Lemma 5.3 we can prove for $g \in L^{\infty}(\mathbb{C}^n)$:

THEOREM 5.4. $H_g^{ph} \in \mathcal{L}^2(H_{ph}, H_{ph}^{\perp})$ iff $H_{\bar{g}}^{ph} \in \mathcal{L}^2(H_{ph}, H_{ph}^{\perp})$ and $\|H_{\bar{g}}^{ph}\|_{HS} \leq \sqrt{2} \cdot \|H_g^{ph}\|_{HS}$. Moreover, $H_g^h \in \mathcal{L}^2(H_h, H_h^{\perp})$ is sufficient for $H_g^{ph}, H_{\bar{g}}^{ph} \in \mathcal{L}^2(H_{ph}, H_{ph}^{\perp})$ and

$$\max\left\{\left\|H_{g}^{ph}\right\|_{HS}, \left\|H_{\bar{g}}^{ph}\right\|_{HS}\right\} \leq \sqrt{5 \cdot \min\left\{\left\|H_{g}^{h}\right\|_{HS}^{2}, \left\|H_{\bar{g}}^{h}\right\|_{HS}^{2}\right\}}$$

PROOF. With an ONB $[e_0 := 1, e_j : j \in \mathbb{N}]$ of H_h , the system $[e_0, e_j, \bar{e}_j : j \in \mathbb{N}]$ defines an ONB of H_{ph} . Applying (a), (b) and Lemma 5.3 above it follows that:

$$\begin{aligned} \|H_{g}^{ph}\|_{HS}^{2} + \|H_{g}^{ph}1\|^{2} &= \sum_{j=0}^{\infty} \left\{ \|H_{g}^{ph}e_{j}\|^{2} + \|H_{g}^{ph}\bar{e}_{j}\|^{2} \right\} \\ &= \|H_{g}^{h}\|_{HS}^{2} + \|H_{g}^{ah}\|_{HS}^{2} - \sum_{j=1}^{\infty} \left\{ \|P_{ah}ge_{j}\|^{2} + \|P_{h}g\bar{e}_{j}\|^{2} \right\} \\ &= \|H_{g}^{h}\|_{HS}^{2} + \|H_{\bar{g}}^{h}\|_{HS}^{2} - \sum_{j=1}^{\infty} \left\{ \|P_{h}\bar{g}\bar{e}_{j}\|^{2} + \|P_{h}g\bar{e}_{j}\|^{2} \right\}. \end{aligned}$$
(5.6)

In particular, it holds

$$\|H_{\bar{g}}^{\rm ph}\|_{\rm HS}^2 + \|H_{\bar{g}}^{\rm ph}\|_{\rm H}^2 = \|H_{g}^{\rm ph}\|_{\rm HS}^2 + \|H_{g}^{\rm ph}\|_{\rm HS}^2.$$

Hence H_g^{ph} is of Hilbert-Schmidt type if and only if $H_{\bar{g}}^{\text{ph}}$ is of Hilbert-Schmidt type and it holds $\|H_{\bar{g}}^{\text{ph}}\|_{\text{HS}} \le \sqrt{2} \cdot \|H_g^{\text{ph}}\|_{\text{HS}}$. Moreover, with $f \in \{g, \bar{g}\}$, Corollary 5.4 and (5.6):

$$\|H_{f}^{\rm ph}\|_{\rm HS}^{2} \leq \|H_{g}^{\rm h}\|_{\rm HS}^{2} + \|H_{\bar{g}}^{\rm h}\|_{\rm HS}^{2} \leq 5 \cdot \min\left\{\|H_{g}^{\rm h}\|_{\rm HS}^{2}, \|H_{\bar{g}}^{\rm h}\|_{\rm HS}^{2}\right\}.$$

5.3. Hilbert space on quadrics. Let *H* be a closed subspace in $L^2(X, \mu)$ with reproducing kernel *K*. In our analysis on Hankel operators the *Berezin measure V* defined in (2.3) plays a crucial role. In case of the *Fock space* (or *Segal-Bargmann space*) H_h , c.f. section 5.2, it is readily verified that:

$$\pi^{n}V := \Omega_{\mathbf{C}^{n}} = \text{Liouville volume form}$$
(5.7)

where $\Omega_{\mathbf{C}^n}$ coincides with the usual Lebesgue measure on $\mathbf{C}^n \cong T^*(\mathbf{R}^n)$. In fact, H_h is only one example of a reproducing kernel Hilbert space which naturally arises from a more general construction method. It was remarked in [20], that H_h can be obtained by *pairing* of polarizations from the real and Käler polarization on the cotangent bundle $T^*(\mathbf{R}^n) \cong \mathbf{C}^n$. The *Bargmann transform* between $L^2(\mathbf{R}^n)$ and H_h can be derived via this method.

By replacing \mathbb{R}^n with the *n*-dimensional sphere \mathbb{S}^n the same construction leads to a reproducing kernel Hilbert space $H_{\mathbb{S}^n}$ of holomorphic functions on a *non-singular cone* or *quadric* $\mathbb{X}_{\mathbb{S}^n}$ in $\mathbb{C}^{n+1} \setminus \{0\}$ diffeomorphic to the punctured cotangent bundle $T_0^*(\mathbb{S}^n)$. We give the definition of $H_{\mathbb{S}^n}$ which we consider to be of interest itself and prove an asymptotic version of (5.7) in the case of $H_{\mathbb{S}^n}$. For a detailed description of *pairing of polarizations* we refer to [5] and [20]. More examples of this method are treated in [5], [6], [16] and [17].

