Hilbert-Schmidt Hankel Operators and Berezin Iteration

Wolfram BAUER* and Kenro FURUTANI ${ }^{\dagger}$

Science University of Tokyo
(Communicated by K. Uchiyama)

Abstract

Let H be a reproducing kernel Hilbert space contained in a wider space $L^{2}(X, \mu)$. We study the Hilbert-Schmidt property of Hankel operators H_{g} on H with bounded symbol g by analyzing the behavior of the iterated Berezin transform. We determine symbol classes \mathcal{S} such that for $g \in \mathcal{S}$ the Hilbert-Schmidt property of H_{g} implies that $H_{\bar{g}}$ is a Hilbert-Schmidt operator as well and there is a norm estimate of the form $\left\|H_{\bar{g}}\right\|_{\mathrm{HS}} \leq C \cdot\left\|H_{g}\right\|_{\mathrm{HS}}$. Finally, applications to the case of Bergman spaces over strictly pseudo convex domains in \mathbf{C}^{n}, the Fock space, the pluri-harmonic Fock space and spaces of holomorphic functions on a quadric are given.

1. Introduction

Let X be a set with a measure μ and H be a closed subspace of $L^{2}(X, \mu)$. For any bounded measurable function g on X and the orthogonal projection P from $L^{2}(X, \mu)$ onto H the Hankel operator H_{g} resp. the Toeplitz operator T_{g} on H are define by:

$$
\begin{equation*}
H_{g} f:=(I-P)(f g) \quad \text { and } \quad T_{g}:=P(f g) \tag{1.1}
\end{equation*}
$$

Among a variety of examples the operators (1.1) have been treated intensively in the case of Bergman and Hardy spaces and spaces of harmonic or pluri-harmonic functions. The study of Toeplitz operators T_{g} or algebras generated by those require an analysis of the Hankel operators H_{g} and $H_{\bar{g}}$. In particular, the compactness or Schatten-p-properties of H_{g} and $H_{\bar{g}}$ are of importance to obtain spectral results and to determine Fredholmness of T_{g}, c.f. [10], [18], [21], [23], [24]. For a reproducing kernel Hilbert space H a general symbol calculus was introduced by Berezin [8], [9] which can be regarded as an inverse quantization and frequently has been applied to the analysis of the operators (1.1). In particular, the Berezin symbol \tilde{g} of T_{g} was used to introduce the notion of mean oscillation $\mathrm{MO}(\mathrm{g})$ of g. At least for Bergman spaces over bounded symmetric domains or the Segal-Bargmann space there are characterizations in terms of the function $\mathrm{MO}(\mathrm{g})$ for H_{g} and $H_{\bar{g}}$ to belong to the ideals of Schatten-p-class or

[^0]compact operators, c.f. [7], [10], [23]. As a matter of fact the assignment $g \mapsto \mathrm{MO}(g)$ is invariant under complex conjugation such that these characterizations hold for H_{g} and $H_{\bar{g}}$ simultaneously. In [24] the compactness of H_{g} and $H_{\bar{g}}$ was proved in the case of Bergman spaces over strictly pseudo convex domains Ω in \mathbf{C}^{n} and smooth symbols g on Ω continuous up to the boundary. An analog theorem for the case of weighted harmonic Bergman spaces over the unit ball in \mathbf{R}^{n} can be found in [22]. Schatten-p-class properties of the Hankel operators do not follow automatically, c.f. [22], [25]. On the one hand it was observed in [10], [21] (resp. [4]) that for the Segal-Bargmann space H and bounded symbol g the operator H_{g} is compact (resp. Hilbert-Schmidt) if and only if $H_{\bar{g}}$ is compact (resp. Hilbert-Schmidt). On the other hand, the existence of non-constant bounded holomorphic functions implies that such a result in general can not be true for Bergman spaces over bounded domains $X \subset \mathbf{C}^{n}$, c.f. [25]. Let $\mathcal{L}^{2}\left(H, H^{\perp}\right)$ denote the Hilbert-Schmidt operators from H to its orthogonal complement H^{\perp} in $L^{2}(X, \mu)$ and with norm $\|\cdot\|_{\text {Hs }}$. Here, we determine spaces \mathcal{S} of bounded measurable symbols such that:
(P) For $g \in \mathcal{S}$ and $H_{g} \in \mathcal{L}^{2}\left(H, H^{\perp}\right)$ it follows that $H_{\bar{g}} \in \mathcal{L}^{2}\left(H, H^{\perp}\right)$ and there is a constant $C>0$ with $\left\|H_{\bar{g}}\right\|_{H S} \leq C\left\|H_{g}\right\|_{H S}$.

Following ideas in [4], we express $\left\|H_{g}\right\|_{\text {HS }}$ by integral conditions on g and \tilde{g}. No further assumptions on X are required besides the existence of a reproducing kernel K. For a finite measure μ property (P) holds with $\mathcal{S}:=L^{2}(X, V)$ and $C=1$ where the Berezin measure V is defined by $d V(z)=K(z, z) d \mu(z)$ (c.f. Proposition 4.1).

There is a natural metric d on X induced by K and equivalent to the Bergman distance in the case of Bergman spaces H over bounded domains $X \subset \mathbf{C}^{n}$. We assume that a priori there is a second metric \mathbf{d} on X related to d and turning the space $C(X)$ of continuous functions on X equipped with the compact-open topology into a Fréchet space. For symbols $g \in L^{\infty}(X)$ such that $\left\|H_{g}\right\|_{\mathrm{HS}}<\infty$ the following can be said about the sequence of iterated Berezin transforms. Theorem I is essential in the proof of the Theorems II and III.

Theorem I. The sequence $\left(B^{j} g\right)_{j \in \mathbf{N}} \subset C(X, \mathbf{d})$, where B denotes the Berezin transform, has cluster points $h \in C(X, \mathbf{d})$ with $B h=h$.

We observe that $\mathcal{S}:=L^{2}(X, V)$ is an invariant space for the Berezin transform. Moreover, for any symbol $g \in \mathcal{S}$ the invariance $g=\tilde{g}$ implies that $g \equiv 0$ (see example 3.1). In fact this observation can be used to obtain a defining property for \mathcal{S} in (P) :

Theorem II. Let $\mathcal{S}_{0} \subset L^{\infty}(X)$ such that:
(i) \mathcal{S}_{0} is asymptotically invariant under the Berezin transform (c.f. Definition 3.2).
(ii) For $h \in \mathcal{S}_{0}$ the equality $h=\tilde{h}$ implies that $H_{\bar{h}}=0$.

Then (P) holds with $\mathcal{S}:=\mathcal{S}_{0}$ and $C:=2$.
In the case of the Segal-Bargmann space H_{h} assumptions (i) and (ii) of Theorem II are fulfilled with $\mathcal{S}_{0}:=L^{\infty}\left(\mathbf{C}^{n}\right)$. Here \mathcal{S}_{0} is invariant under complex conjugation and (P) holds in a symmetric way, c.f. [4] (for invariance under Berezin transform [1], [15]). In our analysis
iteration of the Berezin transform B plays a crucial role. Let $\Omega \subset \mathbf{C}^{n}$ be a strictly pseudo convex domain with C^{3}-boundary and $H=H^{2}(\Omega, \mu)$ a weighted Bergman space over Ω with $K(x, x)>0$. For $f \in C(\bar{\Omega})$ the sequence of iterated Berezin transforms converges uniformly on the closure $\bar{\Omega}$ to a unique fix point $f_{0} \in C(\bar{\Omega})$ of B preserving the boundary values of f, c.f. [2]. Let $C_{0}(\Omega)$ denote the space of continuous functions on $\bar{\Omega}$ vanishing at the boundary.

