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Hilbert-Schmidt Hankel Operators and Berezin Iteration
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(Communicated by K. Uchiyama)

Abstract. Let H be a reproducing kernel Hilbert space contained in a wider space L2(X,µ). We study the
Hilbert-Schmidt property of Hankel operators Hg on H with bounded symbol g by analyzing the behavior of the
iterated Berezin transform. We determine symbol classes S such that for g ∈ S the Hilbert-Schmidt property of Hg

implies that Hḡ is a Hilbert-Schmidt operator as well and there is a norm estimate of the form ‖Hḡ‖HS ≤ C·‖Hg‖HS.

Finally, applications to the case of Bergman spaces over strictly pseudo convex domains in Cn, the Fock space, the
pluri-harmonic Fock space and spaces of holomorphic functions on a quadric are given.

1. Introduction

Let X be a set with a measure µ and H be a closed subspace of L2(X,µ). For any

bounded measurable function g on X and the orthogonal projection P from L2(X,µ) onto H

the Hankel operator Hg resp. the Toeplitz operator Tg on H are define by:

Hgf := (I − P)(f g) and Tg := P(f g) . (1.1)

Among a variety of examples the operators (1.1) have been treated intensively in the
case of Bergman and Hardy spaces and spaces of harmonic or pluri-harmonic functions. The
study of Toeplitz operators Tg or algebras generated by those require an analysis of the Hankel
operators Hg and Hḡ . In particular, the compactness or Schatten-p-properties of Hg and Hḡ

are of importance to obtain spectral results and to determine Fredholmness of Tg , c.f. [10],
[18], [21], [23], [24]. For a reproducing kernel Hilbert space H a general symbol calculus was
introduced by Berezin [8], [9] which can be regarded as an inverse quantization and frequently
has been applied to the analysis of the operators (1.1). In particular, the Berezin symbol g̃ of Tg

was used to introduce the notion of mean oscillation MO(g) of g . At least for Bergman spaces
over bounded symmetric domains or the Segal-Bargmann space there are characterizations
in terms of the function MO(g) for Hg and Hḡ to belong to the ideals of Schatten-p-class or
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compact operators, c.f. [7], [10], [23]. As a matter of fact the assignment g �→ MO(g) is
invariant under complex conjugation such that these characterizations hold for Hg and Hḡ

simultaneously. In [24] the compactness of Hg and Hḡ was proved in the case of Bergman
spaces over strictly pseudo convex domains Ω in Cn and smooth symbols g on Ω continuous
up to the boundary. An analog theorem for the case of weighted harmonic Bergman spaces
over the unit ball in Rn can be found in [22]. Schatten-p-class properties of the Hankel
operators do not follow automatically, c.f. [22], [25]. On the one hand it was observed in
[10], [21] (resp. [4]) that for the Segal-Bargmann space H and bounded symbol g the operator
Hg is compact (resp. Hilbert-Schmidt) if and only if Hḡ is compact (resp. Hilbert-Schmidt).
On the other hand, the existence of non-constant bounded holomorphic functions implies that
such a result in general can not be true for Bergman spaces over bounded domains X ⊂ Cn,

c.f. [25]. Let L2(H,H⊥) denote the Hilbert-Schmidt operators from H to its orthogonal

complement H⊥ in L2(X,µ) and with norm ‖·‖HS. Here, we determine spaces S of bounded
measurable symbols such that:

(P) For g ∈ S and Hg ∈ L2(H,H⊥) it follows that Hḡ ∈ L2(H,H⊥) and there is a
constant C > 0 with ‖Hḡ‖HS ≤ C‖Hg‖HS.

Following ideas in [4], we express ‖Hg‖HS by integral conditions on g and g̃ . No further
assumptions on X are required besides the existence of a reproducing kernel K . For a finite

measure µ property (P) holds with S := L2(X, V ) and C = 1 where the Berezin measure V

is defined by dV (z) = K(z, z)dµ(z) (c.f. Proposition 4.1).
There is a natural metric d on X induced by K and equivalent to the Bergman distance in

the case of Bergman spaces H over bounded domains X ⊂ Cn. We assume that a priori there
is a second metric d on X related to d and turning the space C(X) of continuous functions on
X equipped with the compact-open topology into a Fréchet space. For symbols g ∈ L∞(X)

such that ‖Hg‖HS < ∞ the following can be said about the sequence of iterated Berezin
transforms. Theorem I is essential in the proof of the Theorems II and III.

THEOREM I. The sequence (Bjg)j∈N ⊂ C(X, d), where B denotes the Berezin trans-
form, has cluster points h ∈ C(X, d) with Bh = h.

We observe that S := L2(X, V ) is an invariant space for the Berezin transform. More-
over, for any symbol g ∈ S the invariance g = g̃ implies that g ≡ 0 (see example 3.1). In fact
this observation can be used to obtain a defining property for S in (P):

THEOREM II. Let S0 ⊂ L∞(X) such that:
(i) S0 is asymptotically invariant under the Berezin transform (c.f. Definition 3.2).

(ii) For h ∈ S0 the equality h = h̃ implies that Hh̄ = 0.
Then (P) holds with S := S0 and C := 2.

In the case of the Segal-Bargmann space Hh assumptions (i) and (ii) of Theorem II are
fulfilled with S0 := L∞(Cn). Here S0 is invariant under complex conjugation and (P) holds
in a symmetric way, c.f. [4] (for invariance under Berezin transform [1], [15]). In our analysis
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iteration of the Berezin transform B plays a crucial role. Let Ω ⊂ Cn be a strictly pseudo

convex domain with C3-boundary and H = H 2(Ω,µ) a weighted Bergman space over Ω

with K(x, x) > 0. For f ∈ C(Ω) the sequence of iterated Berezin transforms converges

uniformly on the closure Ω to a unique fix point f0 ∈ C(Ω) of B preserving the boundary

values of f , c.f. [2]. Let C0(Ω) denote the space of continuous functions on Ω vanishing at
the boundary.

THEOREM III. S0 := C0(Ω) fulfills the condition (i) and (ii) of Theorem II.

To give an example of a non-symmetric situation we consider the Banach algebra:

Aah(Ω) := {
f ∈ C(Ω) : f|Ω is anti-holomorphic

}
and set S0 := C0(Ω) ⊕ Aah(Ω). This choice again leads to a solution of (P) whereas the
symbol space S0,c := {ḡ : g ∈ S0} in general does not. This can be seen by the fact that
there are no non-zero Hilbert-Schmidt Hankel operators on the Bergman space of the open
unit ball in Cn with anti-holomorphic symbols when n ≥ 2, c.f. [25]. We examine the
pluri-harmonic Fock space Hph on Cn. With g ∈ L∞(Cn) and the pluri-harmonic Hankel

operator H
ph
g it holds ‖H ph

ḡ ‖HS ≤ √
2 · ‖H ph

g ‖HS and the Hilbert-Schmidt property of the

corresponding Hankel operators H h
g on the Fock space Hh and H

ph
g on Hph are related. As an

application of Theorem II we show that Hh
g ∈ L2(Hh,Hh

⊥) implies that H
ph
g and H

ph
ḡ are of

Hilbert-Schmidt type as well and

max
{∥∥H ph

g

∥∥
HS,

∥∥H
ph
ḡ

∥∥
HS

}
≤

√
5 · min

{∥∥H h
g

∥∥2
HS,

∥∥H h
ḡ

∥∥2
HS

}
. (1.2)

It was remarked in [20] that Hh arises naturally by pairing of polarizations from the
real and Käler polarization on the cotangent bundle T ∗(Rn) ∼= Cn. The Euclidean space Rn

can be replaced with the n-dimensional sphere Sn in Rn+1 or the complex projective space
PCn. Then this method leads to a family of reproducing kernel Hilbert spaces of holomorphic

functions on a quadric in Cn+1 resp. on a space of (n + 1) × (n + 1) complex matrices
parametrized by two real parameters. Several aspects of the analysis on these spaces are
treated in [5]. In the final part of this paper we are interested in the asymptotic behavior of
the Berezin measure in these examples. As an application of the general theory we determine
a class of Hilbert-Schmidt Hankel operators in the sphere and complex projective space case.

2. Preliminaries

Let L2(X,µ) denote the classes of µ-square integrable functions on a measure space

(X,F , µ). We write 〈·, ·〉 (resp. ‖ · ‖) for the inner product (resp. norm) of L2(X,µ).
A linear space H of µ-square integrable functions on X is said to be closed in L2(X,µ)

iff the canonical projection p : H → L2(X,µ) is injective with closed range and H is

identified with p(H). We write P : L2(X,µ) → H and Q := I − P for the orthogonal



296 WOLFRAM BAUER AND KENRO FURUTANI

projection onto H and its orthogonal complement H⊥ respectively. Assume, that H admits a
reproducing kernel function, i.e. there is a F ⊗F-measurable function K : X ×X → C such
that X � x �→ K(x, x) ∈ (0,∞) is measurable and for all x, y ∈ X:

(i) K(·, x) ∈ H ,

(ii) K(x, y) = K(y, x),
(iii) Reproducing property: For all f ∈ H it holds f (x) = 〈

f,K(·, x)
〉
.