Let $\mathbf{S}^n := \{(x_0, \dots, x_n) \in \mathbf{R}^{n+1} : |x|^2 = 1\}$ be the *n*-dimensional sphere with the standard Riemann metric induced from the *Euclidean metric* on \mathbf{R}^{n+1} . As before we write $x \cdot y := \sum x_j \cdot y_j$ and $|x|^2 := x \cdot x$ for $x, y \in \mathbf{R}^{n+1}$. The tangent bundle $T(\mathbf{S}^n)$ and the cotangent bundle $T^*(\mathbf{S}^n)$ can be identified via this metric and are realized in $\mathbf{R}^{n+1} \times \mathbf{R}^{n+1}$:

$$T^*(\mathbf{S}^n) \cong T(\mathbf{S}^n) = \{(x, y) \in \mathbf{R}^{n+1} \times \mathbf{R}^{n+1} : |x| = 1 \text{ and } x \cdot y = 0\}.$$

With the punctured cotangent bundle $T_0^*(\mathbf{S}^n) := \{(x, y) \in T^*(\mathbf{S}^n) : y \neq 0\}$ we define a diffeomorphism $\tau_{\mathbf{S}^n}$ onto a *quadric* $\mathbf{X}_{\mathbf{S}^n}$ by:

$$\tau_{\mathbf{S}^n} : T_0^*(\mathbf{S}^n) \longrightarrow \mathbf{X}_{\mathbf{S}^n} := \left\{ z \in \mathbf{C}^{n+1} : z \cdot z = 0 \text{ and } z \neq 0 \right\}$$

$$(x, y) \mapsto z = |y|x + \sqrt{-1}y.$$
(5.8)

The symplectic form $\omega_{\mathbf{S}^n}$ and the canonical one form $\Theta_{\mathbf{S}^n}$ on $T^*(\mathbf{S}^n)$ respectively are given by the restriction of $\sum dy_k \wedge dx_k$ and $\sum y_k \cdot dx_k$ on $\mathbf{R}^{n+1} \times \mathbf{R}^{n+1}$. Via (5.8) it can be shown that the symplectic form ω_X on $\mathbf{X}_{\mathbf{S}^n}$ is expressed as:

$$\omega_X = \sqrt{-2\overline{\partial}}\partial|z|.$$

Let $\Omega_{\mathbf{S}^n} := \frac{(-1)^{n(n-1)/2}}{n!} \cdot \omega_{\mathbf{S}^n}$ be the *Liouville volume form* on $T_0^*(\mathbf{S}^n)$. Due to the isomorphism (5.8) it can be regarded as a volume form Ω_X on $\mathbf{X}_{\mathbf{S}^n}$. Let P_X denote the restriction

of holomorphic polynomials on \mathbb{C}^{n+1} to $\mathbb{X}_{\mathbb{S}^n}$. On P_X we consider a family of inner products depending on two real parameters (h, N) where h > 0 and N > -n:

$$\langle p,q \rangle_{(h,N)} := \int_{\mathbf{X}_{\mathbf{S}^n}} p(z) \overline{q(z)} e^{-h|z|} |z|^N d\Omega_X, \qquad p,q \in P_X.$$
 (5.9)

By *pairing of polarizations* the case $h := 2\sqrt{2\pi}$ and N := n/2 - 1 naturally appears and the measure $dm_{(h,N)} := e^{-h|z|} \cdot |z|^N d\Omega_X$ corresponds to the Gaussian measure μ in (5.2). As an analog to the Segal-Bargmann space we define:

$$H^2(\mathbf{X}_{\mathbf{S}^n}, dm_{(h,N)}) := L^2$$
-closure of P_X w.r.t. the inner product (5.9).

It can be shown that $H^2(\mathbf{X}_{\mathbf{S}^n}, dm_{(h,N)})$ is a reproducing kernel Hilbert space. Moreover, its elements can be extended to holomorphic functions on the whole space \mathbf{C}^{n+1} . The reproducing kernel $K_{(h,N)}$ can be calculated in form of an infinite sum and involving the Gamma function. More precisely, it holds (c.f. [5]):

$$K_{(h,N)}(\lambda,\lambda) = C(h,n,N) \cdot \sum_{k=0}^{\infty} \frac{\Gamma(k+n-1) \cdot (2k+n-1)}{\Gamma(2k+N+n) \cdot \Gamma(k+1)} \cdot |h\lambda|^{2k}$$
(5.10)

with $C(h, n, N) := \frac{h^{n+N}}{\operatorname{Vol}(\Sigma(\mathbf{S}^n)) \cdot \Gamma(n)}$ and $\Sigma(\mathbf{S}^n) := \{z \in \mathbf{X}_{\mathbf{S}^n} : |z| = 1\}$.

For $H^2(\mathbf{X}_{\mathbf{S}^n}, dm_{(h,N)})$ we prove an asymptotic property corresponding to (5.7).