Theorem III. $\quad \mathcal{S}_{0}:=C_{0}(\Omega)$ fulfills the condition (i) and (ii) of Theorem II.
To give an example of a non-symmetric situation we consider the Banach algebra:

$$
\mathcal{A}_{\mathrm{ah}}(\Omega):=\left\{f \in C(\bar{\Omega}): f_{\mid \Omega} \text { is anti-holomorphic }\right\}
$$

and set $\mathcal{S}_{0}:=C_{0}(\Omega) \oplus \mathcal{A}_{\text {ah }}(\Omega)$. This choice again leads to a solution of (P) whereas the symbol space $\mathcal{S}_{0, c}:=\left\{\bar{g}: g \in \mathcal{S}_{0}\right\}$ in general does not. This can be seen by the fact that there are no non-zero Hilbert-Schmidt Hankel operators on the Bergman space of the open unit ball in \mathbf{C}^{n} with anti-holomorphic symbols when $n \geq 2$, c.f. [25]. We examine the pluri-harmonic Fock space H_{ph} on \mathbf{C}^{n}. With $g \in L^{\infty}\left(\mathbf{C}^{n}\right)$ and the pluri-harmonic Hankel operator H_{g}^{ph} it holds $\left\|H_{\bar{g}}^{\mathrm{ph}}\right\|_{\mathrm{HS}} \leq \sqrt{2} \cdot\left\|H_{g}^{\mathrm{ph}}\right\|_{\mathrm{HS}}$ and the Hilbert-Schmidt property of the corresponding Hankel operators H_{g}^{h} on the Fock space H_{h} and H_{g}^{ph} on H_{ph} are related. As an application of Theorem II we show that $H_{g}^{h} \in \mathcal{L}^{2}\left(H_{h}, H_{h}{ }^{\perp}\right)$ implies that H_{g}^{ph} and $H_{\bar{g}}^{\mathrm{ph}}$ are of Hilbert-Schmidt type as well and

$$
\begin{equation*}
\max \left\{\left\|H_{g}^{\mathrm{ph}}\right\|_{\mathrm{HS}},\left\|H_{\bar{g}}^{\mathrm{ph}}\right\|_{\mathrm{HS}}\right\} \leq \sqrt{5 \cdot \min \left\{\left\|H_{g}^{\mathrm{h}}\right\|_{\mathrm{HS}}^{2},\left\|H_{\bar{g}}^{\mathrm{h}}\right\|_{\mathrm{HS}}^{2}\right\}} \tag{1.2}
\end{equation*}
$$

It was remarked in [20] that H_{h} arises naturally by pairing of polarizations from the real and Käler polarization on the cotangent bundle $T^{*}\left(\mathbf{R}^{n}\right) \cong \mathbf{C}^{n}$. The Euclidean space \mathbf{R}^{n} can be replaced with the n-dimensional sphere \mathbf{S}^{n} in \mathbf{R}^{n+1} or the complex projective space $P \mathbf{C}^{n}$. Then this method leads to a family of reproducing kernel Hilbert spaces of holomorphic functions on a quadric in \mathbf{C}^{n+1} resp. on a space of $(n+1) \times(n+1)$ complex matrices parametrized by two real parameters. Several aspects of the analysis on these spaces are treated in [5]. In the final part of this paper we are interested in the asymptotic behavior of the Berezin measure in these examples. As an application of the general theory we determine a class of Hilbert-Schmidt Hankel operators in the sphere and complex projective space case.

2. Preliminaries

Let $L^{2}(X, \mu)$ denote the classes of μ-square integrable functions on a measure space (X, \mathcal{F}, μ). We write $\langle\cdot, \cdot\rangle$ (resp. $\|\cdot\|$) for the inner product (resp. norm) of $L^{2}(X, \mu)$.

A linear space H of μ-square integrable functions on X is said to be closed in $L^{2}(X, \mu)$ iff the canonical projection $p: H \rightarrow L^{2}(X, \mu)$ is injective with closed range and H is identified with $p(H)$. We write $P: L^{2}(X, \mu) \rightarrow H$ and $Q:=I-P$ for the orthogonal
projection onto H and its orthogonal complement H^{\perp} respectively. Assume, that H admits a reproducing kernel function, i.e. there is a $\mathcal{F} \otimes \mathcal{F}$-measurable function $K: X \times X \rightarrow \mathbf{C}$ such that $X \ni x \mapsto K(x, x) \in(0, \infty)$ is measurable and for all $x, y \in X$:
(i) $K(\cdot, x) \in H$,
(ii) $\overline{K(x, y)}=K(y, x)$,
(iii) Reproducing property: For all $f \in H$ it holds $f(x)=\langle f, K(\cdot, x)\rangle$.

By (i) and for any $x \in X$ the normalized kernel is given by

$$
\begin{equation*}
k_{x}:=K(\cdot, x) \cdot\|K(\cdot, x)\|^{-1} \in H \tag{2.1}
\end{equation*}
$$

where by (i), (iii): $\|K(\cdot, x)\|=K(x, x)^{\frac{1}{2}}>0$. We define a symbol space:

$$
\mathcal{T}(X):=\left\{f: L^{2}(X, \mu): f k_{x} \in L^{2}(X, \mu), \forall x \in X\right\} .
$$

Definition 2.1 (Berezin transform). For $f \in \mathcal{T}(X)$ the Berezin transform (BT) \tilde{f} : $X \rightarrow \mathbf{C}$ is defined by:

$$
\begin{equation*}
\tilde{f}(\lambda):=\left\langle f k_{\lambda}, k_{\lambda}\right\rangle . \tag{2.2}
\end{equation*}
$$

Naturally (2.2) extends to operators on H such that \tilde{f} and $\widetilde{T_{f}}$ coincide and it can be regarded as an inverse quantization. If T_{f} is bounded \tilde{f} clearly is bounded by $\left\|T_{f}\right\|$. On functions (BT) is an integral operator with positive kernel and commutes with the complex conjugation: $\overline{\tilde{f}}=\tilde{\bar{f}}$. We write M_{g} for the multiplication with a symbol g and $\mathcal{L}(V, W)$ for the continuous operators between topological vector spaces V and W. We also use the shorter notation $\mathcal{L}(V):=\mathcal{L}(V, V)$.

Definition 2.2 (Hankel and Toeplitz operators). For $g \in L^{\infty}(X)$ the Hankel operator H_{g} and the Toeplitz operator T_{g} with symbols g are given by $H_{g}:=Q M_{g} \in \mathcal{L}\left(H, H^{\perp}\right)$ and $T_{g}:=P M_{g} \in \mathcal{L}(H)$.

Definition 2.2 can be generalized to classes of unbounded symbols. Then H_{g} and T_{g} will be unbounded in general. On X we consider the Berezin measure V :

$$
\begin{equation*}
d V(x):=K(x, x) d \mu(x) . \tag{2.3}
\end{equation*}
$$

There is a trace formula for positive operators on H which leads to a characterization of the Hilbert-Schmidt Hankel operators by an integral condition with respect to V. We write $\|\cdot\|_{\text {HS }}$ for the Hilbert-Schmidt norm.

LEMMA 2.1. Let g be a measurable function on X such that $M_{g} P$ is a bounded operator on $L^{2}(X, \mu)$, then (a) and (b) below are equivalent:
(a) $H_{g}: H \rightarrow H^{\perp}$ is a Hilbert-Schmidt operator (we write $H_{g} \in \mathcal{L}^{2}\left(H, H^{\perp}\right)$).
(b) $I:=\int_{X}\left\|H_{g} k_{x}\right\|^{2} d V(x)<\infty$.

If (a) and (b) are valid, then $\sqrt{I}=\left\|H_{g}\right\|_{H S}$.

Proof. Fix an orthonormal basis (ONB) $\left[e_{j}: j \in \mathbf{N}_{0}\right]$ in H. Because $Q M_{g} P$ is bounded, there is $T \in \mathcal{L}(H)$ such that $\left(Q M_{g} P\right)^{*}\left(Q M_{g} P\right)=T^{*} T$ on H. Hence

$$
I=\int_{X}\left\|H_{g} k_{x}\right\|^{2} d V(x)=\int_{X}\langle T K(\cdot, x), T K(\cdot, x)\rangle d \mu(x)
$$

From (i)-(iii) we obtain for all $x \in X$:

$$
\begin{equation*}
T K(\cdot, x)=\sum_{j=0}^{\infty}\left\langle T K(\cdot, x), e_{j}\right\rangle e_{j}=\sum_{j=0}^{\infty} \overline{\left[T^{*} e_{j}\right](x)} e_{j} \tag{2.4}
\end{equation*}
$$

By inserting (2.4) into the integral above and using the monotone convergence theorem together with $\left\|T^{*}\right\|_{\text {HS }}=\|T\|_{\text {HS }}$ one obtains that:

$$
I=\int_{X} \sum_{j=0}^{\infty}\left|\left[T^{*} e_{j}\right](x)\right|^{2} d \mu(x)=\sum_{j=0}^{\infty}\left\|T^{*} e_{j}\right\|^{2}=\sum_{j=0}^{\infty}\left\|H_{g} e_{j}\right\|^{2}
$$

Hence the equivalence of (a) and (b) and $\sqrt{I}=\left\|H_{g}\right\|_{H S}$ are proved.
REMARK 2.1. The analogous result of Lemma 2.1 holds if we replace H_{g} by the Toeplitz operator T_{g} in (a) and (b) above. Note that $T_{g}^{*}=T_{\bar{g}}$ in Lemma 2.1.

By a further decomposition of the integral expression in Lemma 2.1 (b), the Berezin symbol of g naturally appears.