By (i) and for any x ∈ X the normalized kernel is given by

kx := K(·, x) · ‖K(·, x)‖−1 ∈ H (2.1)

where by (i), (iii): ‖K(·, x)‖ = K(x, x)
1
2 > 0. We define a symbol space:

T (X) := {f : L2(X,µ) : f kx ∈ L2(X,µ), ∀ x ∈ X} .

DEFINITION 2.1 (Berezin transform). For f ∈ T (X) the Berezin transform (BT) f̃ :
X → C is defined by:

f̃ (λ) := 〈
f kλ, kλ

〉
. (2.2)

Naturally (2.2) extends to operators on H such that f̃ and T̃f coincide and it can be

regarded as an inverse quantization. If Tf is bounded f̃ clearly is bounded by ‖Tf ‖. On
functions (BT) is an integral operator with positive kernel and commutes with the complex

conjugation: ¯̃
f = ˜̄f . We write Mg for the multiplication with a symbol g and L(V ,W) for

the continuous operators between topological vector spaces V and W . We also use the shorter
notation L(V ) := L(V , V ).

DEFINITION 2.2 (Hankel and Toeplitz operators). For g ∈ L∞(X) the Hankel opera-
tor Hg and the Toeplitz operator Tg with symbols g are given by Hg := QMg ∈ L

(
H,H⊥)

and Tg := PMg ∈ L(H).

Definition 2.2 can be generalized to classes of unbounded symbols. Then Hg and Tg will
be unbounded in general. On X we consider the Berezin measure V :

dV (x) := K(x, x)dµ(x) . (2.3)

There is a trace formula for positive operators on H which leads to a characterization of
the Hilbert-Schmidt Hankel operators by an integral condition with respect to V . We write
‖ · ‖HS for the Hilbert-Schmidt norm.

LEMMA 2.1. Let g be a measurable function on X such that MgP is a bounded oper-

ator on L2(X,µ), then (a) and (b) below are equivalent:
(a) Hg : H → H⊥ is a Hilbert-Schmidt operator (we write Hg ∈ L2(H,H⊥)).

(b) I := ∫
X

∥∥Hgkx

∥∥2
dV (x) < ∞ .

If (a) and (b) are valid, then
√

I = ‖Hg‖HS.
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PROOF. Fix an orthonormal basis (ONB) [ej : j ∈ N0] in H . Because QMgP is
bounded, there is T ∈ L(H) such that (QMgP)∗(QMgP) = T ∗T on H . Hence

I =
∫

X

∥∥Hgkx

∥∥2
dV (x) =

∫
X

〈
T K(·, x), T K(·, x)

〉
dµ(x) .

From (i)–(iii) we obtain for all x ∈ X:

T K(·, x) =
∞∑

j=0

〈
T K(·, x), ej

〉
ej =

∞∑
j=0

[T ∗ej ](x) ej . (2.4)

By inserting (2.4) into the integral above and using the monotone convergence theorem
together with ‖T ∗‖HS = ‖T ‖HS one obtains that:

I =
∫

X

∞∑
j=0

∣∣[T ∗ej

]
(x)

∣∣2dµ(x) =
∞∑

j=0

∥∥T ∗ej

∥∥2 =
∞∑

j=0

∥∥Hgej

∥∥2
.

Hence the equivalence of (a) and (b) and
√

I = ‖Hg‖HS are proved. �

REMARK 2.1. The analogous result of Lemma 2.1 holds if we replace Hg by the
Toeplitz operator Tg in (a) and (b) above. Note that T ∗

g = Tḡ in Lemma 2.1.

By a further decomposition of the integral expression in Lemma 2.1 (b), the Berezin
symbol of g naturally appears.

LEMMA 2.2. For g ∈ L∞(X) and with I defined as in Lemma 2.1 (b), it holds:

I =
∫

X

{∥∥P [ḡkz] − g̃(z)kz

∥∥2 + ∣∣g(z) − g̃(z)
∣∣2}dV (z) . (2.5)

The right hand side of (2.5) is finite if and only if the left hand side is finite.

PROOF. By Fubini’s theorem and using (2.3):

I =
∫

X

∥∥HgK(·, λ)
∥∥2

dµ(λ) (2.6)

=
∫

X

∫
X

∣∣g(z)K(z, λ) − P
[
gK(·, λ)

]
(z)

∣∣2dµ(z)dµ(λ)

=
∫

X

∫
X

∣∣g(z)K(λ, z) − P
[
ḡK(·, z)](λ)

∣∣2
dµ(λ)dµ(z) .

In the last equality we have used (ii) as well as

P
[
gK(·, λ)

]
(z) = P

[
ḡK(·, z)](λ) (2.7)

which can be deduced from (i)–(iii) by a straightforward calculation. Using ˜̄g = ¯̃g we have:〈
P

[
ḡK(·, z)],K(·, z)〉 = 〈

ḡK(·, z),K(·, z)〉 = 〈
g̃(z)K(·, z),K(·, z)〉
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which can be written as
〈
P

[
ḡK(·, z)] − g̃(z)K(·, z),K(·, z)〉 = 0. From the Pythagorean

theorem we obtain for the inner integral on the right hand side of (2.6) and fixed z ∈ X:∫
X

∣∣g(z)K(λ, z) − P
[
ḡK(·, z)](λ)

∣∣2
dµ(λ)

=
∫

X

∣∣∣{g(z) − g̃(z)
}
K(λ, z) −

{
P

[
ḡK(·, z)](λ) − g̃(z)K(λ, z)

}∣∣∣2
dµ(λ)

=
∫

X

∣∣∣{g(z) − g̃(z)
}
K(λ, z)

∣∣∣2
dµ(λ)

+
∫

X

∣∣∣P [
ḡK(·, z)](λ) − g̃(z)K(λ, z)

∣∣∣2
dµ(λ)

= K(z, z)
{∣∣g(z) − g̃(z)

∣∣2 + ∥∥P [ḡkz] − g̃(z)kz

∥∥2
}

.

Finally, by inserting this expression into (2.6) the assertion follows. �

COROLLARY 2.1. Let g ∈ L∞(X) such that Hg ∈ L2(H,H⊥), then g − g̃ ∈
L2(X, V ).

PROOF. Lemma 2.1 (b) holds and the assertion directly follows from Lemma 2.2. �

In order to derive some further decomposition of the integral I we prove:

LEMMA 2.3. Let g ∈ L∞(X), then:

I1 :=
∫

X

∥∥P [ḡkz] − g̃(z)kz

∥∥2
dV (z) =

∫
X

∥∥P [gkλ] − g̃kλ

∥∥2
dV (λ) .

The right hand side is finite if and only if the left hand side is finite.

PROOF. By using Fubini’s theorem and (2.7) again one concludes that:

I1 =
∫

X

∫
X

∣∣P [ḡK(·, z)](λ) − g̃(z)K(λ, z)
∣∣2

dµ(λ)dµ(z)

=
∫

X

∫
X

∣∣P [gK(·, λ)](z) − g̃(z)K(z, λ)
∣∣2

dµ(z)dµ(λ)

=
∫

X

∥∥P [gkλ] − g̃kλ

∥∥2
dV (λ) . �

Combinings Lemmas 2.1, 2.2 and 2.3 we can prove a decomposition formula for the
Hilbert-Schmidt norm of Hankel operators:

PROPOSITION 2.4. Let g ∈ L∞(X) such that Hg is a Hilbert-Schmidt operator. Then
Hg̃ , Tg−g̃ and Hg−g̃ are of Hilbert-Schmidt type as well and:∥∥Hg

∥∥2
HS

= ∥∥Tg−g̃

∥∥2
HS

+ ∥∥Hg̃

∥∥2
HS

+ ‖g − g̃‖2
L2(X,V )

. (2.8)



HILBERT-SCHMIDT HANKEL OPERATORS 299

PROOF. From Lemma 2.1, 2.2 and 2.3 we have:∥∥Hg
∥∥2

HS − ∥∥g − g̃
∥∥2

L2(X,V )
=

∫
X

∥∥P
[
ḡkz] − g̃(z)kz

∥∥2
dV (z)

=
∫

X

∥∥P
[
gkλ

] − g̃kλ

∥∥2
dV (λ) .

After decomposing the integrand into an orthogonal sum:∥∥P
[
gkλ

] − g̃kλ

∥∥2 = ∥∥Tg−g̃kλ

∥∥2 + ∥∥Hg̃kλ

∥∥2

and using Lemma 2.1 and Remark 2.1 we conclude that:∥∥Hg
∥∥2

HS − ∥∥g − g̃
∥∥2

L2(X,V )
=

∫
X

{∥∥Tg−g̃kλ

∥∥2 + ∥∥Hg̃kλ

∥∥2
}
dV (λ)

= ∥∥Tg−g̃

∥∥2
HS + ∥∥Hg̃

∥∥2
HS . �

3. Iteration of the Berezin transform

For λ ∈ X we consider the rank one projection Pλ := 〈·, kλ

〉
kλ on L2(X,µ) where kλ

denotes the normalized kernel (2.1), c.f. [11], [12]. With this notation the Berezin transform

f̃ of a symbols f ∈ L∞(X) can be expressed as an operator trace:

f̃ (λ) = 〈
f kλ, kλ

〉 = 〈
Mf Pλkλ, kλ

〉 = trace(Mf Pλ) . (3.1)

In particular, it was observed in [11], [12] that f̃ has some Lipschitz property. Recall

that the trace norm ‖ · ‖trace is defined by ‖A‖trace := trace
√

A∗A where
√

A∗A is the unique
square root of A∗A. By a standard estimate it follows from (3.1):∣∣f̃ (λ1) − f̃ (λ2)

∣∣ ≤ ‖f ‖∞
∥∥Pλ1 − Pλ2

∥∥
trace . (3.2)

Motivated by (3.2) we consider the function d : X × X → R given by:

d(λ1, λ2) := ∥∥Pλ1 − Pλ2

∥∥
trace .