PROPOSITION 5.1. For N > -n and h > 0 it holds:

$$\lim_{\lambda \to \infty} \left| \lambda \right|^N \cdot \exp\left(- \left| h \lambda \right| \right) \cdot K_{(h,N)}(\lambda,\lambda) = \frac{h^n}{2^{n-1} \cdot Vol(\Sigma(\mathbf{S}^n)) \cdot \Gamma(n)} \,.$$
(5.11)

In particular, (5.11) can be written as $2^{-n+1}h^{-N}C(h, n, N)$ and is independent of N.

A direct computation shows, that (5.10) splits into two sums:

$$K_{(h,N)}(\lambda,\lambda) = C(h,n,N) \cdot \left\{ 2|h\lambda|^2 \cdot \sum_{k=0}^{\infty} I(k,n,N) \cdot |h\lambda|^{2k} + (n-1) \cdot \sum_{k=0}^{\infty} I(k,n-1,N-1) \cdot |h\lambda|^{2k} \right\}$$
(5.12)

where

$$I(k, n, N) := \frac{\Gamma(k+n)}{\Gamma(2k+N+n+2)\Gamma(k+1)}$$

Using the expression of the *Euler integral* $\int_0^1 t^{p-1}(1-t)^{q-1}dt$ where p, q > 0 in terms of the Gamma function together with the well-known *duplication formula*:

$$\sqrt{\pi} \cdot 2^{-2k} \cdot \Gamma(2k+1) = \Gamma\left(k+\frac{1}{2}\right) \cdot \Gamma(k+1)$$

one easily verifies in case of $\frac{N-n}{2} > -1$ and $k \in \mathbf{N}_0$:

$$I(k,n,N) = \frac{E(n,N)}{(2k)!} \cdot \int_0^1 s^{k+n-1} \cdot (1-s)^{\frac{N-n}{2}} ds \cdot \int_0^1 t^{k-\frac{1}{2}} \cdot (1-t)^{\frac{N+n}{2}} dt \,.$$
(5.13)

Here E(n, N) > 0 is given by:

$$E(n,N) := \frac{1}{2^{N+n+1} \cdot \Gamma(\frac{N-n}{2}+1) \cdot \Gamma(\frac{N+n}{2}+1)}.$$
(5.14)

Multiplying (5.13) with x^{2k} and summing up over $k \in \mathbf{N}_0$ leads to:

$$\sum_{k=0}^{\infty} I(k, n, N) \cdot x^{2k} = \int_0^1 \int_0^1 \Phi_{n,N}(s, t) \cdot \cosh\left\{\sqrt{st} \cdot x\right\} ds dt$$
(5.15)

where $\Phi_{n,N}: (0,1)^2 \to \mathbf{R}^+$ is defined by:

$$\Phi_{n,N}(s,t) := E(n,N) \cdot \frac{s^{n-1}}{\sqrt{t}} \cdot (1-t)^{\frac{N+n}{2}} \cdot (1-s)^{\frac{N-n}{2}}.$$
(5.16)

In (5.15) one can replace *n* by n - 1 and *N* by N - 1. By using (5.12) we derive the following integral expression of $K_{(h,N)}$ on the diagonal:

COROLLARY 5.5. For $\frac{N-n}{2} > -1$ and with:

$$\Psi_{n,N}(s,t,x) := C(h,n,N) \cdot \left\{ 2x^2 \cdot \Phi_{n,N}(s,t) + (n-1) \cdot \Phi_{n-1,N-1}(s,t) \right\}$$
(5.17)

it holds:

$$K_{(h,N)}(\lambda,\lambda) = \int_0^1 \int_0^1 \Psi_{n,N}(s,t,|h\lambda|) \cdot \cosh\left\{\sqrt{st} \cdot |h\lambda|\right\} ds dt \,.$$

Below we analyze the asymptotic behavior of integral expressions having the form (5.15) and apply our results to the proof of Proposition 5.1.

Let $f, g: \mathbf{R}^+ \to \mathbf{R}^+$ and k > 0, then we write $f \sim_k g$ iff $\lim_{t\to\infty} t^k \cdot f(t)$ exists and

$$\lim_{t \to \infty} t^k \cdot \left\{ f(t) - g(t) \right\} = 0.$$

Given a sequence of functions $g_j : \mathbf{R}^+ \to \mathbf{R}^+$ where $j \in \mathbf{N}_0$ we write $f \sim \sum g_j$ and say that the (formal) series $\sum g_j$ represents f asymptotically for large values of t whenever:

- For all $k \in \mathbf{N}_0$: $f \{g_0 + g_1 + \dots + g_k\} \sim_k 0$ and
- there is a constant a_k such that $g_k \sim_k \frac{a_k}{t^k}$.