Lemma 2.2. For $g \in L^{\infty}(X)$ and with I defined as in Lemma 2.1 (b), it holds:

$$
\begin{equation*}
I=\int_{X}\left\{\left\|P\left[\bar{g} k_{z}\right]-\overline{\tilde{g}(z)} k_{z}\right\|^{2}+|g(z)-\tilde{g}(z)|^{2}\right\} d V(z) \tag{2.5}
\end{equation*}
$$

The right hand side of (2.5) is finite if and only if the left hand side is finite.
Proof. By Fubini's theorem and using (2.3):

$$
\begin{align*}
I & =\int_{X}\left\|H_{g} K(\cdot, \lambda)\right\|^{2} d \mu(\lambda) \tag{2.6}\\
& =\int_{X} \int_{X}|g(z) K(z, \lambda)-P[g K(\cdot, \lambda)](z)|^{2} d \mu(z) d \mu(\lambda) \\
& =\int_{X} \int_{X}|\overline{g(z)} K(\lambda, z)-P[\bar{g} K(\cdot, z)](\lambda)|^{2} d \mu(\lambda) d \mu(z) .
\end{align*}
$$

In the last equality we have used (ii) as well as

$$
\begin{equation*}
\overline{P[g K(\cdot, \lambda)](z)}=P[\bar{g} K(\cdot, z)](\lambda) \tag{2.7}
\end{equation*}
$$

which can be deduced from (i)-(iii) by a straightforward calculation. Using $\tilde{\bar{g}}=\overline{\tilde{g}}$ we have:

$$
\langle P[\bar{g} K(\cdot, z)], K(\cdot, z)\rangle=\langle\bar{g} K(\cdot, z), K(\cdot, z)\rangle=\langle\overline{\tilde{g}(z)} K(\cdot, z), K(\cdot, z)\rangle
$$

which can be written as $\langle P[\bar{g} K(\cdot, z)]-\overline{\tilde{g}(z)} K(\cdot, z), K(\cdot, z)\rangle=0$. From the Pythagorean theorem we obtain for the inner integral on the right hand side of (2.6) and fixed $z \in X$:

$$
\begin{aligned}
& \int_{X}|\overline{g(z)} K(\lambda, z)-P[\bar{g} K(\cdot, z)](\lambda)|^{2} d \mu(\lambda) \\
&=\int_{X}|\{\overline{g(z)}-\overline{\tilde{g}(z)}\} K(\lambda, z)-\{P[\bar{g} K(\cdot, z)](\lambda)-\overline{\tilde{g}(z)} K(\lambda, z)\}|^{2} d \mu(\lambda) \\
&= \int_{X}|\{\overline{g(z)}-\overline{\tilde{g}(z)}\} K(\lambda, z)|^{2} d \mu(\lambda) \\
&+\int_{X}|P[\bar{g} K(\cdot, z)](\lambda)-\overline{\tilde{g}(z)} K(\lambda, z)|^{2} d \mu(\lambda) \\
&= K(z, z)\left\{|\overline{g(z)}-\overline{\tilde{g}(z)}|^{2}+\left\|P\left[\bar{g} k_{z}\right]-\overline{\tilde{g}(z)} k_{z}\right\|^{2}\right\} .
\end{aligned}
$$

Finally, by inserting this expression into (2.6) the assertion follows.
Corollary 2.1. Let $g \in L^{\infty}(X)$ such that $H_{g} \in \mathcal{L}^{2}\left(H, H^{\perp}\right)$, then $g-\tilde{g} \in$ $L^{2}(X, V)$.

Proof. Lemma 2.1 (b) holds and the assertion directly follows from Lemma 2.2.
In order to derive some further decomposition of the integral I we prove:
Lemma 2.3. Let $g \in L^{\infty}(X)$, then:

$$
I_{1}:=\int_{X}\left\|P\left[\bar{g} k_{z}\right]-\overline{\tilde{g}(z)} k_{z}\right\|^{2} d V(z)=\int_{X}\left\|P\left[g k_{\lambda}\right]-\tilde{g} k_{\lambda}\right\|^{2} d V(\lambda) .
$$

The right hand side is finite if and only if the left hand side is finite.
Proof. By using Fubini's theorem and (2.7) again one concludes that:

$$
\begin{aligned}
I_{1} & =\int_{X} \int_{X}|P[\bar{g} K(\cdot, z)](\lambda)-\overline{\tilde{g}(z)} K(\lambda, z)|^{2} d \mu(\lambda) d \mu(z) \\
& =\int_{X} \int_{X}|P[g K(\cdot, \lambda)](z)-\tilde{g}(z) K(z, \lambda)|^{2} d \mu(z) d \mu(\lambda) \\
& =\int_{X}\left\|P\left[g k_{\lambda}\right]-\tilde{g} k_{\lambda}\right\|^{2} d V(\lambda)
\end{aligned}
$$

Combinings Lemmas 2.1, 2.2 and 2.3 we can prove a decomposition formula for the Hilbert-Schmidt norm of Hankel operators:

Proposition 2.4. Let $g \in L^{\infty}(X)$ such that H_{g} is a Hilbert-Schmidt operator. Then $H_{\tilde{g}}, T_{g-\tilde{g}}$ and $H_{g-\tilde{g}}$ are of Hilbert-Schmidt type as well and:

$$
\begin{equation*}
\left\|H_{g}\right\|_{H S}^{2}=\left\|T_{g-\tilde{g}}\right\|_{H S}^{2}+\left\|H_{\tilde{g}}\right\|_{H S}^{2}+\|g-\tilde{g}\|_{L^{2}(X, V)}^{2} . \tag{2.8}
\end{equation*}
$$

Proof. From Lemma 2.1, 2.2 and 2.3 we have:

$$
\begin{aligned}
\left\|H_{g}\right\|_{\mathrm{HS}}^{2}-\|g-\tilde{g}\|_{L^{2}(X, V)}^{2} & =\int_{X}\left\|P\left[\bar{g} k_{z}\right]-\overline{\tilde{g}(z)} k_{z}\right\|^{2} d V(z) \\
& =\int_{X}\left\|P\left[g k_{\lambda}\right]-\tilde{g} k_{\lambda}\right\|^{2} d V(\lambda)
\end{aligned}
$$

After decomposing the integrand into an orthogonal sum:

$$
\left\|P\left[g k_{\lambda}\right]-\tilde{g} k_{\lambda}\right\|^{2}=\left\|T_{g-\tilde{g}} k_{\lambda}\right\|^{2}+\left\|H_{\tilde{g}} k_{\lambda}\right\|^{2}
$$

and using Lemma 2.1 and Remark 2.1 we conclude that:

$$
\begin{aligned}
\left\|H_{g}\right\|_{\mathrm{HS}}^{2}-\|g-\tilde{g}\|_{L^{2}(X, V)}^{2} & =\int_{X}\left\{\left\|T_{g-\tilde{g}} k_{\lambda}\right\|^{2}+\left\|H_{\tilde{g}} k_{\lambda}\right\|^{2}\right\} d V(\lambda) \\
& =\left\|T_{g-\tilde{g}}\right\|_{\mathrm{HS}}^{2}+\left\|H_{\tilde{g}}\right\|_{\mathrm{HS}}^{2}
\end{aligned}
$$

3. Iteration of the Berezin transform

For $\lambda \in X$ we consider the rank one projection $P_{\lambda}:=\left\langle\cdot, k_{\lambda}\right| k_{\lambda}$ on $L^{2}(X, \mu)$ where k_{λ} denotes the normalized kernel (2.1), c.f. [11], [12]. With this notation the Berezin transform \tilde{f} of a symbols $f \in L^{\infty}(X)$ can be expressed as an operator trace:

$$
\begin{equation*}
\tilde{f}(\lambda)=\left\langle f k_{\lambda}, k_{\lambda}\right\rangle=\left\langle M_{f} P_{\lambda} k_{\lambda}, k_{\lambda}\right\rangle=\operatorname{trace}\left(M_{f} P_{\lambda}\right) \tag{3.1}
\end{equation*}
$$

In particular, it was observed in [11], [12] that \tilde{f} has some Lipschitz property. Recall that the trace norm $\|\cdot\|_{\text {trace }}$ is defined by $\|A\|_{\text {trace }}:=\operatorname{trace} \sqrt{A^{*} A}$ where $\sqrt{A^{*} A}$ is the unique square root of $A^{*} A$. By a standard estimate it follows from (3.1):

$$
\begin{equation*}
\left|\tilde{f}\left(\lambda_{1}\right)-\tilde{f}\left(\lambda_{2}\right)\right| \leq\|f\|_{\infty}\left\|P_{\lambda_{1}}-P_{\lambda_{2}}\right\|_{\text {trace }} \tag{3.2}
\end{equation*}
$$

Motivated by (3.2) we consider the function $d: X \times X \rightarrow \mathbf{R}$ given by:

$$
d\left(\lambda_{1}, \lambda_{2}\right):=\left\|P_{\lambda_{1}}-P_{\lambda_{2}}\right\|_{\text {trace }} .
$$

The following formula was proved in [11], THEOREM 1 and the case of any reproducing kernel Hilbert space $H \subset L^{2}(X, \mu)$ of the type we are considering here:

Proposition 3.1 ([11]). For $a, b \in X$ it holds:

$$
\begin{equation*}
d(a, b)=2\left\{1-\left|\left\langle k_{a}, k_{b}\right\rangle\right|^{2}\right\}^{\frac{1}{2}}=2\left\{1-\frac{|K(a, b)|^{2}}{K(a, a) K(b, b)}\right\}^{\frac{1}{2}} \tag{3.3}
\end{equation*}
$$

COROLLARy 3.1. d is a metric if for $a, b \in X$ there is $h \in H$ with $h(a)=0 \neq h(b)$.
Proof. We only show that $[d(a, b)=0] \Rightarrow[a=b]$. (3.3) vanishes iff $\left|\left\langle k_{a}, k_{b}\right\rangle\right|=1$ and by the Cauchy-Schwartz inequality together with $\left\|k_{a}\right\|=\left\|k_{b}\right\|=1$ it follows that $k_{a}=$
$\lambda \cdot k_{b}$ where $|\lambda|=1$. For $a \neq b$ let $h \in H$ with $h(a)=0 \neq h(b)$. Applying the reproducing property of K and $K(b, b)>0$ we obtain the contradiction $0=h(b) \cdot \bar{\lambda} \cdot K(b, b)^{-\frac{1}{2}}$.