The following formula was proved in [11], THEOREM 1 and the case of any reproducing

kernel Hilbert space H ⊂ L2(X,µ) of the type we are considering here:

PROPOSITION 3.1 ([11]). For a, b ∈ X it holds:

d(a, b) = 2
{

1 − ∣∣〈ka, kb〉
∣∣2

} 1
2 = 2

{
1 −

∣∣K(a, b)
∣∣2

K(a, a)K(b, b)

} 1
2
. (3.3)

COROLLARY 3.1. d is a metric if for a, b ∈ X there is h ∈ H with h(a) = 0 �= h(b).

PROOF. We only show that [d(a, b) = 0] ⇒ [a = b]. (3.3) vanishes iff |〈ka, kb〉| = 1
and by the Cauchy-Schwartz inequality together with ‖ka‖ = ‖kb‖ = 1 it follows that ka =
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λ · kb where |λ| = 1. For a �= b let h ∈ H with h(a) = 0 �= h(b). Applying the reproducing

property of K and K(b, b) > 0 we obtain the contradiction 0 = h(b) · λ̄ · K(b, b)− 1
2 . �

Hence d is a metric in the case where H is “big enough”. From now on we assume
that H satisfies the condition of Corollary 3.1 such that (X, d) becomes a metric space. In
our applications X a priori will be a metric space carrying a second metric d and we also
assume this in general. Both metrics d and d should be related through the assumption that
the embedding (

X, d
)

↪→ (
X, d

)
(3.4)

is continuous, c.f. Corollary 3.2. Further, let (X, d) fulfill (P1)–(P3):

(P1) (X, d) is hemi-compact, i.e. there is a fundamental sequence (Kn)n∈N of compact sets
in (X, d) such that Kn ⊂ Kn+1 and X = ⋃

n∈N Kn.
(P2) (X, d) is a k-space, i.e. a functions f on (X, d) is continuous if and only if its restric-

tion to any compact subset K ⊂ X is continuous.
(P3) All open set in (X, d) have strictly positive volume with respect to µ.

COROLLARY 3.2. Let K : X × X → C be continuous in the product topology with
respect to the metric d on X. Then there is a continuous embedding (3.4).

We remark that the assumption of Corollary 3.2 typically holds for reproducing kernel

Hilbert spaces H := N ∩ L2(X,µ) where N is nuclear in the F -space C(X, d). In the case
of a bounded domain X ⊂ Cn and with the usual Bergman space H over X, the function d

induces the Euclidean topology d(a, b) := |a−b|. Some relation between d and the Bergman
distance are discussed in [19].

LEMMA 3.1. Let f ∈ L∞(X), then f̃ is continuous in the topology of (X, d).

PROOF. By (3.4) both d and d induce the same topology on compact sets K ⊂ (X, d).

From (3.2) we conclude that the restriction of f̃ to K is continuous with respect to d and from

(P2) it follows that f̃ ∈ C(X, d). �

Let us also write Bf := f̃ for the Berezin transform, when it is considered as an operator.
From (3.2) it follows that B can be regarded as bounded operator:

B : L∞(X) → BC(X, d), and ‖B‖ ≤ 1

where BC(X, d) (resp. BC(X, d)) are the bounded functions in C(X, d) (resp. in C(X, d))
equipped with the sup-norm. From (3.4) one has continuous embeddings:

C
(
X, d

)
↪→ C

(
X, d

)
and BC

(
X, d

)
↪→ BC

(
X, d

)
. (3.5)

Here C(X, d) is a Fréchet space (F-space) with respect to the compact-open topology by
assumptions (P1) and (P2) on the metric d.
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LEMMA 3.2. Let (gn)n ⊂ BC(X, d) be a norm-bounded sequence converging in
C(X, d) to g ∈ BC(X, d). Then it follows that limn→∞ Bgn = Bg in C(X, d) and
Bg ∈ BC(X, d).

PROOF. Fix c > 0 such that ‖gn‖∞ ≤ c for all n ∈ N and let T ⊂ (X, d) be compact.
For n ∈ N and x ∈ X one has:∣∣[Bgn − Bg

]
(x)

∣∣ ≤
∫

X

∣∣gn − g
∣∣ |K(·, x)|2

K(x, x)
dµ =: (∗) .

Let (Km)m denote the sequence of compact sets in (P1) and fix m ∈ N, then:

(∗) ≤ sup
Km

|gn − g| + 2c

∫
X\Km

|K(·, x)|2
K(x, x)

dµ =: Cn,m(x) .

For fixed x ∈ T and m → ∞ the sequence (qm)m ⊂ C(X, d) given by:

qm(x) :=
∫

X\Km

|K(·, x)|2
K(x, x)

dµ = χ̃X\Km(x)

is monotonely decreasing to 0. By Dini’s Lemma the convergence is uniform on T . For any
ε > 0 fix m0 ∈ N with supx∈T |qm(x)| ≤ ε for all m ≥ m0. Finally, we can choose n0 ∈ N
with supKm0

|gn − g| < ε for n ≥ n0. Uniformly on T this leads to Cm0,n(x) ≤ ε(1 + 2c) for

n ≥ n0. Because g is bounded it follows that Bg ∈ BC(X, d). �

DEFINITION 3.1. (Iterated Berezin transform). For f ∈ L∞(X) we define the Berezin
transforms inductively by:

f (0) := f and f (j+1) := f̃ (j), j ≥ 0 .

COROLLARY 3.3. Let g ∈ L∞(X) such that Hg is a Hilbert-Schmidt operator, then
all the operators Hg (m) for m ∈ N are Hilbert-Schmidt operators with:∥∥Hg (m)

∥∥
HS

≤ ∥∥Hg
∥∥

HS
. (3.6)

Moreover:
∞∑

j=0

∥∥g(j) − g(j+1)
∥∥2

L2(X,V )
≤ ∥∥Hg

∥∥2
HS

< ∞ . (3.7)

PROOF. Both, (3.6) and (3.7) follow by iteration of (2.8). �

For S ⊂ C(X, d) we write Fix (S) := {f ∈ S : Bf = f } for the fix points of B in S.

Further, let S be the closure of S in the F-space C(X, d). For g ∈ L∞(X), we define

Sg := {
g(j) : j ∈ N

} ⊂ C(X, d) (3.8)

for the B-invariant space of iterated Berezin transforms of g . Combining Corollary 3.3 with
general properties of B we can prove:
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PROPOSITION 3.2. Let g ∈ L∞(X) such that the Hankel operator Hg is of Hilbert-

Schmidt type, then Fix (Sg ) �= ∅. Moreover, Sg \ Sg ⊂ Fix(Sg).

PROOF. For any k ∈ N it is clear that ‖g(k)‖∞ ≤ ‖g‖∞ and with λ1, λ2 ∈ X it holds:∣∣g(k)(λ1) − g(k)(λ2)
∣∣ ≤ ‖g‖∞d

(
λ1, λ2

)
.

This shows that Sg ⊂ C(X, d) is bounded and equi-continuous. Hence there is a subse-

quence (g(mk))k which is uniformly compact convergent to some h ∈ Sg . We show next that

h ∈ Fix (Sg ). First let us note that by Lemma 3.2:

lim
k→∞ g̃(mk)(x) = h̃(x) (3.9)

where the convergence in (3.9) is uniformly compact on (X, d). From our assumption on Hg

and (3.7) we conclude that limk→∞
∥∥g(mk) − g̃(mk)

∥∥
L2(X,V )

= 0. Hence there is A ⊂ X with

V (X \ A) = 0 and a subsequence of (g(mk))k (which we denote by (g(mk))k again) such that
for all x ∈ A:

lim
k→∞

{
g(mk)(x) − g̃(mk)(x)

} = 0 . (3.10)

By the definition of h, (3.9) and (3.10) it follows for x ∈ A that:

h(x) = lim
k→∞ g(mk)(x) = lim

k→∞ g̃(mk)(x) = h̃(x) . (3.11)

Because of K(x, x) > 0 for all x ∈ X we obtain that µ(X \ A) = 0 and by (P3) the
complement X \ A cannot contain an open subset of (X, d). Thus A must be dense in (X, d).

Finally, the continuity of h together with (3.11) imply that h ∈ Fix (Sg ).
The second assertion follows by the same argument and the fact that the functions in the

complement Sg \ Sg are limit points of a subsequences of (g(k))k ⊂ C(X, d). �

We remark that in contrary to Fix(Sg ) the set Sg \ Sg might be empty.

DEFINITION 3.2. We call a subspace S ⊂ L∞(X) asymptotically invariant under B

iff for any f ∈ S the inclusion Sf ⊂ S holds.

By our results above it follows that symbols of Hilbert-Schmidt Hankel operators gener-
ate spaces asymptotically invariant under B:

COROLLARY 3.3. Let g ∈ L∞(X) such that Hg is a Hilbert-Schmidt operator, then

Sg is asymptotically invariant under B.