Let $\Phi : [0, 1]^2 \to \mathbf{C}$ be integrable and assume that $\rho : [0, 1]^2 \to \mathbf{R}_{\geq 0}$ is continuous. For any measurable subset $U \subset (0, 1)^2$ we define $\mathbf{J}_{\rho, \Phi}^U : \mathbf{R}^+ \to \mathbf{C}$ with x = (s, t) by:

$$\mathbf{J}_{\rho,\boldsymbol{\Phi}}^{U}(x) := \int_{U} \boldsymbol{\Phi}(s,t) \cdot \exp\left\{-\rho(s,t) \cdot x\right\} dx \,.$$

WOLFRAM BAUER AND KENRO FURUTANI

In our application we examine the case where

(1) $\Phi(s,t) = \Phi_{\alpha,\beta}(s,t) := (1-s)^{\alpha} \cdot (1-t)^{\beta}$ and $\alpha, \beta > -1$, (2) $\rho(s,t) := 1 - \sqrt{st}$.

The Taylor expansion of ρ at $x_0 := (1, 1)$ and of first order is given by:

$$\rho(s,t) = \tau(s,t) + \sum_{k+l>1} O\left(|1-s|^k \cdot |1-t|^l\right)$$

where $\tau(s, t) := 1 - \frac{1}{2} \cdot (s + t)$. Hence it follows that:

$$\lim_{(s,t)\to x_0} \frac{\rho(s,t)}{\tau(s,t)} = 1.$$
 (5.18)

We set $U := [0, 1]^2$ and determine the asymptotic behavior of $\mathbf{J}_{\tau, \Phi_{\alpha, \beta}}^U$:

$$\mathbf{J}^{U}_{\tau, \boldsymbol{\varphi}_{\alpha, \beta}}(x) = \exp(-x) \cdot \int_{0}^{1} (1-s)^{\alpha} \cdot \exp\left(\frac{sx}{2}\right) ds \cdot \int_{0}^{1} (1-t)^{\beta} \cdot \exp\left(\frac{tx}{2}\right) dt \,.$$

From

$$\int_0^1 (1-s)^{\alpha} \cdot \exp\left(\frac{sx}{2}\right) ds = \left(\frac{2}{x}\right)^{\alpha+1} \exp\left(\frac{x}{2}\right) \cdot \int_0^{\frac{x}{2}} t^{\alpha} \cdot \exp(-t) dt$$

it follows that:

$$\mathbf{J}^{U}_{\tau,\boldsymbol{\phi}_{\alpha,\beta}}(x) \sim_{\alpha+\beta+2} \frac{2^{\alpha+\beta+2}}{x^{\alpha+\beta+2}} \cdot \Gamma(\alpha+1) \cdot \Gamma(\beta+1) \,. \tag{5.19}$$

With our notations in (1) and (2) above we prove:

LEMMA 5.4. Let $\Psi : [0, 1]^2 \to \mathbb{C}$ be continuous in a neighborhood V of $x_0 := (1, 1)$ and assume that $\alpha, \beta > -1$, such that $\Psi \cdot \Phi_{\alpha,\beta}$ is integrable over V. Then

$$\mathbf{J}_{\rho,\Psi\cdot\Phi_{\alpha,\beta}}^{V}(x) \sim_{\alpha+\beta+2} \Psi(x_0) \cdot \frac{2^{\alpha+\beta+2}}{x^{\alpha+\beta+2}} \cdot \Gamma(\alpha+1) \cdot \Gamma(\beta+1) \,. \tag{5.20}$$

PROOF. For $1 > \varepsilon > 0$ and with (5.18) we choose a neighborhood $W \subset V$ of x_0 such that:

$$[1-\varepsilon] \cdot \tau(s,t) \le \rho(s,t) \le [1+\varepsilon] \cdot \tau(s,t)$$

for all $(s, t) \in W$. Hence, by using $\Phi_{\alpha,\beta} \ge 0$ it follows for x > 0 that:

$$\mathbf{J}_{\tau,\boldsymbol{\Phi}_{\alpha,\beta}}^{W}\left([1+\varepsilon]\cdot x\right) \leq \mathbf{J}_{\rho,\boldsymbol{\Phi}_{\alpha,\beta}}^{W}(x) \leq \mathbf{J}_{\tau,\boldsymbol{\Phi}_{\alpha,\beta}}^{W}\left([1-\varepsilon]\cdot x\right).$$
(5.21)

With $\gamma \in \{\rho, \tau\}$ and $V_0 \in \{U, V\}$ note that $\mathbf{J}_{\gamma, \Phi_{\alpha,\beta}}^{V_0} = \mathbf{J}_{\gamma, \Phi_{\alpha,\beta}}^{V_0 \setminus W} + \mathbf{J}_{\gamma, \Phi_{\alpha,\beta}}^W$ and $\mathbf{J}_{\gamma, \Phi_{\alpha,\beta}}^{V_0 \setminus W}$ is of order $O(x^{-\infty})$ as $x \to \infty$. An application of (5.19) and (5.21) shows that:

$$\frac{2^{\alpha+\beta+2} \cdot \Gamma(\alpha+1) \cdot \Gamma(\beta+1)}{(1+\varepsilon)^{\alpha+\beta+2}} \leq \liminf_{x \to \infty} x^{\alpha+\beta+2} \cdot \mathbf{J}_{\rho, \boldsymbol{\Phi}_{\alpha, \beta}}^{V}(x)$$
$$\leq \limsup_{x \to \infty} x^{\alpha+\beta+2} \cdot \mathbf{J}_{\rho, \boldsymbol{\Phi}_{\alpha, \beta}}^{V}(x) \leq \frac{2^{\alpha+\beta+2} \cdot \Gamma(\alpha+1) \cdot \Gamma(\beta+1)}{(1-\varepsilon)^{\alpha+\beta+2}}.$$