Hence d is a metric in the case where H is "big enough". From now on we assume that H satisfies the condition of Corollary 3.1 such that (X, d) becomes a metric space. In our applications X a priori will be a metric space carrying a second metric \mathbf{d} and we also assume this in general. Both metrics \mathbf{d} and d should be related through the assumption that the embedding

$$
\begin{equation*}
(X, \mathbf{d}) \hookrightarrow(X, d) \tag{3.4}
\end{equation*}
$$

is continuous, c.f. Corollary 3.2. Further, let (X, \mathbf{d}) fulfill (P 1$)-(\mathrm{P} 3)$:
(P1) (X, \mathbf{d}) is hemi-compact, i.e. there is a fundamental sequence $\left(K_{n}\right)_{n \in \mathbf{N}}$ of compact sets in (X, \mathbf{d}) such that $K_{n} \subset K_{n+1}$ and $X=\bigcup_{n \in \mathbf{N}} K_{n}$.
(P2) (X, \mathbf{d}) is a k-space, i.e. a functions f on (X, \mathbf{d}) is continuous if and only if its restriction to any compact subset $K \subset X$ is continuous.
(P3) All open set in (X, \mathbf{d}) have strictly positive volume with respect to μ.
Corollary 3.2. Let $K: X \times X \rightarrow \mathbf{C}$ be continuous in the product topology with respect to the metric \mathbf{d} on X. Then there is a continuous embedding (3.4).

We remark that the assumption of Corollary 3.2 typically holds for reproducing kernel Hilbert spaces $H:=\mathcal{N} \cap L^{2}(X, \mu)$ where \mathcal{N} is nuclear in the F-space $C(X, \mathbf{d})$. In the case of a bounded domain $X \subset \mathbf{C}^{n}$ and with the usual Bergman space H over X, the function d induces the Euclidean topology $\mathbf{d}(a, b):=|a-b|$. Some relation between d and the Bergman distance are discussed in [19].

Lemma 3.1. Let $f \in L^{\infty}(X)$, then \tilde{f} is continuous in the topology of (X, \mathbf{d}).
Proof. By (3.4) both d and \mathbf{d} induce the same topology on compact sets $K \subset(X, \mathbf{d})$. From (3.2) we conclude that the restriction of \tilde{f} to K is continuous with respect to \mathbf{d} and from $(P 2)$ it follows that $\tilde{f} \in C(X, \mathbf{d})$.

Let us also write $B f:=\tilde{f}$ for the Berezin transform, when it is considered as an operator. From (3.2) it follows that B can be regarded as bounded operator:

$$
B: L^{\infty}(X) \rightarrow B C(X, d), \quad \text { and } \quad\|B\| \leq 1
$$

where $\mathrm{BC}(X, d)($ resp. $\mathrm{BC}(X, \mathbf{d}))$ are the bounded functions in $C(X, d)$ (resp. in $C(X, \mathbf{d}))$ equipped with the sup-norm. From (3.4) one has continuous embeddings:

$$
\begin{equation*}
C(X, d) \hookrightarrow C(X, \mathbf{d}) \quad \text { and } \quad B C(X, d) \hookrightarrow B C(X, \mathbf{d}) . \tag{3.5}
\end{equation*}
$$

Here $C(X, \mathbf{d})$ is a Fréchet space (F -space) with respect to the compact-open topology by assumptions (P1) and (P2) on the metric d.

Lemma 3.2. Let $\left(g_{n}\right)_{n} \subset B C(X, \mathbf{d})$ be a norm-bounded sequence converging in $C(X, \mathbf{d})$ to $g \in B C(X, \mathbf{d})$. Then it follows that $\lim _{n \rightarrow \infty} B g_{n}=B g$ in $C(X, \mathbf{d})$ and $B g \in B C(X, \mathbf{d})$.

Proof. Fix $c>0$ such that $\left\|g_{n}\right\|_{\infty} \leq c$ for all $n \in \mathbf{N}$ and let $T \subset(X, \mathbf{d})$ be compact. For $n \in \mathbf{N}$ and $x \in X$ one has:

$$
\left|\left[B g_{n}-B g\right](x)\right| \leq \int_{X}\left|g_{n}-g\right| \frac{|K(\cdot, x)|^{2}}{K(x, x)} d \mu=:(*)
$$

Let $\left(K_{m}\right)_{m}$ denote the sequence of compact sets in (P1) and fix $m \in \mathbf{N}$, then:

$$
(*) \leq \sup _{K_{m}}\left|g_{n}-g\right|+2 c \int_{X \backslash K_{m}} \frac{|K(\cdot, x)|^{2}}{K(x, x)} d \mu=: C_{n, m}(x) .
$$

For fixed $x \in T$ and $m \rightarrow \infty$ the sequence $\left(q_{m}\right)_{m} \subset C(X, \mathbf{d})$ given by:

$$
q_{m}(x):=\int_{X \backslash K_{m}} \frac{|K(\cdot, x)|^{2}}{K(x, x)} d \mu=\widetilde{\chi_{X \backslash K_{m}}}(x)
$$

is monotonely decreasing to 0 . By Dini's Lemma the convergence is uniform on T. For any $\varepsilon>0$ fix $m_{0} \in \mathbf{N}$ with $\sup _{x \in T}\left|q_{m}(x)\right| \leq \varepsilon$ for all $m \geq m_{0}$. Finally, we can choose $n_{0} \in \mathbf{N}$ with $\sup _{K_{m_{0}}}\left|g_{n}-g\right|<\varepsilon$ for $n \geq n_{0}$. Uniformly on T this leads to $C_{m_{0}, n}(x) \leq \varepsilon(1+2 c)$ for $n \geq n_{0}$. Because g is bounded it follows that $B g \in \mathrm{BC}(X, \mathbf{d})$.

Definition 3.1. (Iterated Berezin transform). For $f \in L^{\infty}(X)$ we define the Berezin transforms inductively by:

$$
f^{(0)}:=f \quad \text { and } \quad f^{(j+1)}:=\widetilde{f^{(j)}}, \quad j \geq 0
$$

Corollary 3.3. Let $g \in L^{\infty}(X)$ such that H_{g} is a Hilbert-Schmidt operator, then all the operators $H_{g^{(m)}}$ for $m \in \mathbf{N}$ are Hilbert-Schmidt operators with:

$$
\begin{equation*}
\left\|H_{g^{(m)}}\right\|_{H S} \leq\left\|H_{g}\right\|_{H S} \tag{3.6}
\end{equation*}
$$

Moreover:

$$
\begin{equation*}
\sum_{j=0}^{\infty}\left\|g^{(j)}-g^{(j+1)}\right\|_{L^{2}(X, V)}^{2} \leq\left\|H_{g}\right\|_{H S}^{2}<\infty \tag{3.7}
\end{equation*}
$$

Proof. Both, (3.6) and (3.7) follow by iteration of (2.8).
For $\mathcal{S} \subset C(X, \mathbf{d})$ we write Fix $(\mathcal{S}):=\{f \in \mathcal{S}: B f=f\}$ for the fix points of B in \mathcal{S}. Further, let $\overline{\mathcal{S}}$ be the closure of \mathcal{S} in the F-space $C(X, \mathbf{d})$. For $g \in L^{\infty}(X)$, we define

$$
\begin{equation*}
\mathcal{S}_{g}:=\left\{g^{(j)}: j \in \mathbf{N}\right\} \subset C(X, \mathbf{d}) \tag{3.8}
\end{equation*}
$$

for the B-invariant space of iterated Berezin transforms of g. Combining Corollary 3.3 with general properties of B we can prove:

Proposition 3.2. Let $g \in L^{\infty}(X)$ such that the Hankel operator H_{g} is of HilbertSchmidt type, then Fix $\left(\overline{\mathcal{S}_{g}}\right) \neq \emptyset$. Moreover, $\overline{\mathcal{S}_{g}} \backslash \mathcal{S}_{g} \subset$ Fix $\left(\overline{\mathcal{S}_{g}}\right)$.