PROOF. Let f ∈ Sg be arbitrary. For f ∈ Sg it is clear that Sf ⊂ Sg . In the case where

f ∈ Sg \ Sg ⊂ Fix (Sg ) it follows that Sf = Sf = {f } ⊂ Sg . �
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Further examples of spaces asymptotically invariant under B are obviously given by the
fix point set Fix (S) of any subspace S ⊂ L∞(X) or by the “eventually fix points”:

{f ∈ S : ∃ j ∈ N such that f (j) = f (j+1)} .

EXAMPLE 3.1. Let µ be a finite measure on X and fix g ∈ L2(X, V ). By a straight-
forward calculation one obtains that:∫

X3

1

K(y, y)

|ku(λ)|2
K(u, u)

|kλ(y)|2
K(λ, λ)

dV (y)dV (λ)dV (u) = µ(X) < ∞ .

By Tonelli’s theorem, the function:

L(u, y) := 1

K(y, y)

∫
X

|ku(λ)|2|kλ(y)|2dµ(λ)

is finite for a.e. (u, y) ∈ X2 with respect to the product measure V ⊗ V . Moreover,∥∥g̃
∥∥2

L2(X,V )
=

∫
X3

g(u)g(y)
∣∣kλ(u)

∣∣2∣∣kλ(y)
∣∣2dµ(u)dµ(y)dV (λ)

=
∫

X3
g(u)g(y)

∣∣ku(λ)
∣∣2∣∣kλ(y)

∣∣2dµ(λ)dV (u)dµ(y)

=
∫

X×X

g(u)g(y)L(u, y)dV ⊗ V (u, y) .

By Cauchy-Schwartz inequality and
∫
X L(u, y)dV (u) = ∫

X L(u, y)dV (y) = 1:∥∥g̃
∥∥2

L2(X,V )
≤ ∥∥g

∥∥2
L2(X,V )

. (3.12)

Equality in (3.12) only holds if G1(u, y) := g(u) and G2(u, y) := g(y) are linear
dependent showing that g is constant. By an easy consequence of Remark 2.1 together with
T1 = id the measure V cannot be finite whenever H is infinite dimensional. In this case
g ≡ 0 and there are no non-trivial functions in L2(X, V ) invariant under B.

4. Hilbert-Schmidt Hankel operators

We apply our previous results to prove Theorem II of the Introduction:
PROPOSITION 4.1. For g ∈ L2(X, V ), the operator Hg is of Hilbert-Schmidt type

and: ∥∥Hg
∥∥

HS
= ∥∥Hḡ

∥∥
HS

≤ ‖g‖L2(X,V ) . (4.1)

PROOF. For f ∈ L2(X,µ) it follows from |[Pf ](u)|2 ≤ ‖Pf ‖2 · K(u, u) that:∥∥MgPf
∥∥2 ≤ ∥∥Pf ‖2

∫
X

|g(u)|2K(u, u)dµ(u) ≤ ‖f ‖2‖g‖2
L2(X,V )

.
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Hence MgP is a bounded operator on L2(X,µ) and by Lemma 2.1 it is sufficient to
prove Lemma 2.1, (b).∥∥Hg

∥∥2
HS ≤

∫
X

∥∥gK(·, x)
∥∥2

dµ(x)

=
∫

X

|g(λ)|2
∫

X

∣∣K(λ, x)|2dµ(x)dµ(λ) = ‖g‖2
L2(X,V )

< ∞ .

By Remark 2.1 and using the same calculation it also follows that the Toeplitz operator
Tg is a Hilbert-Schmidt operator. From T|g |2 = H ∗

g Hg + TḡTg we derive that T|g |2 , TḡTg and

H ∗
g Hg are of trace class. Hence∥∥Hg

∥∥2
HS = trace

(
T|g |2 − TḡTg

)
= trace

(
T|g |2

) − trace
(
TḡTg

)
= trace

(
T|g |2

) − trace
(
TgTḡ

) = trace
(
H ∗̄

g Hḡ
) = ∥∥Hḡ

∥∥2
HS

. �

LEMMA 4.1. Let (gm)m ∈ L∞(X) be a bounded sequence and point wise convergent
to g . Then (Hgm)m converges to Hg in the strong operator topology.

PROOF. Let f ∈ H , then by Lebesgue’s convergence theorem it follows that:∥∥Hgm−gf
∥∥2 ≤ ∫

X

∣∣gm − g
∣∣2∣∣f ∣∣2

dµ
m→∞−−−−→ 0 . �

Let Nsym := {h ∈ L∞(X) : Hh̄ = 0} be the kernel of the symbol map h �→ Hh̄. Then
we consider the space S of symbols defined by:

S := {
g ∈ L∞(X) : Sg ∩ Nsym �= ∅}

. (4.2)

THEOREM 4.1. Let g ∈ S such that Hg is a Hilbert-Schmidt operator, then Hḡ is a
Hilbert-Schmidt operator as well and ‖Hḡ‖HS ≤ 2‖Hg‖HS.

PROOF. Because Hg is a Hilbert-Schmidt operator and by applying Corollary 3.3 it

follows that g(m−1) − g(m) ∈ L2(X, V ) for all m ∈ N. Hence one concludes that:

g − g(m) = {
g − g(1)

} + · · · + {
g(m−1) − g(m)

} ∈ L2(X, V ) .

By Proposition 4.1 and Corollary 3.3 again one has for all m ∈ N:∥∥Hḡ−ḡ (m)

∥∥
HS = ∥∥Hg−g (m)

∥∥
HS ≤ ∥∥Hg

∥∥
HS + ∥∥Hg (m)

∥∥
HS ≤ 2 · ∥∥Hg

∥∥
HS . (4.3)

Choose h ∈ Sg ∩ Nsym �= ∅ and assume that h belongs to Sg . Then there is i0 ∈ N

such that h = g(i0) and for i ≥ i0 it follows from (3.6) that: 0 ≤ ‖Hḡ (i)‖HS ≤ ‖Hh̄‖HS = 0

showing that Hḡ (i) = 0. In particular, for f ∈ H :

lim
i→∞ ‖Hḡ (i)f ‖ = 0 . (4.4)
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For h ∈ Sg \Sg there is a sequence (mk)k ⊂ N such that limk→∞ g(mk) = h with respect

to the Fréchet topology of C(X, d). Because of ‖g(mk)‖∞ ≤ ‖g‖∞ and Lemma 4.1 we obtain
for f ∈ H that:

lim
k→∞

∥∥Hḡ (mk)f
∥∥ = ∥∥Hh̄f

∥∥ = 0 . (4.5)

Let [ej : j ∈ N] be an ONB of H and fix l ∈ N. Then by (4.3) we conclude:

l∑
j=1

∥∥Hḡej

∥∥2 = lim
k→∞

l∑
j=1

∥∥Hḡ−ḡ (mk)ej

∥∥2

≤ lim sup
k→∞

∥∥Hḡ−ḡ (mk)

∥∥2
HS

≤ 4
∥∥Hg

∥∥2
HS

.

in both cases (4.4) and (4.5). For l → ∞ the assertion follows. �

PROPOSITION 4.2. Let S0 ⊂ L∞(X) be asymptotically invariant under Berezin trans-
form such that Fix(S0) ⊂ Nsym. Then S in Theorem 4.1 can be replaced by S0.

PROOF. Fix g ∈ S0 and let ‖Hg‖HS < ∞. It is sufficient to show g ∈ S defined in

(4.2). By assumption it follows that Sg ⊂ S0. Moreover, as a consequence of Proposition 3.2

one obtains that ∅ �= Fix
(
Sg

) ⊂ Fix
(
S0

) ⊂ Nsym. Hence Sg ∩ Nsym �= ∅ and g ∈ S. �

Let K be the ideal of compact operators on H and denote by σe(T ) the essential spectrum
of T ∈ L(H). For the following result and with the reproducing kernel K we assume that the
assignment

X � x �→ K(x, x) ∈ (0,∞) (4.6)

is continuous. Then we can prove (c.f. [10], [21]):

PROPOSITION 4.3. Let µ(K) < ∞ for all compact K ⊂ X and g ∈ L∞(X) such that
Hg and Hḡ are compact. With a sequence (Km)m of compact sets as in (P1) it follows that:

σe

(
Tg

) ⊂
⋂
m∈N

closure g
(
X \ Km

)
. (4.7)

If Tg−g (m) is compact, we can replace g by g(m) on the right hand side of (4.7).

PROOF. Suppose that λ /∈ closureg(X \ Km) for m ∈ N, then consider h defined by:

h(z) :=
{

{g(z) − λ}−1 if z ∈ X \ Km

1 else .

The function h clearly is bounded and it can be easily verified that:

(a) ThTg−λ = I + T(g−λ)h−1 − H ∗̄
h
Hg ,

(b) Tg−λTh = I + T(g−λ)h−1 − H ∗̄
g Hh.
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By (4.6) it is clear that z �→ K(z, z) and f := (g − λ)h − 1 are bounded on Km and
because of µ(Km) < ∞ we have:

‖f ‖2
L2(X,V )

=
∫

Km

|f (z)|2K(z, z)dµ(z) < ∞ .