Because $\varepsilon > 0$ was arbitrary, it follows for any neighborhood V of x_0 :

$$\lim_{\alpha \to \infty} x^{\alpha + \beta + 2} \cdot \mathbf{J}_{\rho, \boldsymbol{\Phi}_{\alpha, \beta}}^{V}(x) = 2^{\alpha + \beta + 2} \cdot \Gamma(\alpha + 1) \cdot \Gamma(\beta + 1).$$
(5.22)

By the continuity of Ψ we can assume that $|\Psi(s, t) - \Psi(x_0)| < \varepsilon$ for all $(s, t) \in W$. Moreover, by (5.22) there is c > 0 such that $|x^{\alpha+\beta+2} \cdot \mathbf{J}^W_{\rho,\Phi_{\alpha,\beta}}(x)| \le c$ for all x > 0. Hence

$$\left|x^{\alpha+\beta+2}\cdot\mathbf{J}_{\rho,\Psi\cdot\Phi_{\alpha,\beta}}^{W}(x)-x^{\alpha+\beta+2}\cdot\Psi(x_{0})\cdot\mathbf{J}_{\rho,\Phi_{\alpha,\beta}}^{W}(x)\right|\leq c\cdot\varepsilon$$

Finally, (5.22) where V is replace by W and $\mathbf{J}_{\rho,\Psi\cdot\Phi_{\alpha,\beta}}^{V\setminus W}, \mathbf{J}_{\rho,\Phi_{\alpha,\beta}}^{V\setminus W} \in O(x^{-\infty})$ as $x \to \infty$ prove (5.20).

COROLLARY 5.6. Let V be a neighborhood of $x_0 := (1, 1)$ and assume that $\Psi \in C^k(V)$. With $\alpha, \beta > -1$ is follows in generalization of (5.20):

$$\mathbf{J}_{\rho,\Psi\cdot\boldsymbol{\Phi}_{\alpha,\beta}}^{V}(x) - \sum_{|\gamma| < k} \frac{(-1)^{|\gamma|}}{\gamma!} \cdot \frac{\partial^{|\gamma|\Psi}}{\partial x^{\gamma}}(x_{0}) \cdot \mathbf{J}_{\rho,\boldsymbol{\Phi}_{\alpha+\gamma_{1},\beta+\gamma_{2}}}^{V}(x) \sim_{\alpha+\beta+k+2} G_{k}(x)$$

where the asymptotic of $\mathbf{J}_{\rho, \Phi_{\alpha+\gamma_1, \beta+\gamma_2}}^V$ is given in (5.22) and

$$G_k(x) := (-1)^k \cdot \frac{2^{\alpha+\beta+k+2}}{x^{\alpha+\beta+k+2}} \cdot \sum_{|\gamma|=k} \frac{1}{\gamma!} \cdot \frac{\partial^{|\gamma|}\Psi}{\partial x^{\gamma}}(x_0) \cdot \Gamma(\alpha+\gamma_1+1) \cdot \Gamma(\beta+\gamma_2+1).$$

PROOF. By multiplying the *Taylor expansion* of Ψ at $x_0 = (1, 1)$ with $\Phi_{\alpha,\beta}$ one obtains for y in a neighborhood of x_0 that:

$$F(y) := \Psi(y) \cdot \Phi_{\alpha,\beta}(y) - \sum_{|\gamma| < k} \frac{(-1)^{|\gamma|}}{\gamma!} \cdot \frac{\partial^{|\gamma|}\Psi}{\partial x^{\gamma}}(x_0) \cdot \Phi_{\alpha+\gamma_1,\beta+\gamma_2}(y)$$
$$= (-1)^k \cdot \sum_{|\gamma| = k} \frac{\Psi_{\gamma}(y)}{\gamma!} \cdot \Phi_{\alpha+\gamma_1,\beta+\gamma_2}(y) .$$

where $\Psi_{\gamma}(y) := k \cdot \int_{0}^{1} (1-t)^{k-1} \cdot \frac{\partial^{|\gamma|}\Psi}{\partial x^{\gamma}}(x_0 + t \cdot [y-x_0]) dt$ and $\Psi_{\gamma}(x_0) = \frac{\partial^{|\gamma|}\Psi}{\partial x^{\gamma}}(x_0)$. Lemma 5.4 shows for a neighborhood *V* of x_0 that $\mathbf{J}_{\rho,F}^V(x) \sim_{\alpha+\beta+k+2} G_k(x)$.

In particular, for $\Psi \in C^{\infty}(V)$ we have proved $x^{\alpha+\beta+2} \cdot \mathbf{J}_{\rho,\Psi\cdot\Phi_{\alpha,\beta}}^{V} \sim \sum g_j$ where the functions g_j are given by:

$$g_j(x) := (-1)^j \cdot x^{\alpha+\beta+2} \cdot \sum_{|\gamma|=j} \frac{1}{\gamma!} \cdot \frac{\partial^{|\gamma|} \Psi}{\partial x^{\gamma}}(x_0) \cdot \mathbf{J}^V_{\rho, \boldsymbol{\varphi}_{\alpha+\gamma_1, \beta+\gamma_2}}(x) \,.$$

WOLFRAM BAUER AND KENRO FURUTANI

Lemma 5.5 follows by straightforward arguments. We omit the proof.