Proof. For any $k \in \mathbf{N}$ it is clear that $\left\|g^{(k)}\right\|_{\infty} \leq\|g\|_{\infty}$ and with $\lambda_{1}, \lambda_{2} \in X$ it holds:

$$
\left|g^{(k)}\left(\lambda_{1}\right)-g^{(k)}\left(\lambda_{2}\right)\right| \leq\|g\|_{\infty} d\left(\lambda_{1}, \lambda_{2}\right)
$$

This shows that $\mathcal{S}_{g} \subset C(X, \mathbf{d})$ is bounded and equi-continuous. Hence there is a subsequence $\left(g^{\left(m_{k}\right)}\right)_{k}$ which is uniformly compact convergent to some $h \in \overline{\mathcal{S}_{g}}$. We show next that $h \in \operatorname{Fix}\left(\overline{\mathcal{S}_{g}}\right)$. First let us note that by Lemma 3.2:

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \widetilde{g^{\left(m_{k}\right)}}(x)=\tilde{h}(x) \tag{3.9}
\end{equation*}
$$

where the convergence in (3.9) is uniformly compact on (X, \mathbf{d}). From our assumption on H_{g} and (3.7) we conclude that $\lim _{k \rightarrow \infty}\left\|g^{\left(m_{k}\right)}-\widetilde{g^{\left(m_{k}\right)}}\right\|_{L^{2}(X, V)}=0$. Hence there is $A \subset X$ with $V(X \backslash A)=0$ and a subsequence of $\left(g^{\left(m_{k}\right)}\right)_{k}$ (which we denote by $\left(g^{\left(m_{k}\right)}\right)_{k}$ again) such that for all $x \in A$:

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\{g^{\left(m_{k}\right)}(x)-\widetilde{g^{\left(m_{k}\right)}}(x)\right\}=0 \tag{3.10}
\end{equation*}
$$

By the definition of h, (3.9) and (3.10) it follows for $x \in A$ that:

$$
\begin{equation*}
h(x)=\lim _{k \rightarrow \infty} g^{\left(m_{k}\right)}(x)=\lim _{k \rightarrow \infty} \widetilde{g^{\left(m_{k}\right)}}(x)=\tilde{h}(x) \tag{3.11}
\end{equation*}
$$

Because of $K(x, x)>0$ for all $x \in X$ we obtain that $\mu(X \backslash A)=0$ and by (P3) the complement $X \backslash A$ cannot contain an open subset of (X, \mathbf{d}). Thus A must be dense in (X, \mathbf{d}). Finally, the continuity of h together with (3.11) imply that $h \in \operatorname{Fix}\left(\overline{\mathcal{S}_{g}}\right)$.

The second assertion follows by the same argument and the fact that the functions in the complement $\overline{\mathcal{S}_{g}} \backslash \mathcal{S}_{g}$ are limit points of a subsequences of $\left(g^{(k)}\right)_{k} \subset C(X, \mathbf{d})$.

We remark that in contrary to $\operatorname{Fix}\left(\overline{\mathcal{S}_{g}}\right)$ the set $\overline{\mathcal{S}_{g}} \backslash \mathcal{S}_{g}$ might be empty.
DEFINITION 3.2. We call a subspace $\mathcal{S} \subset L^{\infty}(X)$ asymptotically invariant under B iff for any $f \in \mathcal{S}$ the inclusion $\overline{\mathcal{S}_{f}} \subset \mathcal{S}$ holds.

By our results above it follows that symbols of Hilbert-Schmidt Hankel operators generate spaces asymptotically invariant under B :

Corollary 3.3. Let $g \in L^{\infty}(X)$ such that H_{g} is a Hilbert-Schmidt operator, then $\overline{\mathcal{S}_{g}}$ is asymptotically invariant under B.

Proof. Let $f \in \overline{\mathcal{S}_{g}}$ be arbitrary. For $f \in \mathcal{S}_{g}$ it is clear that $\overline{\mathcal{S}_{f}} \subset \overline{\mathcal{S}_{g}}$. In the case where $f \in \overline{\mathcal{S}_{g}} \backslash \mathcal{S}_{g} \subset$ Fix $\left(\overline{\mathcal{S}_{g}}\right)$ it follows that $\overline{\mathcal{S}_{f}}=\mathcal{S}_{f}=\{f\} \subset \overline{\mathcal{S}_{g}}$.

Further examples of spaces asymptotically invariant under B are obviously given by the fix point set Fix (\mathcal{S}) of any subspace $\mathcal{S} \subset L^{\infty}(X)$ or by the "eventually fix points":

$$
\left\{f \in \mathcal{S}: \exists j \in \mathbf{N} \text { such that } f^{(j)}=f^{(j+1)}\right\}
$$

EXAMPLE 3.1. Let μ be a finite measure on X and fix $g \in L^{2}(X, V)$. By a straightforward calculation one obtains that:

$$
\int_{X^{3}} \frac{1}{K(y, y)} \frac{\left|k_{u}(\lambda)\right|^{2}}{K(u, u)} \frac{\left|k_{\lambda}(y)\right|^{2}}{K(\lambda, \lambda)} d V(y) d V(\lambda) d V(u)=\mu(X)<\infty .
$$

By Tonelli's theorem, the function:

$$
L(u, y):=\frac{1}{K(y, y)} \int_{X}\left|k_{u}(\lambda)\right|^{2}\left|k_{\lambda}(y)\right|^{2} d \mu(\lambda)
$$

is finite for a.e. $(u, y) \in X^{2}$ with respect to the product measure $V \otimes V$. Moreover,

$$
\begin{aligned}
\|\tilde{g}\|_{L^{2}(X, V)}^{2} & =\int_{X^{3}} g(u) \overline{g(y)}\left|k_{\lambda}(u)\right|^{2}\left|k_{\lambda}(y)\right|^{2} d \mu(u) d \mu(y) d V(\lambda) \\
& =\int_{X^{3}} g(u) \overline{g(y)}\left|k_{u}(\lambda)\right|^{2}\left|k_{\lambda}(y)\right|^{2} d \mu(\lambda) d V(u) d \mu(y) \\
& =\int_{X \times X} g(u) \overline{g(y)} L(u, y) d V \otimes V(u, y)
\end{aligned}
$$

By Cauchy-Schwartz inequality and $\int_{X} L(u, y) d V(u)=\int_{X} L(u, y) d V(y)=1$:

$$
\begin{equation*}
\|\tilde{g}\|_{L^{2}(X, V)}^{2} \leq\|g\|_{L^{2}(X, V)}^{2} \tag{3.12}
\end{equation*}
$$

Equality in (3.12) only holds if $G_{1}(u, y):=g(u)$ and $G_{2}(u, y):=g(y)$ are linear dependent showing that g is constant. By an easy consequence of Remark 2.1 together with $T_{1}=i d$ the measure V cannot be finite whenever H is infinite dimensional. In this case $g \equiv 0$ and there are no non-trivial functions in $L^{2}(X, V)$ invariant under B.

4. Hilbert-Schmidt Hankel operators

We apply our previous results to prove Theorem II of the Introduction:
Proposition 4.1. For $g \in L^{2}(X, V)$, the operator H_{g} is of Hilbert-Schmidt type and:

$$
\begin{equation*}
\left\|H_{g}\right\|_{H S}=\left\|H_{\bar{g}}\right\|_{H S} \leq\|g\|_{L^{2}(X, V)} \tag{4.1}
\end{equation*}
$$

Proof. For $f \in L^{2}(X, \mu)$ it follows from $|[P f](u)|^{2} \leq\|P f\|^{2} \cdot K(u, u)$ that:

$$
\left\|M_{g} P f\right\|^{2} \leq\|P f\|^{2} \int_{X}|g(u)|^{2} K(u, u) d \mu(u) \leq\|f\|^{2}\|g\|_{L^{2}(X, V)}^{2} .
$$

Hence $M_{g} P$ is a bounded operator on $L^{2}(X, \mu)$ and by Lemma 2.1 it is sufficient to prove Lemma 2.1, (b).

$$
\begin{aligned}
\left\|H_{g}\right\|_{\mathrm{HS}}^{2} & \leq \int_{X}\|g K(\cdot, x)\|^{2} d \mu(x) \\
& =\int_{X}|g(\lambda)|^{2} \int_{X}|K(\lambda, x)|^{2} d \mu(x) d \mu(\lambda)=\|g\|_{L^{2}(X, V)}^{2}<\infty
\end{aligned}
$$

By Remark 2.1 and using the same calculation it also follows that the Toeplitz operator T_{g} is a Hilbert-Schmidt operator. From $T_{|g|^{2}}=H_{g}^{*} H_{g}+T_{\bar{g}} T_{g}$ we derive that $T_{|g|^{2}}, T_{\bar{g}} T_{g}$ and $H_{g}^{*} H_{g}$ are of trace class. Hence

$$
\begin{aligned}
\left\|H_{g}\right\|_{\mathrm{HS}}^{2} & =\operatorname{trace}\left(T_{|g|^{2}}-T_{\bar{g}} T_{g}\right) \\
& =\operatorname{trace}\left(T_{|g|^{2}}\right)-\operatorname{trace}\left(T_{\bar{g}} T_{g}\right) \\
& =\operatorname{trace}\left(T_{|g|^{2}}\right)-\operatorname{trace}\left(T_{g} T_{\bar{g}}\right)=\operatorname{trace}\left(H_{\bar{g}}^{*} H_{\bar{g}}\right)=\left\|H_{\bar{g}}\right\|_{\mathrm{HS}}^{2} .
\end{aligned}
$$

LEMMA 4.1. Let $\left(g_{m}\right)_{m} \in L^{\infty}(X)$ be a bounded sequence and point wise convergent to g. Then $\left(H_{g_{m}}\right)_{m}$ converges to H_{g} in the strong operator topology.