Hence, Tf is of Hilbert-Schmidt type and so it is compact. By our assumptions on Hg

and Hḡ both (a) and (b) show that Tg−λ ∈ [L(H)/K]−1 and λ /∈ σe(Tg ). The second assertion
is an immediate consequence of σe(Tg ) = σe(Tg (m)). �

5. Examples and Applications

Various aspects of the Berezin symbol have been studied c.f. [2], [4], [10], [15] and most
recently [11], [12]. Below we apply some of these results to obtain examples of our assump-
tions in THEOREM 4.1. In particular, we prove THEOREM III and (1.2) of the introduction.
All spaces X appearing in this section are metric with (P1)–(P3).

5.1. Bergman spaces over bounded domains. Let Ω ⊂ Cn be a bounded domain
with a measure µ. By H := H 2(Ω,µ) we denote the Bergman space of all holomorphic µ-
square integrable functions on Ω . We assume that the point evaluations on H are continuous
and the reproducing kernel K is strictly positive on the diagonal. The following is due to J.
Arazy and M. Englis (c.f. [2], THEOREM 2.3.):

THEOREM 5.1 ([2]). Let Ω be either a bounded domain in the complex plane with

C1-boundary, or a strictly pseudo convex domain in Cn with C3-boundary, then

(a) B maps C(Ω) into itself and preserves the boundary values.

(b) For any f ∈ C(Ω), the sequence (f (k))k of iterated Berezin transforms converges

uniformly on Ω to a function g ∈ C(Ω) satisfying Bg = g and g|∂Ω = f|∂Ω .

(c) For any Φ ∈ C(∂Ω) there exists a unique g ∈ C(Ω) satisfying Bg = g and
g|∂Ω = Φ. The function g is called B-Poisson extension of Φ.

Let Ω ⊂ Cn be as in Theorem 5.1 and denote by C0(Ω) the continuous functions on Ω

vanishing at the boundary. From (b) and the uniqueness result in (c) we conclude that:

COROLLARY 5.1. Let g ∈ S0 := C0(Ω). Then (g(k))k converges to 0 uniformly on

Ω . In particular, S0 fulfills the assumptions of Proposition 4.2.

PROOF. The first assertion directly follows from THEOREM 5.1 and Sg = Sg∪{0} ⊂ S0

shows that S0 is asymptotically invariant under B. Moreover, by the uniqueness result in
Theorem 5.1 it is clear that Fix(S0) = {0} ⊂ Nsym. �

Note that S0 is symmetric under complex conjugation. In order to give an example for a
non-symmetric situation we consider:

Aah(Ω) := {
f ∈ C(Ω) : f|Ω is anti-holomorphic

}
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and set S1 := C0(Ω)⊕Aah(Ω). With f ∈ C0(Ω) and h ∈ Aah(Ω) consider g = f +h ∈ S1.
Because of Bh = h and h = g on ∂Ω we conclude from Theorem 5.1 (b) and (c) that the
sequence (g(k))k is uniformly convergent on Ω to h. Hence S1 is asymptotically invariant
under Berezin transform. Moreover, Fix(S1) = Aah(Ω) ⊂ Nsym and the assumptions of
Proposition 4.2 hold.

THEOREM 5.2. Let g1 ∈ S0 := C0(Ω) and g2 ∈ S1 := C0(Ω) ⊕ Aah(Ω), then

(a) Hg1 ∈ L2(H,H⊥) if and only if Hḡ1 ∈ L2(H,H⊥).

(b) Hg2 ∈ L2(H,H⊥) implies that Hḡ2 ∈ L2(H,H⊥).
(c) For h ∈ {g1, ḡ1, ḡ2} there is a norm estimate: ‖Hh‖HS ≤ 2 · ‖Hh̄‖HS.

Let Bn be the unit ball in Cn with n ≥ 2. It was observed in [25] that there is no non-zero
Hankel operator Hg ∈ L2(H,H⊥) with anti-holomorphic symbol. Hence, in general Hg2 in
Theorem 5.2 is not of Hilbert-Schmidt type in the case of Hḡ2 = 0. Let v be the Lebesgue
measure on Bn, (n ∈ N) and define for α ∈ R the measure µα by

dµα(z) = cαK(z, z)1− α
n+1 dv(z) , cα > 0

where K denotes the reproducing kernel of the unweighted Bergman space H 2(Bn, v). It is
known that µα is finite if and only if α > n and in this case we choose cα with µα(Bn) = 1.

For α > n and in the case of the weighted Bergman space H 2
α of holomorphic functions in

L2(Bn,µα) we want to add some remarks on compact Hankel operators. Let A be a finite sum
of finite products of Toeplitz operators on H 2

α , then it was proved in [14] that A is compact
if and only if its Berezin symbol vanishes at the boundary of Bn. The following Lemma
corresponds to LEMMA 2.1 in the compact case:

LEMMA 5.1. Let g ∈ L∞(Bn) and R ∈ {Hg , Tg } defined on H 2
α where α > n. With

the normalized reproducing kernel function kλ in (2.1) it holds:
(a) R is compact if and only if ‖Rkλ‖ → 0 as λ → ∂Bn.
(b) For λ → ∂Bn the sequence (kλ)λ tends to 0 weakly in L2(Bn,µα).

PROOF. Because R is compact if and only if R∗R is compact (a) follows from our
remark above together with:

• ‖Tgkλ‖2 = T̃ ∗
g Tg (λ) = T̃ḡTg(λ),

• ‖Hgkλ‖2 = H̃ ∗
g Hg(λ) = (T|g |2 − TḡTg )̃(λ).

To prove (b) let h ∈ L2(Bn,µα) and ε > 0. Choose a continuous function r on Bn

having compact support such that ‖r − h‖ ≤ ε. It follows that:∣∣〈h, kλ〉
∣∣ ≤ ∣∣〈h − r, kλ〉

∣∣ + ∣∣〈1, Tr̄ kλ〉
∣∣ ≤ ε + ∥∥Tr̄kλ

∥∥ .

By Proposition 4.1 the Toeplitz operator Tr̄ is compact and (b) follows from (a). �

As an application of Theorem 5.1 we remark (c.f. [24] in the case α := n + 1 and [7]):
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COROLLARY 5.2. For g ∈C(Bn) both Hg and Tg−g̃ are compact on H 2
α where α > n.

PROOF. For all λ ∈ Bn it follows with a straightforward calculation that:∥∥P
[
gkλ

] − g̃(λ)kλ

∥∥2 + ∥∥Hgkλ

∥∥2 = ∣̃∣g∣∣2
(λ) − ∣∣g̃(λ)

∣∣2
. (5.1)

By Theorem 5.1 both sides of (5.1) vanish at ∂Bn showing that limλ→∂Bn

∥∥Hgkλ

∥∥ = 0.
Similarly, for λ → ∂Bn one has the convergence:

0 ≤ ∥∥Tg−g̃kλ

∥∥2 ≤ ∥∥(g − g̃)kλ

∥∥2 = {∣∣g − g̃
∣∣2}̃

(λ) → 0 .

Finally, we can apply Lemma 5.1. �

An application of Theorem 5.1 leads to the results below. In case α = n + 1 Theorem
5.3 and Corollary 5.3 have been originally proved in [13] by using different methods.

THEOREM 5.3. Let f ∈ C(Bn), then σe(Tf ) = f (∂Bn).

PROOF. The inclusion σe(Tf ) ⊂ f (∂Bn) follows from Proposition 4.3 and Corollary

5.2. Conversely, let λ = f (x0) ∈ f (∂Bn). By Theorem 5.1 (a) and for R ∈ L(H 2
α ) it holds:

0 ≤ ∥∥RTf −λkx

∥∥2 ≤ ∥∥R
∥∥2∥∥Tf −λkx

∥∥2 ≤ ∥∥R
∥∥2{|f − λ|2}̃(x)

x→x0−−−−→ 0 .

For λ /∈ σe(Tf ) one can choose R + K to be a left-inverse of Tf−λ + K in the Calkin

algebra. Then there is K ∈ K such that limx→x0

∥∥(I −K)kx

∥∥ = 0 in contradiction to Lemma
5.1, (b) and ‖kx‖ = 1 for all x. Hence λ ∈ σe(Tf ). �

COROLLARY 5.3. For f ∈ C(Bn) the operator Tf is Fredholm if and only if 0 /∈
f (∂Bn).

5.2. Pluri-harmonic Fock space. For n ∈ N and with the usual Lebesgue measure v

consider the normalized Gaussian measure µ on Cn defined by:

dµ(z) := π−n exp(−|z|2)dv(z) . (5.2)

The space Hh of all entire and µ-square integrable functions is called Fock space or
Segal-Bargmann space. It is known that Hh is a reproducing kernel Hilbert space with kernel

function K(x, y) = exp(x · ȳ) for x, y ∈ Cn where x ·y := x1y1+· · ·+xnyn and |y|2 := y · ȳ.