LEMMA 5.5. Let $a_k, b_k > 0$ such that $\alpha(t) := \sum_{k \ge 0} a_k t^k$ converges on **R**. If $\lim_{k \to \infty} \frac{a_k}{b_k} = 1$ then $\beta(t) := \sum_{k \ge 0} b_k t^k$ converges on **R** and $\lim_{t \to \infty} \alpha(t) \cdot \beta^{-1}(t) = 1$.

In Proposition 5.2 we apply Corollary 5.6 to (5.15) which holds for $\frac{N-n}{2} > -1$:

PROPOSITION 5.2. Let $\beta := \frac{N+n}{2} > \alpha := \frac{N-n}{2} > -1$, then it holds:

$$x^{N+2} \cdot \exp\left(-x\right) \cdot \sum_{k=0}^{\infty} I(k, n, N) \cdot x^{2k} \sim \sum g_j$$
(5.23)

where V is a neighborhood of (1, 1) and with $g_j : \mathbf{R}^+ \to \mathbf{R}^+$ of order $O(x^{-j})$ as $x \to \infty$:

$$g_j(x) = (-1)^j \cdot \frac{E(n,N)}{2} \cdot x^{\alpha+\beta+2} \cdot \sum_{|\gamma|=j} \binom{-\frac{1}{2}}{\gamma_1} \cdot \binom{n-1}{\gamma_2} \cdot \mathbf{J}_{\rho,\phi_{\alpha+\gamma_1,\beta+\gamma_2}}^V(x) \,.$$
(5.24)

PROOF. It follows from (5.15) and the notation in (5.16) that:

$$x^{N+2} \cdot \exp(-x) \cdot \sum_{k=0}^{\infty} I(k, n, N) \cdot x^{2k} = x^{\alpha+\beta+2} \cdot \mathbf{J}_{\rho, \Psi \cdot \Phi_{\alpha, \beta}}(x) + O\left(x^{-\infty}\right)$$
(5.25)

where $\Psi(s,t) := \frac{E(n,N)}{2} \cdot s^{n-1} \cdot t^{-\frac{1}{2}}$. In particular, it holds with $\gamma := (\gamma_1, \gamma_2) \in \mathbf{N}_0^2$:

$$\frac{1}{\gamma!} \cdot \frac{\partial^{|\gamma|} \Psi}{\partial x^{\gamma}}(x_0) = \frac{E(n,N)}{2} \cdot \begin{pmatrix} -\frac{1}{2} \\ \gamma_1 \end{pmatrix} \cdot \begin{pmatrix} n-1 \\ \gamma_2 \end{pmatrix}.$$

Finally, we can apply our remark above.

REMARK 5.1. The integral expression (5.15) of the left hand side in (5.25) is not unique. It can be checked that in the case $N + \frac{1}{2} > -1$ a second integral formula is given by:

$$\exp(-x) \cdot \sum_{k=0}^{\infty} I(k, n, N) \cdot x^{2k} = \int_{0}^{1} \int_{0}^{1} \tilde{\varPhi}_{n,N}(s, t) \cdot (1-t)^{N+\frac{1}{2}} \\ \times \cosh\left\{-\left(1 - 2\sqrt{s(1-s)t}\right) \cdot x\right\} ds dt$$
(5.26)

where

$$\tilde{\Phi}_{n,N}(s,t) := \frac{1}{\sqrt{\pi} \cdot \Gamma(N+\frac{3}{2})} \cdot \frac{s^{n-1} \cdot (1-s)^{N+1}}{\sqrt{t}}.$$

Using (5.26) instead of (5.15) in the proof of Proposition 5.2 an asymptotic expansion of the form (5.23) also can be derived for $N + \frac{1}{2} > -1$. In this case the functions g_j are given

in terms of the integral expressions:

$$\mathbf{I}_{\alpha,\beta}^{W}(x) := \int_{W} \left(\frac{1}{2} - s\right)^{\alpha} \cdot \left(1 - t\right)^{\beta} \cdot \exp\left\{-\left(1 - 2\sqrt{s(1 - s)t}\right) \cdot x\right\} dx.$$

where x = (s, t) and $\alpha, \beta > -1$ and W is a neighborhood of $(\frac{1}{2}, 1)$. We will not present a detailed calculation here.