Proof. Let $f \in H$, then by Lebesgue's convergence theorem it follows that:

$$
\left\|H_{g_{m}-g} f\right\|^{2} \leq \int_{X}\left|g_{m}-g\right|^{2}|f|^{2} d \mu \xrightarrow{m \rightarrow \infty} 0 .
$$

Let $\mathcal{N}_{\text {sym }}:=\left\{h \in L^{\infty}(X): H_{\bar{h}}=0\right\}$ be the kernel of the symbol map $h \mapsto H_{\bar{h}}$. Then we consider the space \mathcal{S} of symbols defined by:

$$
\begin{equation*}
\mathcal{S}:=\left\{g \in L^{\infty}(X): \bar{S}_{g} \cap \mathcal{N}_{\mathrm{sym}} \neq \emptyset\right\} . \tag{4.2}
\end{equation*}
$$

Theorem 4.1. Let $g \in \mathcal{S}$ such that H_{g} is a Hilbert-Schmidt operator, then $H_{\bar{g}}$ is a Hilbert-Schmidt operator as well and $\left\|H_{\bar{g}}\right\|_{H S} \leq 2\left\|H_{g}\right\|_{H S}$.

Proof. Because H_{g} is a Hilbert-Schmidt operator and by applying Corollary 3.3 it follows that $g^{(m-1)}-g^{(m)} \in L^{2}(X, V)$ for all $m \in \mathbf{N}$. Hence one concludes that:

$$
g-g^{(m)}=\left\{g-g^{(1)}\right\}+\cdots+\left\{g^{(m-1)}-g^{(m)}\right\} \in L^{2}(X, V) .
$$

By Proposition 4.1 and Corollary 3.3 again one has for all $m \in \mathbf{N}$:

$$
\begin{equation*}
\left\|H_{\bar{g}-\bar{g}^{(m)}}\right\|_{\mathrm{HS}}=\left\|H_{g-g^{(m)}}\right\|_{\mathrm{HS}} \leq\left\|H_{g}\right\|_{\mathrm{HS}}+\left\|H_{g^{(m)}}\right\|_{\mathrm{HS}} \leq 2 \cdot\left\|H_{g}\right\|_{\mathrm{HS}} \tag{4.3}
\end{equation*}
$$

Choose $h \in \bar{S}_{g} \cap \mathcal{N}_{\text {sym }} \neq \emptyset$ and assume that h belongs to \mathcal{S}_{g}. Then there is $i_{0} \in \mathbf{N}$ such that $h=g^{\left(i_{0}\right)}$ and for $i \geq i_{0}$ it follows from (3.6) that: $0 \leq\left\|H_{\bar{g}^{(i)}}\right\|_{\mathrm{HS}} \leq\left\|H_{\bar{h}}\right\|_{\mathrm{HS}}=0$ showing that $H_{\bar{g}^{(i)}}=0$. In particular, for $f \in H$:

$$
\begin{equation*}
\lim _{i \rightarrow \infty}\left\|H_{\bar{g}^{(i)}} f\right\|=0 \tag{4.4}
\end{equation*}
$$

For $h \in \overline{\mathcal{S}_{g}} \backslash \mathcal{S}_{g}$ there is a sequence $\left(m_{k}\right)_{k} \subset \mathbf{N}$ such that $\lim _{k \rightarrow \infty} g^{\left(m_{k}\right)}=h$ with respect to the Fréchet topology of $C(X, \mathbf{d})$. Because of $\left\|g^{\left(m_{k}\right)}\right\|_{\infty} \leq\|g\|_{\infty}$ and Lemma 4.1 we obtain for $f \in H$ that:

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|H_{\bar{g}^{\left(m_{k}\right)}} f\right\|=\left\|H_{\bar{h}} f\right\|=0 \tag{4.5}
\end{equation*}
$$

Let $\left[e_{j}: j \in \mathbf{N}\right]$ be an ONB of H and fix $l \in \mathbf{N}$. Then by (4.3) we conclude:

$$
\begin{aligned}
\sum_{j=1}^{l}\left\|H_{\bar{g}} e_{j}\right\|^{2} & =\lim _{k \rightarrow \infty} \sum_{j=1}^{l}\left\|H_{\bar{g}-\bar{g}^{\left(m_{k}\right)}} e_{j}\right\|^{2} \\
& \leq \limsup _{k \rightarrow \infty}\left\|H_{\bar{g}-\bar{g}^{\left(m_{k}\right)}}\right\|_{\mathrm{HS}}^{2} \leq 4\left\|H_{g}\right\|_{\mathrm{HS}}^{2}
\end{aligned}
$$

in both cases (4.4) and (4.5). For $l \rightarrow \infty$ the assertion follows.
Proposition 4.2. Let $\mathcal{S}_{0} \subset L^{\infty}(X)$ be asymptotically invariant under Berezin transform such that Fix $\left(\mathcal{S}_{0}\right) \subset \mathcal{N}_{\text {sym }}$. Then \mathcal{S} in Theorem 4.1 can be replaced by \mathcal{S}_{0}.

Proof. Fix $g \in \mathcal{S}_{0}$ and let $\left\|H_{g}\right\|_{\text {HS }}<\infty$. It is sufficient to show $g \in \mathcal{S}$ defined in (4.2). By assumption it follows that $\overline{S_{g}} \subset \mathcal{S}_{0}$. Moreover, as a consequence of Proposition 3.2 one obtains that $\emptyset \neq \operatorname{Fix}\left(\overline{\mathcal{S}_{g}}\right) \subset \operatorname{Fix}\left(\mathcal{S}_{0}\right) \subset \mathcal{N}_{\text {sym }}$. Hence $\overline{\mathcal{S}_{g}} \cap \mathcal{N}_{\text {sym }} \neq \emptyset$ and $g \in \mathcal{S}$.

Let \mathcal{K} be the ideal of compact operators on H and denote by $\sigma_{e}(T)$ the essential spectrum of $T \in \mathcal{L}(H)$. For the following result and with the reproducing kernel K we assume that the assignment

$$
\begin{equation*}
X \ni x \mapsto K(x, x) \in(0, \infty) \tag{4.6}
\end{equation*}
$$

is continuous. Then we can prove (c.f. [10], [21]):
Proposition 4.3. Let $\mu(K)<\infty$ for all compact $K \subset X$ and $g \in L^{\infty}(X)$ such that H_{g} and $H_{\bar{g}}$ are compact. With a sequence $\left(K_{m}\right)_{m}$ of compact sets as in (P1) it follows that:

$$
\begin{equation*}
\sigma_{e}\left(T_{g}\right) \subset \bigcap_{m \in \mathbf{N}} \text { closure } g\left(X \backslash K_{m}\right) \tag{4.7}
\end{equation*}
$$

If $T_{g-g^{(m)}}$ is compact, we can replace g by $g^{(m)}$ on the right hand side of (4.7).
Proof. Suppose that $\lambda \notin \operatorname{closure} g\left(X \backslash K_{m}\right)$ for $m \in \mathbf{N}$, then consider h defined by:

$$
h(z):= \begin{cases}\{g(z)-\lambda\}^{-1} & \text { if } z \in X \backslash K_{m} \\ 1 & \text { else }\end{cases}
$$

The function h clearly is bounded and it can be easily verified that:
(a) $T_{h} T_{g-\lambda}=I+T_{(g-\lambda) h-1}-H_{\bar{h}}^{*} H_{g}$,
(b) $T_{g-\lambda} T_{h}=I+T_{(g-\lambda) h-1}-H_{\bar{g}}^{*} H_{h}$.

By (4.6) it is clear that $z \mapsto K(z, z)$ and $f:=(g-\lambda) h-1$ are bounded on K_{m} and because of $\mu\left(K_{m}\right)<\infty$ we have:

$$
\|f\|_{L^{2}(X, V)}^{2}=\int_{K_{m}}|f(z)|^{2} K(z, z) d \mu(z)<\infty
$$

Hence, T_{f} is of Hilbert-Schmidt type and so it is compact. By our assumptions on H_{g} and $H_{\bar{g}}$ both (a) and (b) show that $T_{g-\lambda} \in[\mathcal{L}(H) / \mathcal{K}]^{-1}$ and $\lambda \notin \sigma_{e}\left(T_{g}\right)$. The second assertion is an immediate consequence of $\sigma_{e}\left(T_{g}\right)=\sigma_{e}\left(T_{\left.g^{(m)}\right)}\right)$.