We also consider the space Hah := {f̄ : f ∈ Hh } of anti-holomorphic functions and we

denote by Ph (resp. Pah) the orthogonal projection from L2(Cn, µ) onto Hh (resp. Hah). For
f ∈ L2(Cn, µ) note that:

Phf̄ = Pahf . (5.3)

Considered on functions the Berezin transforms corresponding to both spaces Hh and
Hah coincide and we denote it by B. For g ∈ L∞(Cn) one has:
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[
Bg

]
(u) :=

∫
Cn

g(x) exp
(
x · ū + u · x̄ − |u|2)dµ(x) . (5.4)

It is readily verified that B can be regarded as a continuous convolution operator on the
Schwartz space S(Cn), c.f. [15]:

Bf = f ∗ h where h := 2n exp
( − | · |2)

and f ∗g := (2π)−n
∫

Cn f (y)g(·−y)dv(y) denotes the convolution product on S(Cn). Using

the Fourier transform F on S(Cn) and g := Fh = exp
(−4−1| · |2) it follows, that B also can

be written as pseudo-differential operator B = F−1MgF on S( Cn). There is an extension of

I − B = F−1M1−gF to the space S ′(Cn) of tempered distributions. This observation leads
to a proof of the following fact, c.f. [15]:

LEMMA 5.2. Let u ∈ S ′( Cn) such that Bu = u, then u is a harmonic polynomial. In
particular, any bounded function u which is reproduced under B must be constant.

PROOF. The Fourier transform of u ∈ S ′(Cn) is denoted by û. By our remarks above

and with Bu = u it follows that 0 = (1 − g)û = G| · |2û. Here the function

G(ξ) := 1 − g(ξ)

|ξ |2 = 1 − exp
( − 4−1|ξ |2)
|ξ |2

is bounded away from 0 and it can be checked that multiplication by G induces an isomor-

phism of S ′(Cn). Hence 0 = | · |2û which is equivalent to the Laplace equation ∆u = 0. Our
assertion follows from a well-known extension of Liouville’s theorem. �

As an immediate consequence it follows that, c.f. [4]:

COROLLARY 5.4. Let S0 := L∞(Cn), then Fix(S0) = C. In particular, the assump-
tions of Proposition 4.2 are fulfilled and for g ∈ L∞(Cn) it holds ‖H h

g‖HS ≤ 2 · ‖H h
ḡ‖HS.

With a symbol g ∈ L∞( Cn) and (P,H) ∈ {(Ph,Hh), (Pah,Hah)} we consider the
Hankel and Toeplitz operators:(

I − P
)
Mg ∈ L

(
H,H⊥)

and PMg ∈ L(H)

and denote them by H h
g , H ah

g resp. T h
g and T ah

g . As a consequence of (5.3) we remark that:

LEMMA 5.3. Let g ∈ L∞(Cn), then:
(i) ‖T h

g ‖HS = ‖T ah
ḡ ‖HS,

(ii) ‖H h
g‖HS = ‖H ah

ḡ ‖HS

where both sides of (i) resp. (ii) may be simultaneously infinite.
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PROOF. We only prove (ii). Let [ej : j ∈ N0] be an ONB of Hh, then an ONB of Hah is
given by [ēj : j ∈ N0]. Now, it follows by (5.3) that:

‖H h
g ej‖2 = ‖gej‖2 − ‖Phgej‖2 = ‖ḡ ēj‖2 − ‖Pahḡ ēj‖2 = ‖H ah

ḡ ēj‖2 .

Summing up this equality over j ∈ N0 yields the desired result. �

DEFINITION 5.1. The pluri-harmonic Fock space Hph consists of all f ∈ C2(Cn) ∩
L2(Cn, µ) such that ∂2f

∂zj ∂z̄k
= 0 for all j, k = 1, . . . , n.

According to [18] it holds Hph = Hh ⊕ {
Hah � C

}
and any f ∈ Hph can be written as:

f = h + r̄ , with r(0) = 0 (5.5)

where h and r are holomorphic. With g ∈ L∞(Cn) and the orthogonal projection Pph from

L2(Cn, µ) onto Hph we define the pluri-harmonic Hankel operator by:

H ph
g := (

I − Pph
)
Mg : Hph → Hph

⊥ .

For f ∈ Hh it can be checked by a straightforward calculation that:

(a) ‖H ph
g f ‖2 = ‖H h

gf ‖2 − ‖Pahgf ‖2 + ∣∣〈g, f̄ 〉∣∣2,

(b) ‖H ph
g f̄ ‖2 = ‖H ah

g f̄ ‖2 − ‖Phg f̄ ‖2 + ∣∣〈g, f 〉∣∣2.

As an application of Corollary 5.4 and Lemma 5.3 we can prove for g ∈ L∞(Cn):

THEOREM 5.4. H
ph
g ∈ L2(Hph,H

⊥
ph) iff H

ph
ḡ ∈ L2(Hph,H

⊥
ph) and ‖H ph

ḡ ‖HS ≤ √
2 ·

‖H ph
g ‖HS. Moreover, H h

g ∈ L2(Hh,H
⊥
h ) is sufficient for H

ph
g ,H

ph
ḡ ∈ L2(Hph,H

⊥
ph) and

max
{∥∥H ph

g

∥∥
HS

,
∥∥H

ph
ḡ

∥∥
HS

}
≤

√
5 · min

{∥∥H h
g

∥∥2
HS

,
∥∥H h

ḡ

∥∥2
HS

}
.

PROOF. With an ONB [e0 := 1, ej : j ∈ N] of Hh, the system [e0, ej , ēj : j ∈ N]
defines an ONB of Hph. Applying (a), (b) and Lemma 5.3 above it follows that:

∥∥H ph
g

∥∥2
HS + ∥∥H ph

g 1
∥∥2 =

∞∑
j=0

{∥∥H ph
g ej

∥∥2 + ∥∥H ph
g ēj

∥∥2
}

(5.6)

= ∥∥H h
g

∥∥2
HS

+ ∥∥H ah
g

∥∥2
HS

−
∞∑

j=1

{∥∥Pahgej

∥∥2 + ∥∥Phg ēj

∥∥2
}

= ∥∥H h
g

∥∥2
HS + ∥∥H h

ḡ

∥∥2
HS −

∞∑
j=1

{∥∥Phḡ ēj

∥∥2 + ∥∥Phg ēj

∥∥2
}
.

In particular, it holds

‖H ph
ḡ ‖2

HS + ‖H ph
ḡ 1‖2 = ‖H ph

g ‖2
HS + ‖H ph

g 1‖2 .
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Hence H
ph
g is of Hilbert-Schmidt type if and only if H

ph
ḡ is of Hilbert-Schmidt type and

it holds ‖H ph
ḡ ‖HS ≤ √

2 · ‖H ph
g ‖HS. Moreover, with f ∈ {g, ḡ}, Corollary 5.4 and (5.6):∥∥H

ph
f

∥∥2
HS ≤ ∥∥H h

g

∥∥2
HS + ∥∥H h

ḡ

∥∥2
HS ≤ 5 · min

{∥∥H h
g

∥∥2
HS,

∥∥H h
ḡ

∥∥2
HS

}
. �

5.3. Hilbert space on quadrics. Let H be a closed subspace in L2(X,µ) with repro-
ducing kernel K . In our analysis on Hankel operators the Berezin measure V defined in (2.3)
plays a crucial role. In case of the Fock space (or Segal-Bargmann space) Hh, c.f. section 5.2,
it is readily verified that:

πnV := ΩCn = Liouville volume form (5.7)

where ΩCn coincides with the usual Lebesgue measure on Cn ∼= T ∗(Rn). In fact, Hh is
only one example of a reproducing kernel Hilbert space which naturally arises from a more
general construction method. It was remarked in [20], that Hh can be obtained by pairing
of polarizations from the real and Käler polarization on the cotangent bundle T ∗(Rn) ∼= Cn.

The Bargmann transform between L2(Rn) and Hh can be derived via this method.
By replacing Rn with the n-dimensional sphere Sn the same construction leads to a repro-

ducing kernel Hilbert space HSn of holomorphic functions on a non-singular cone or quadric

XSn in Cn+1 \ {0} diffeomorphic to the punctured cotangent bundle T ∗
0 (Sn). We give the def-

inition of HSn which we consider to be of interest itself and prove an asymptotic version of
(5.7) in the case of HSn . For a detailed description of pairing of polarizations we refer to [5]
and [20]. More examples of this method are treated in [5], [6], [16] and [17].

Let Sn := {(x0, . . . , xn) ∈ Rn+1 : |x|2 = 1} be the n-dimensional sphere with the

standard Riemann metric induced from the Euclidean metric on Rn+1. As before we write
x · y := ∑

xj · yj and |x|2 := x · x for x, y ∈ Rn+1. The tangent bundle T (Sn) and the

cotangent bundle T ∗(Sn) can be identified via this metric and are realized in Rn+1 × Rn+1:

T ∗(Sn
) ∼= T

(
Sn

) = {
(x, y) ∈ Rn+1 × Rn+1 : |x| = 1 and x · y = 0

}
.

With the punctured cotangent bundle T ∗
0 (Sn) := {(x, y) ∈ T ∗(Sn) : y �= 0} we define a

diffeomorphism τSn onto a quadric XSn by:

τSn : T ∗
0

(
Sn

) −→ XSn := {
z ∈ Cn+1 : z · z = 0 and z �= 0

}
(5.8)

(x, y) �→ z = |y|x + √−1y .