According to (5.12) the kernel $K_{(h,N)}(\lambda, \lambda)$ on the diagonal can be expressed as $K_{(h,N)}(\lambda, \lambda) = F(|h\lambda|)$ with $F : \mathbf{R}^+ \to \mathbf{R}^+$. By (5.23) an asymptotic expansion of

$$x \mapsto x^N \cdot \exp(-x) \cdot F(x)$$
 (5.27)

in terms of $\mathbf{J}_{\rho,\Phi_{\alpha,\beta}}^{V}$ where *V* is a neighborhood of $x_0 := (1, 1)$ can be obtained explicitly in the case $\frac{N-n}{2} > -1$. We only calculate the 0*th-order term* \tilde{g}_0 and we find that $\lim_{x\to\infty} \tilde{g}_0(x)$ is independent of *N*. This enables us to prove Proposition 5.1 in the case N > -n:

PROOF OF PROPOSITION 5.1. Let us first assume that $\frac{N-n}{2} > -1$, then it follows from (5.14) and (5.24) in the case j = 0 together with (5.22) and $U := [0, 1]^2$ that:

$$\lim_{x \to \infty} g_0(x) = \frac{E(n, N)}{2} \cdot \lim_{x \to \infty} x^{\alpha + \beta + 2} \cdot \mathbf{J}^U_{\rho, \boldsymbol{\varphi}_{\alpha, \beta}}(x) = \frac{1}{2^n}.$$

where $\beta = \frac{N+n}{2} > \alpha = \frac{N-n}{2} > -1$. Because of (5.23) one also has:

$$\lim_{x \to \infty} x^{N+2} \cdot \exp(-x) \cdot \sum_{k=0}^{\infty} I(k, n, N) \cdot x^{2k} = \frac{1}{2^n}.$$
(5.28)

In the case $-n < N \le n - 2$ we choose $k_0 \in \mathbb{N}$ with $N + 2k_0 > n - 2$. We define:

$$\beta(x) := \sum_{k=0}^{\infty} \frac{\Gamma(k+k_0+n)}{\Gamma(2k+2k_0+N+n+2) \cdot \Gamma(k+k_0+1)} \cdot x^{2k} \,.$$

According to Lemma 5.5 and the identity

$$\lim_{k \to \infty} \frac{\Gamma(k+n) \cdot \Gamma(k+k_0+1)}{\Gamma(k+1) \cdot \Gamma(k+k_0+n)} = 1$$

it follows that $\lim_{x\to\infty} \beta(x) \cdot \alpha(x)^{-1} = 1$ where $\alpha(x) := \sum_{k=0}^{\infty} I(k, n, N + 2k_0) \cdot x^{2k}$. In particular, one obtains from (5.28) where N is replaced by $N + 2k_0$:

$$\exp(-x) \cdot \beta(x) \sim_{N+2k_0+2} \exp(-x) \cdot \alpha(x) \sim_{N+2k_0+2} \frac{1}{2^n x^{N+2k_0+2}}.$$
 (5.29)

Because $\sum_{k=0}^{\infty} I(k, n, N) \cdot x^{2k} - x^{2k_0} \cdot \beta(x)$ is a polynomial and by applying (5.29), the asymptotic (5.28) in the case -n < N < n-2 is given by:

$$\lim_{x \to \infty} x^{N+2} \cdot \exp(-x) \cdot \sum_{k=0}^{\infty} I(k, n, N) \cdot x^{2k} = \lim_{x \to \infty} x^{N+2k_0+2} \cdot \exp(-x) \cdot \beta(x) = \frac{1}{2^n} \cdot \frac{1}{2^n}$$

Finally, (5.11) follows from (5.28) for N > -n and (5.12) which shows that the 0*th*-order term \tilde{g}_0 of the expansion (5.27) coincides with $2 \cdot C(h, n, N) \cdot g_0$.

Let H_f be the Hankel operator on $H^2(\mathbf{X}_{\mathbf{S}^n}, dm_{(h,N)})$ where h > 0 and $N \ge -n$.

COROLLARY 5.7. For $f \in L^2(\mathbf{X}_{\mathbf{S}^n}, \Omega_X)$ the operator H_f is Hilbert-Schmidt. Moreover, there is c > 0 independent from f such that $||H_f||_{HS} = ||H_{\bar{f}}||_{HS} \le c \cdot ||f||_{L^2(\mathbf{X}_{\mathbf{S}^n}, \Omega_X)}$.

PROOF. Apply Proposition 4.1 and Proposition 5.1 which shows that there is c > 0with $\int_{\mathbf{X}_{\mathbf{S}^n}} |f(\lambda)|^2 K_{(h,N)}(\lambda, \lambda) dm_{(h,N)}(\lambda) \le c \cdot \int_{\mathbf{X}_{\mathbf{S}^n}} |f|^2 d\Omega_X < \infty.$

REMARK 5.2. In [5] (see also [16] and [17]) a family of reproducing kernel Hilbert spaces with kernel $K_{(h,N)}^{\mathbb{C}}$ on rank one complex matrices A and naturally arising from the complex projective space $P^{n}\mathbb{C}$ by *pairing of polarizations* is introduced. Here we only state the main result on the kernel asymptotic in [5]. As an analog to the quadric case one has:

PROPOSITION 5.3 ([5]). Let N > -n and h > 0, then

$$\lim_{\|A\| \to \infty} K^{\mathbf{C}}_{(h,N)}(A,A) \cdot e^{-h\sqrt{\|A\|}} \cdot \|A\|^N = \frac{2^{1-2n}}{c} \cdot \frac{h^{2n}}{\Gamma(n)\Gamma(n-1)}$$
(5.30)

where c > 0 is independent of N and h. In particular, (5.30) is independent of N.