5. Examples and Applications

Various aspects of the Berezin symbol have been studied c.f. [2], [4], [10], [15] and most recently [11], [12]. Below we apply some of these results to obtain examples of our assumptions in THEOREM 4.1. In particular, we prove THEOREM III and (1.2) of the introduction. All spaces X appearing in this section are metric with (P1)-(P3).
5.1. Bergman spaces over bounded domains. Let $\Omega \subset \mathbf{C}^{n}$ be a bounded domain with a measure μ. By $H:=H^{2}(\Omega, \mu)$ we denote the Bergman space of all holomorphic μ square integrable functions on Ω. We assume that the point evaluations on H are continuous and the reproducing kernel K is strictly positive on the diagonal. The following is due to J . Arazy and M. Englis (c.f. [2], Theorem 2.3.):

THEOREM 5.1 ([2]). Let Ω be either a bounded domain in the complex plane with C^{1}-boundary, or a strictly pseudo convex domain in \mathbf{C}^{n} with C^{3}-boundary, then
(a) B maps $C(\bar{\Omega})$ into itself and preserves the boundary values.
(b) For any $f \in C(\bar{\Omega})$, the sequence $\left(f^{(\mathrm{k})}\right)_{k}$ of iterated Berezin transforms converges uniformly on $\bar{\Omega}$ to a function $g \in C(\bar{\Omega})$ satisfying $B g=g$ and $g_{\partial \Omega}=f_{\left.\right|_{\partial \Omega}}$.
(c) For any $\Phi \in C(\partial \Omega)$ there exists a unique $g \in C(\bar{\Omega})$ satisfying $B g=g$ and $g_{\mid \partial \Omega}=\Phi$. The function g is called B-Poisson extension of Φ.

Let $\Omega \subset \mathbf{C}^{n}$ be as in Theorem 5.1 and denote by $C_{0}(\Omega)$ the continuous functions on $\bar{\Omega}$ vanishing at the boundary. From (b) and the uniqueness result in (c) we conclude that:

Corollary 5.1. Let $g \in \mathcal{S}_{0}:=C_{0}(\Omega)$. Then $\left(g^{(k)}\right)_{k}$ converges to 0 uniformly on $\bar{\Omega}$. In particular, \mathcal{S}_{0} fulfills the assumptions of Proposition 4.2.

PROOF. The first assertion directly follows from THEOREM 5.1 and $\overline{\mathcal{S}_{g}}=\mathcal{S}_{g} \cup\{0\} \subset \mathcal{S}_{0}$ shows that \mathcal{S}_{0} is asymptotically invariant under B. Moreover, by the uniqueness result in Theorem 5.1 it is clear that $\operatorname{Fix}\left(\mathcal{S}_{0}\right)=\{0\} \subset \mathcal{N}_{\text {sym }}$.

Note that \mathcal{S}_{0} is symmetric under complex conjugation. In order to give an example for a non-symmetric situation we consider:

$$
\mathcal{A}_{\mathrm{ah}}(\Omega):=\left\{f \in C(\bar{\Omega}): f_{\mid \Omega} \text { is anti-holomorphic }\right\}
$$

and set $\mathcal{S}_{1}:=C_{0}(\Omega) \oplus \mathcal{A}_{\text {ah }}(\Omega)$. With $f \in C_{0}(\Omega)$ and $h \in \mathcal{A}_{\text {ah }}(\Omega)$ consider $g=f+h \in \mathcal{S}_{1}$. Because of $B h=h$ and $h=g$ on $\partial \Omega$ we conclude from Theorem 5.1 (b) and (c) that the sequence $\left(g^{(k)}\right)_{k}$ is uniformly convergent on $\bar{\Omega}$ to h. Hence \mathcal{S}_{1} is asymptotically invariant under Berezin transform. Moreover, $\operatorname{Fix}\left(\mathcal{S}_{1}\right)=\mathcal{A}_{\text {ah }}(\Omega) \subset \mathcal{N}_{\text {sym }}$ and the assumptions of Proposition 4.2 hold.

THEOREM 5.2. Let $g_{1} \in \mathcal{S}_{0}:=C_{0}(\Omega)$ and $g_{2} \in \mathcal{S}_{1}:=C_{0}(\Omega) \oplus \mathcal{A}_{\text {ah }}(\Omega)$, then
(a) $H_{g_{1}} \in \mathcal{L}^{2}\left(H, H^{\perp}\right)$ if and only if $H_{\bar{g}_{1}} \in \mathcal{L}^{2}\left(H, H^{\perp}\right)$.
(b) $H_{g_{2}} \in \mathcal{L}^{2}\left(H, H^{\perp}\right)$ implies that $H_{\bar{g}_{2}} \in \mathcal{L}^{2}\left(H, H^{\perp}\right)$.
(c) For $h \in\left\{g_{1}, \bar{g}_{1}, \bar{g}_{2}\right\}$ there is a norm estimate: $\left\|H_{h}\right\|_{H S} \leq 2 \cdot\left\|H_{\bar{h}}\right\|_{H S}$.

Let B_{n} be the unit ball in \mathbf{C}^{n} with $n \geq 2$. It was observed in [25] that there is no non-zero Hankel operator $H_{g} \in \mathcal{L}^{2}\left(H, H^{\perp}\right)$ with anti-holomorphic symbol. Hence, in general $H_{g_{2}}$ in Theorem 5.2 is not of Hilbert-Schmidt type in the case of $H_{\bar{g}_{2}}=0$. Let v be the Lebesgue measure on $B_{n},(n \in \mathbf{N})$ and define for $\alpha \in \mathbf{R}$ the measure μ_{α} by

$$
d \mu_{\alpha}(z)=c_{\alpha} K(z, z)^{1-\frac{\alpha}{n+1}} d v(z), \quad c_{\alpha}>0
$$

where K denotes the reproducing kernel of the unweighted Bergman space $H^{2}\left(B_{n}, v\right)$. It is known that μ_{α} is finite if and only if $\alpha>n$ and in this case we choose c_{α} with $\mu_{\alpha}\left(B_{n}\right)=1$. For $\alpha>n$ and in the case of the weighted Bergman space H_{α}^{2} of holomorphic functions in $L^{2}\left(B_{n}, \mu_{\alpha}\right)$ we want to add some remarks on compact Hankel operators. Let A be a finite sum of finite products of Toeplitz operators on H_{α}^{2}, then it was proved in [14] that A is compact if and only if its Berezin symbol vanishes at the boundary of B_{n}. The following Lemma corresponds to LEMMA 2.1 in the compact case:

Lemma 5.1. Let $g \in L^{\infty}\left(B_{n}\right)$ and $R \in\left\{H_{g}, T_{g}\right\}$ defined on H_{α}^{2} where $\alpha>n$. With the normalized reproducing kernel function k_{λ} in (2.1) it holds:
(a) R is compact if and only if $\left\|R k_{\lambda}\right\| \rightarrow 0$ as $\lambda \rightarrow \partial B_{n}$.
(b) For $\lambda \rightarrow \partial B_{n}$ the sequence $\left(k_{\lambda}\right)_{\lambda}$ tends to 0 weakly in $L^{2}\left(B_{n}, \mu_{\alpha}\right)$.

Proof. Because R is compact if and only if $R^{*} R$ is compact (a) follows from our remark above together with:

- $\left\|T_{g} k_{\lambda}\right\|^{2}=\widetilde{T_{g}^{*} T_{g}}(\lambda)=\widetilde{T_{\bar{g}} T_{g}}(\lambda)$,
- $\left\|H_{g} k_{\lambda}\right\|^{2}=\widetilde{H_{g}^{*} H_{g}}(\lambda)=\left(T_{|g|^{2}}-T_{\bar{g}} T_{g} \tilde{)}(\lambda)\right.$.