The symplectic form ωSn and the canonical one form ΘSn on T ∗(Sn) respectively are

given by the restriction of
∑

dyk ∧ dxk and
∑

yk · dxk on Rn+1 × Rn+1. Via (5.8) it can be
shown that the symplectic form ωX on XSn is expressed as:

ωX = √−2∂∂|z| .
Let ΩSn := (−1)n(n−1)/2

n! ·ωSn be the Liouville volume form on T ∗
0 (Sn). Due to the isomor-

phism (5.8) it can be regarded as a volume form ΩX on XSn . Let PX denote the restriction
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of holomorphic polynomials on Cn+1 to XSn . On PX we consider a family of inner products
depending on two real parameters (h,N) where h > 0 and N > −n:〈

p, q
〉
(h,N)

:=
∫

XSn

p(z)q(z)e−h|z||z|NdΩX , p, q ∈ PX . (5.9)

By pairing of polarizations the case h := 2
√

2π and N := n/2−1 naturally appears and

the measure dm(h,N) := e−h|z| · |z|NdΩX corresponds to the Gaussian measure µ in (5.2). As
an analog to the Segal-Bargmann space we define:

H 2(XSn , dm(h,N)) := L2-closure of PX w.r.t. the inner product (5.9) .

It can be shown that H 2(XSn , dm(h,N)) is a reproducing kernel Hilbert space. Moreover,

its elements can be extended to holomorphic functions on the whole space Cn+1. The repro-
ducing kernel K(h,N) can be calculated in form of an infinite sum and involving the Gamma
function. More precisely, it holds (c.f. [5]):

K(h,N)(λ, λ) = C(h, n,N) ·
∞∑

k=0

Γ (k + n − 1) · (2k + n − 1)

Γ (2k + N + n) · Γ (k + 1)
· |hλ|2k (5.10)

with C(h, n,N) := hn+N

Vol(Σ(Sn))·Γ (n)
and Σ(Sn) := {z ∈ XSn : |z| = 1} .

For H 2(XSn, dm(h,N)) we prove an asymptotic property corresponding to (5.7).

PROPOSITION 5.1. For N > −n and h > 0 it holds:

lim
λ→∞

∣∣λ∣∣N · exp
( − |hλ|) · K(h,N)(λ, λ) = hn

2n−1 · Vol(Σ(Sn)) · Γ (n)
. (5.11)

In particular, (5.11) can be written as 2−n+1h−NC(h, n,N) and is independent of N .

A direct computation shows, that (5.10) splits into two sums:

K(h,N)(λ, λ) = C(h, n,N) ·
{

2|hλ|2 ·
∞∑

k=0

I (k, n,N) · |hλ|2k

+ (n − 1) ·
∞∑

k=0

I (k, n − 1, N − 1) · |hλ|2k
}

(5.12)

where

I (k, n,N) := Γ (k + n)

Γ (2k + N + n + 2)Γ (k + 1)
.

Using the expression of the Euler integral
∫ 1

0 tp−1(1 − t)q−1dt where p, q > 0 in terms
of the Gamma function together with the well-known duplication formula:

√
π · 2−2k · Γ (2k + 1) = Γ

(
k + 1

2

)
· Γ (k + 1)
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one easily verifies in case of N−n
2 > −1 and k ∈ N0:

I (k, n,N) = E(n,N)

(2k)! ·
∫ 1

0
sk+n−1 · (1 − s)

N−n
2 ds ·

∫ 1

0
tk− 1

2 · (1 − t)
N+n

2 dt . (5.13)

Here E(n,N) > 0 is given by:

E(n,N) := 1

2N+n+1 · Γ (N−n
2 + 1) · Γ (N+n

2 + 1)
. (5.14)

Multiplying (5.13) with x2k and summing up over k ∈ N0 leads to:

∞∑
k=0

I (k, n,N) · x2k =
∫ 1

0

∫ 1

0
Φn,N(s, t) · cosh

{√
st · x}

dsdt (5.15)

where Φn,N : (0, 1)2 → R+ is defined by:

Φn,N(s, t) := E(n,N) · sn−1

√
t

· (1 − t)
N+n

2 · (1 − s)
N−n

2 . (5.16)

In (5.15) one can replace n by n − 1 and N by N − 1. By using (5.12) we derive the
following integral expression of K(h,N) on the diagonal:

COROLLARY 5.5. For N−n
2 > −1 and with:

Ψn,N(s, t, x) := C(h, n,N) ·
{

2x2 · Φn,N (s, t) + (n − 1) · Φn−1,N−1(s, t)
}

(5.17)

it holds:

K(h,N)(λ, λ) =
∫ 1

0

∫ 1

0
Ψn,N

(
s, t, |hλ|) · cosh

{√
st · |hλ|

}
dsdt .

Below we analyze the asymptotic behavior of integral expressions having the form (5.15)
and apply our results to the proof of Proposition 5.1.

Let f, g : R+ → R+ and k > 0, then we write f ∼k g iff limt→∞ tk · f (t) exists and

lim
t→∞ tk · {f (t) − g(t)

} = 0 .

Given a sequence of functions gj : R+ → R+ where j ∈ N0 we write f ∼ ∑
gj and

say that the (formal) series
∑

gj represents f asymptotically for large values of t whenever:

• For all k ∈ N0: f − {g0 + g1 + · · · + gk} ∼k 0 and
• there is a constant ak such that gk ∼k

ak

tk
.

Let Φ : [0, 1]2 → C be integrable and assume that ρ : [0, 1]2 → R≥0 is continuous. For

any measurable subset U ⊂ (0, 1)2 we define JU
ρ,Φ : R+ → C with x = (s, t) by:

JU
ρ,Φ(x) :=

∫
U

Φ(s, t) · exp
{ − ρ(s, t) · x

}
dx .
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In our application we examine the case where

(1) Φ(s, t) = Φα,β(s, t) := (1 − s)α · (1 − t)β and α, β > −1,

(2) ρ(s, t) := 1 − √
st .

The Taylor expansion of ρ at x0 := (1, 1) and of first order is given by:

ρ(s, t) = τ (s, t) +
∑

k+l>1

O
(|1 − s|k · |1 − t|l)

where τ (s, t) := 1 − 1
2 · (s + t). Hence it follows that:

lim
(s,t)→x0

ρ(s, t)

τ (s, t)
= 1 . (5.18)

We set U := [0, 1]2 and determine the asymptotic behavior of JU
τ,Φα,β

:

JU
τ,Φα,β

(x) = exp(−x) ·
∫ 1

0
(1 − s)α · exp

( sx

2

)
ds ·

∫ 1

0
(1 − t)β · exp

(
tx

2

)
dt .

From ∫ 1

0
(1 − s)α · exp

( sx

2

)
ds =

(
2

x

)α+1

exp
(x

2

)
·
∫ x

2

0
tα · exp(−t)dt

it follows that:

JU
τ,Φα,β

(x) ∼α+β+2
2α+β+2

xα+β+2 · Γ (α + 1) · Γ (β + 1) . (5.19)

With our notations in (1) and (2) above we prove:

LEMMA 5.4. Let Ψ : [0, 1]2 → C be continuous in a neighborhood V of x0 := (1, 1)

and assume that α, β > −1, such that Ψ · Φα,β is integrable over V . Then

JV
ρ,Ψ ·Φα,β

(x) ∼α+β+2 Ψ (x0) · 2α+β+2

xα+β+2 · Γ (α + 1) · Γ (β + 1) . (5.20)

PROOF. For 1 > ε > 0 and with (5.18) we choose a neighborhood W ⊂ V of x0 such
that: [

1 − ε
] · τ (s, t) ≤ ρ(s, t) ≤ [

1 + ε
] · τ (s, t)

for all (s, t) ∈ W . Hence, by using Φα,β ≥ 0 it follows for x > 0 that:

JW
τ,Φα,β

([1 + ε] · x) ≤ JW
ρ,Φα,β

(x) ≤ JW
τ,Φα,β

([1 − ε] · x)
. (5.21)

With γ ∈ {ρ, τ } and V0 ∈ {U,V } note that JV0
γ,Φα,β

= JV0\W
γ,Φα,β

+ JW
γ,Φα,β

and JV0\W
γ,Φα,β

is of

order O(x−∞) as x → ∞. An application of (5.19) and (5.21) shows that:
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2α+β+2 · Γ (α + 1) · Γ (β + 1)

(1 + ε)α+β+2
≤ lim inf

x→∞ xα+β+2 · JV
ρ,Φα,β

(x)

≤ lim sup
x→∞

xα+β+2 · JV
ρ,Φα,β

(x) ≤ 2α+β+2 · Γ (α + 1) · Γ (β + 1)

(1 − ε)α+β+2 .

Because ε > 0 was arbitrary, it follows for any neighborhood V of x0:

lim
x→∞ xα+β+2 · JV

ρ,Φα,β
(x) = 2α+β+2 · Γ (α + 1) · Γ (β + 1) . (5.22)

By the continuity of Ψ we can assume that |Ψ (s, t) − Ψ (x0)| < ε for all (s, t) ∈ W .

Moreover, by (5.22) there is c > 0 such that |xα+β+2 · JW
ρ,Φα,β

(x)| ≤ c for all x > 0. Hence∣∣∣xα+β+2 · JW
ρ,Ψ ·Φα,β

(x) − xα+β+2 · Ψ (x0) · JW
ρ,Φα,β

(x)

∣∣∣ ≤ c · ε .