5.4. Problems and Remarks. (1) Is there an extension of Corollary 5.4 or Theorem 5.4 to *Schatten-p-class* ($p \neq 2$) or compact Hankel operators? (The compact case for H_h is treated in [10], [21]).

(2) Determine the bounded fix points of the Berezin transform in the case of the pluriharmonic Fock space or the spaces $H^2(\mathbf{X}_{\mathbf{S}^n}, dm_{(h,N)})$.

References

- P. AHERN, M. FLORES, W. RUDIN, An invariant volume-mean-value property, J. Funct. Anal. 111 (1993), 380–397.
- [2] J. ARAZY, M. ENGLIS, Iterates and the boundary behavior of the Berezin transform, Ann. Inst. Fourier, Grenoble 51 (4) (2001), 1101–1133.
- [3] S. AXLER, D. ZHENG, Compact operators via the Berezin transform, Indiana University Math. Journ. 47 (2) (1998), 387–400.
- W. BAUER, Hilbert-Schmidt Hankel operators on the Segal-Bargmann space, Proc. Amer. Math. Soc. 132 (2004), 2989–2998.
- [5] W. BAUER, K. FURUTANI, Quantization operators on quadrics, Kyushu J. Math. 62 (1) (2008), 221–258.
- [6] W. BAUER, K. FURUTANI, Quantization operator on quaternion projective space and Cayley projective plane, in preparation.
- [7] D. BÉKOLLÉ C.A. BERGER, L.A. COBURN, K.H. ZHU, BMO in the Bergman metric on bounded symmetric domains, J. Funct. Anal. 93 no. 2 (1990), 310–350.
- [8] F.A. BEREZIN, Quantization, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1116–1175.
- [9] F.A. BEREZIN, Covariant and contravariant symbols of operators, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 1134–1167.

HILBERT-SCHMIDT HANKEL OPERATORS

- [10] C.A. BERGER, L.A. COBURN, Toeplitz operators on the Segal-Bargmann space, Trans. Amer. Math. Soc. 301 (1987), 813–829.
- [11] L.A. COBURN, Sharp Berezin Lipschitz estimates, Proc. Amer. Math. Soc. 135 (2007), 1163–1168.
- [12] L.A. COBURN, A Lipschitz estimate for Berezin's operator calculus, Proc. Amer. Math. Soc. 133 No. 1 (2005), 127–131.
- [13] L.A. COBURN, Singular integral operators and Toeplitz operators on odd spheres, Indiana Univ. Math. J. 23 (1973/74), 433–439.
- [14] M. ENGLIS, Compact Toeplitz operators via the Berezin transform on bounded symmetric domains, Int. Equ. Op. Theory 33 (1999), 426–455.
- [15] M. ENGLIS, Functions invariant under the Berezin transform, J. Funct. Anal. 121 no. 1 (1994), 233-254.
- [16] K. FURUTANI, Quantization of the geodesic flow on quaternion projective spaces, Ann. Global Anal. Geom. 22 no. 1, (2002), 1–27.
- [17] K. FURUTANI, S. YOSHIZAWA, A K\u00e4hler structure on the punctured cotangentbundle of complex and quaternion projective spaces and its application to geometric quantization II, Japan J. Math. 21 (1995), 355–392.
- [18] S.G. KRANTZ, Function theory of several complex variables, AMS Chelsea Publishing, second edition, 1992.
 [19] T. MAZUR, P. PFLUG, M. SKWARCZYNSKI, Invariant distances related to the Bergman function, Proc. Amer. Math. Soc. 94 no. 1 (1985), 72–76.
- [20] J. H. RAWNSLEY, A nonunitary pairing of polarizations for the Kepler problem, Trans. Amer. Math. Soc. 250 (1979), 167–180.
- [21] K. STROETHOFF, Hankel and Toeplitz operators on the Fock space, Michigan Math. J. 39 no. 1 (1992), 3-16.
- [22] K. STROETHOFF, Compact Hankel operators on weighted harmonic Bergman spaces, Glasgow Math. J. 39 no. 1 (1997), 77–84.
- [23] J. XIA, D. ZHENG, Standard deviation and Schatten class Hankel operators on the Segal-Bargmann space, Indiana Univ. Math. J. 53 no. 5 (2004), 1381–1399.
- [24] U. VENUGOPALKRISHNA, Fredholm operators associated with strongly pseudoconvex domains in \mathbb{C}^n , J. Funct. Anal. 9 (1972), 349–373.
- [25] K. ZHU, Hilbert-Schmidt Hankel operators on the Bergman space, Proc. Amer. Math. Soc. 109 no. 3 (1990), 721–730.

Present Addresses: WOLFRAM BAUER INSTITUT FÜR MATHEMATIK UND INFORMATIK, ERNST-MORITZ-ARNDT-UNIVERSITÄT GREIFSWALD, JAHNSTRASSE 15A, 17487 GREIFSWALD, GERMANY. *e-mail*: bauerwolfram@web.de

KENRO FURUTANI DEPARTMENT OF MATHEMATICS, SCIENCE UNIVERSITY OF TOKYO, NODA, CHIBA, 278–8510 JAPAN. *e-mail:* furutani@ma.noda.sut.ac.jp