Finally, (5.22) where V is replace by W and JV \W
ρ,Ψ ·Φα,β

, JV \W
ρ,Φα,β

∈ O(x−∞) as x → ∞
prove (5.20). �

COROLLARY 5.6. Let V be a neighborhood of x0 := (1, 1) and assume that Ψ ∈
Ck(V ). With α, β > −1 is follows in generalization of (5.20):

JV
ρ,Ψ ·Φα,β

(x) −
∑
|γ |<k

(−1)|γ |

γ ! · ∂ |γ |Ψ
∂xγ

(x0) · JV
ρ,Φα+γ1,β+γ2

(x) ∼α+β+k+2 Gk(x)

where the asymptotic of JV
ρ,Φα+γ1 ,β+γ2

is given in (5.22) and

Gk(x) := (−1)k · 2α+β+k+2

xα+β+k+2 ·
∑
|γ |=k

1

γ ! · ∂ |γ |Ψ
∂xγ

(x0) · Γ (α + γ1 + 1) · Γ (β + γ2 + 1) .

PROOF. By multiplying the Taylor expansion of Ψ at x0 = (1, 1) with Φα,β one obtains
for y in a neighborhood of x0 that:

F(y) : = Ψ (y) · Φα,β(y) −
∑
|γ |<k

(−1)|γ |

γ ! · ∂ |γ |Ψ
∂xγ

(x0) · Φα+γ1,β+γ2(y)

= (−1)k ·
∑
|γ |=k

Ψγ (y)

γ ! · Φα+γ1,β+γ2(y) .

where Ψγ (y) := k · ∫ 1
0 (1 − t)k−1 · ∂ |γ |Ψ

∂xγ (x0 + t · [y − x0])dt and Ψγ (x0) = ∂ |γ |Ψ
∂xγ (x0). Lemma

5.4 shows for a neighborhood V of x0 that JV
ρ,F (x) ∼α+β+k+2 Gk(x). �

In particular, for Ψ ∈ C∞(V ) we have proved xα+β+2 · JV
ρ,Ψ ·Φα,β

∼ ∑
gj where the

functions gj are given by:

gj (x) := (−1)j · xα+β+2 ·
∑

|γ |=j

1

γ ! · ∂ |γ |Ψ
∂xγ

(x0) · JV
ρ,Φα+γ1 ,β+γ2

(x) .
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Lemma 5.5 follows by straightforward arguments. We omit the proof.

LEMMA 5.5. Let ak, bk > 0 such that α(t) := ∑
k≥0 akt

k converges on R. If

limk→∞ ak

bk
= 1 then β(t) := ∑

k≥0 bkt
k converges on R and limt→∞ α(t) · β−1(t) = 1.

In Proposition 5.2 we apply Corollary 5.6 to (5.15) which holds for N−n
2 > −1:

PROPOSITION 5.2. Let β := N+n
2 > α := N−n

2 > −1, then it holds:

xN+2 · exp
( − x

) ·
∞∑

k=0

I (k, n,N) · x2k ∼
∑

gj (5.23)

where V is a neighborhood of (1, 1) and with gj : R+ → R+ of order O(x−j ) as x → ∞:

gj (x) = (−1)j · E(n,N)

2
· xα+β+2 ·

∑
|γ |=j

(− 1
2

γ1

)
·
(

n − 1

γ2

)
· JV

ρ,Φα+γ1 ,β+γ2
(x) . (5.24)

PROOF. It follows from (5.15) and the notation in (5.16) that:

xN+2 · exp(−x) ·
∞∑

k=0

I (k, n,N) · x2k = xα+β+2 · Jρ,Ψ ·Φα,β (x) + O
(
x−∞)

(5.25)

where Ψ (s, t) := E(n,N)
2 · sn−1 · t− 1

2 . In particular, it holds with γ := (γ1, γ2) ∈ N2
0:

1

γ ! · ∂ |γ |Ψ
∂xγ

(x0) = E(n,N)

2
·
(− 1

2
γ1

)
·
(

n − 1

γ2

)
.

Finally, we can apply our remark above. �

REMARK 5.1. The integral expression (5.15) of the left hand side in (5.25) is not

unique. It can be checked that in the case N + 1
2 > −1 a second integral formula is given by:

exp(−x) ·
∞∑

k=0

I (k, n,N) · x2k =
∫ 1

0

∫ 1

0
Φ̃n,N (s, t) · (1 − t)N+ 1

2

× cosh
{
−(

1 − 2
√

s(1 − s)t
) · x

}
dsdt (5.26)

where

Φ̃n,N (s, t) := 1√
π · Γ (N + 3

2 )
· sn−1 · (1 − s)N+1

√
t

.

Using (5.26) instead of (5.15) in the proof of Proposition 5.2 an asymptotic expansion of

the form (5.23) also can be derived for N + 1
2 > −1. In this case the functions gj are given
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in terms of the integral expressions:

IW
α,β(x) :=

∫
W

(
1

2
− s

)α

· (1 − t
)β · exp

{ − (1 − 2
√

s(1 − s)t) · x
}
dx .

where x = (s, t) and α, β > −1 and W is a neighborhood of ( 1
2 , 1). We will not present a

detailed calculation here.

According to (5.12) the kernel K(h,N)(λ, λ) on the diagonal can be expressed as

K(h,N)(λ, λ) = F(|hλ|) with F : R+ → R+. By (5.23) an asymptotic expansion of

x �→ xN · exp
( − x

) · F(x) (5.27)

in terms of JV
ρ,Φα,β

where V is a neighborhood of x0 := (1, 1) can be obtained explicitly in

the case N−n
2 > −1. We only calculate the 0th-order term g̃0 and we find that limx→∞ g̃0(x)

is independent of N . This enables us to prove Proposition 5.1 in the case N > −n:

PROOF OF PROPOSITION 5.1. Let us first assume that N−n
2 > −1, then it follows from

(5.14) and (5.24) in the case j = 0 together with (5.22) and U := [0, 1]2 that:

lim
x→∞ g0(x) = E(n,N)

2
· lim
x→∞ xα+β+2 · JU

ρ,Φα,β
(x) = 1

2n
.

where β = N+n
2 > α = N−n

2 > −1. Because of (5.23) one also has:

lim
x→∞ xN+2 · exp(−x) ·

∞∑
k=0

I (k, n,N) · x2k = 1

2n
. (5.28)

In the case −n < N ≤ n − 2 we choose k0 ∈ N with N + 2k0 > n − 2. We define:

β(x) :=
∞∑

k=0

Γ (k + k0 + n)

Γ (2k + 2k0 + N + n + 2) · Γ (k + k0 + 1)
· x2k .

According to Lemma 5.5 and the identity

lim
k→∞

Γ (k + n) · Γ (k + k0 + 1)

Γ (k + 1) · Γ (k + k0 + n)
= 1

it follows that limx→∞ β(x) · α(x)−1 = 1 where α(x) := ∑∞
k=0 I (k, n,N + 2k0) · x2k. In

particular, one obtains from (5.28) where N is replaced by N + 2k0:

exp(−x) · β(x) ∼N+2k0+2 exp(−x) · α(x) ∼N+2k0+2
1

2nxN+2k0+2 . (5.29)

Because
∑∞

k=0 I (k, n,N) · x2k − x2k0 · β(x) is a polynomial and by applying (5.29), the
asymptotic (5.28) in the case −n < N < n − 2 is given by:

lim
x→∞ xN+2 · exp(−x) ·

∞∑
k=0

I (k, n,N) · x2k = lim
x→∞ xN+2k0+2 · exp(−x) · β(x) = 1

2n
.
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Finally, (5.11) follows from (5.28) for N > −n and (5.12) which shows that the 0th-
order term g̃0 of the expansion (5.27) coincides with 2 · C(h, n,N) · g0. �

Let Hf be the Hankel operator on H 2(XSn, dm(h,N)) where h > 0 and N ≥ −n.

COROLLARY 5.7. For f ∈ L2(XSn,ΩX) the operator Hf is Hilbert-Schmidt. More-
over, there is c > 0 independent from f such that ‖Hf ‖HS = ‖Hf̄ ‖HS ≤ c · ‖f ‖L2(XSn ,ΩX).

PROOF. Apply Proposition 4.1 and Proposition 5.1 which shows that there is c > 0

with
∫

XSn
|f (λ)|2K(h,N)(λ, λ)dm(h,N)(λ) ≤ c · ∫XSn

|f |2dΩX < ∞. �

REMARK 5.2. In [5] (see also [16] and [17]) a family of reproducing kernel Hilbert

spaces with kernel KC
(h,N) on rank one complex matrices A and naturally arising from the

complex projective space PnC by pairing of polarizations is introduced. Here we only state
the main result on the kernel asymptotic in [5]. As an analog to the quadric case one has:

PROPOSITION 5.3 ([5]). Let N > −n and h > 0, then

lim‖A‖→∞ KC
(h,N)(A,A) · e−h

√‖A‖ · ‖A‖N = 21−2n

c
· h2n

Γ (n)Γ (n − 1)
(5.30)

where c > 0 is independent of N and h. In particular, (5.30) is independent of N .

5.4. Problems and Remarks. (1) Is there an extension of Corollary 5.4 or Theorem
5.4 to Schatten-p-class (p �= 2) or compact Hankel operators? (The compact case for Hh is
treated in [10], [21]).

(2) Determine the bounded fix points of the Berezin transform in the case of the pluri-

harmonic Fock space or the spaces H 2(XSn, dm(h,N)).
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