To prove (b) let $h \in L^{2}\left(B_{n}, \mu_{\alpha}\right)$ and $\varepsilon>0$. Choose a continuous function r on B_{n} having compact support such that $\|r-h\| \leq \varepsilon$. It follows that:

$$
\left|\left\langle h, k_{\lambda}\right\rangle\right| \leq\left|\left\langle h-r, k_{\lambda}\right\rangle\right|+\left|\left\langle 1, T_{\bar{r}} k_{\lambda}\right\rangle\right| \leq \varepsilon+\left\|T_{\bar{r}} k_{\lambda}\right\| .
$$

By Proposition 4.1 the Toeplitz operator $T_{\bar{r}}$ is compact and (b) follows from (a).
As an application of Theorem 5.1 we remark (c.f. [24] in the case $\alpha:=n+1$ and [7]):

Corollary 5.2. For $g \in C\left(\overline{B_{n}}\right)$ both H_{g} and $T_{g-\tilde{g}}$ are compact on H_{α}^{2} where $\alpha>n$.
PROOF. For all $\lambda \in B_{n}$ it follows with a straightforward calculation that:

$$
\begin{equation*}
\left\|P\left[g k_{\lambda}\right]-\tilde{g}(\lambda) k_{\lambda}\right\|^{2}+\left\|H_{g} k_{\lambda}\right\|^{2}=\widetilde{|g|^{2}}(\lambda)-|\tilde{g}(\lambda)|^{2} \tag{5.1}
\end{equation*}
$$

By Theorem 5.1 both sides of (5.1) vanish at ∂B_{n} showing that $\lim _{\lambda \rightarrow \partial B_{n}}\left\|H_{g} k_{\lambda}\right\|=0$. Similarly, for $\lambda \rightarrow \partial B_{n}$ one has the convergence:

$$
0 \leq\left\|T_{g-\tilde{g}} k_{\lambda}\right\|^{2} \leq\left\|(g-\tilde{g}) k_{\lambda}\right\|^{2}=\left\{|g-\tilde{g}|^{2}\right\}(\lambda) \rightarrow 0 .
$$

Finally, we can apply Lemma 5.1.
An application of Theorem 5.1 leads to the results below. In case $\alpha=n+1$ Theorem 5.3 and Corollary 5.3 have been originally proved in [13] by using different methods.

THEOREM 5.3. Let $f \in C\left(\overline{B_{n}}\right)$, then $\sigma_{e}\left(T_{f}\right)=f\left(\partial B_{n}\right)$.
Proof. The inclusion $\sigma_{e}\left(T_{f}\right) \subset f\left(\partial B_{n}\right)$ follows from Proposition 4.3 and Corollary 5.2. Conversely, let $\lambda=f\left(x_{0}\right) \in f\left(\partial B_{n}\right)$. By Theorem 5.1 (a) and for $R \in \mathcal{L}\left(H_{\alpha}^{2}\right)$ it holds:

$$
0 \leq\left\|R T_{f-\lambda} k_{x}\right\|^{2} \leq\|R\|^{2}\left\|T_{f-\lambda} k_{x}\right\|^{2} \leq\|R\|^{2}\left\{|f-\lambda|^{2} \tilde{\}}(x) \xrightarrow{x \rightarrow x_{0}} 0\right.
$$

For $\lambda \notin \sigma_{e}\left(T_{f}\right)$ one can choose $R+\mathcal{K}$ to be a left-inverse of $T_{f-\lambda}+\mathcal{K}$ in the Calkin algebra. Then there is $K \in \mathcal{K}$ such that $\lim _{x \rightarrow x_{0}}\left\|(I-K) k_{x}\right\|=0$ in contradiction to Lemma 5.1, (b) and $\left\|k_{x}\right\|=1$ for all x. Hence $\lambda \in \sigma_{e}\left(T_{f}\right)$.

Corollary 5.3. For $f \in C\left(\overline{B_{n}}\right)$ the operator T_{f} is Fredholm if and only if $0 \notin$ $f\left(\partial B_{n}\right)$.
5.2. Pluri-harmonic Fock space. For $n \in \mathbf{N}$ and with the usual Lebesgue measure v consider the normalized Gaussian measure μ on \mathbf{C}^{n} defined by:

$$
\begin{equation*}
d \mu(z):=\pi^{-n} \exp \left(-|z|^{2}\right) d v(z) . \tag{5.2}
\end{equation*}
$$

The space H_{h} of all entire and μ-square integrable functions is called Fock space or Segal-Bargmann space. It is known that H_{h} is a reproducing kernel Hilbert space with kernel function $K(x, y)=\exp (x \cdot \bar{y})$ for $x, y \in \mathbf{C}^{n}$ where $x \cdot y:=x_{1} y_{1}+\cdots+x_{n} y_{n}$ and $|y|^{2}:=y \cdot \bar{y}$. We also consider the space $H_{\text {ah }}:=\left\{\bar{f}: f \in H_{\mathrm{h}}\right\}$ of anti-holomorphic functions and we denote by P_{h} (resp. P_{ah}) the orthogonal projection from $L^{2}\left(\mathbf{C}^{n}, \mu\right)$ onto H_{h} (resp. H_{ah}). For $f \in L^{2}\left(\mathbf{C}^{n}, \mu\right)$ note that:

$$
\begin{equation*}
P_{\mathrm{h}} \bar{f}=\overline{P_{\mathrm{ah}} f} . \tag{5.3}
\end{equation*}
$$

Considered on functions the Berezin transforms corresponding to both spaces H_{h} and $H_{\text {ah }}$ coincide and we denote it by B. For $g \in L^{\infty}\left(\mathbf{C}^{n}\right)$ one has:

$$
\begin{equation*}
[B g](u):=\int_{\mathbf{C}^{n}} g(x) \exp \left(x \cdot \bar{u}+u \cdot \bar{x}-|u|^{2}\right) d \mu(x) . \tag{5.4}
\end{equation*}
$$

It is readily verified that B can be regarded as a continuous convolution operator on the Schwartz space $\mathcal{S}\left(\mathbf{C}^{n}\right)$, c.f. [15]:

$$
B f=f * h \quad \text { where } \quad h:=2^{n} \exp \left(-|\cdot|^{2}\right)
$$

and $f * g:=(2 \pi)^{-n} \int_{\mathbf{C}^{n}} f(y) g(\cdot-y) d v(y)$ denotes the convolution product on $\mathcal{S}\left(\mathbf{C}^{n}\right)$. Using the Fourier transform \mathcal{F} on $\mathcal{S}\left(\mathbf{C}^{n}\right)$ and $g:=\mathcal{F} h=\exp \left(-4^{-1}|\cdot|^{2}\right)$ it follows, that B also can be written as pseudo-differential operator $B=\mathcal{F}^{-1} M_{g} \mathcal{F}$ on $\mathcal{S}\left(\mathbf{C}^{n}\right)$. There is an extension of $I-B=\mathcal{F}^{-1} M_{1-g} \mathcal{F}$ to the space $\mathcal{S}^{\prime}\left(\mathbf{C}^{n}\right)$ of tempered distributions. This observation leads to a proof of the following fact, c.f. [15]:

Lemma 5.2. Let $u \in \mathcal{S}^{\prime}\left(\mathbf{C}^{n}\right)$ such that $B u=u$, then u is a harmonic polynomial. In particular, any bounded function u which is reproduced under B must be constant.

Proof. The Fourier transform of $u \in \mathcal{S}^{\prime}\left(\mathbf{C}^{n}\right)$ is denoted by \hat{u}. By our remarks above and with $B u=u$ it follows that $0=(1-g) \hat{u}=G|\cdot|^{2} \hat{u}$. Here the function

$$
G(\xi):=\frac{1-g(\xi)}{|\xi|^{2}}=\frac{1-\exp \left(-4^{-1}|\xi|^{2}\right)}{|\xi|^{2}}
$$

is bounded away from 0 and it can be checked that multiplication by G induces an isomorphism of $\mathcal{S}^{\prime}\left(\mathbf{C}^{n}\right)$. Hence $0=|\cdot|^{2} \hat{u}$ which is equivalent to the Laplace equation $\Delta u=0$. Our assertion follows from a well-known extension of Liouville's theorem.

As an immediate consequence it follows that, c.f. [4]:
Corollary 5.4. Let $\mathcal{S}_{0}:=L^{\infty}\left(\mathbf{C}^{n}\right)$, then $\operatorname{Fix}\left(\mathcal{S}_{0}\right)=\mathbf{C}$. In particular, the assumptions of Proposition 4.2 are fulfilled and for $g \in L^{\infty}\left(\mathbf{C}^{n}\right)$ it holds $\left\|H_{g}^{h}\right\|_{H S} \leq 2 \cdot\left\|H_{\bar{g}}^{h}\right\|_{H S}$.

With a symbol $g \in L^{\infty}\left(\mathbf{C}^{n}\right)$ and $(P, H) \in\left\{\left(P_{\mathrm{h}}, H_{\mathrm{h}}\right),\left(P_{\mathrm{ah}}, H_{\mathrm{ah}}\right)\right\}$ we consider the Hankel and Toeplitz operators:

$$
(I-P) M_{g} \in \mathcal{L}\left(H, H^{\perp}\right) \quad \text { and } \quad P M_{g} \in \mathcal{L}(H)
$$

and denote them by $H_{g}^{\mathrm{h}}, H_{g}^{\text {ah }}$ resp. T_{g}^{h} and $T_{g}^{\text {ah }}$. As a consequence of (5.3) we remark that:
Lemma 5.3. Let $g \in L^{\infty}\left(\mathbf{C}^{n}\right)$, then:
(i) $\left\|T_{g}^{h}\right\|_{H S}=\left\|T_{\bar{g}}^{a h}\right\|_{H S}$,
(ii) $\left\|H_{g}^{h}\right\|_{H S}=\left\|H_{\bar{g}}^{a h}\right\|_{H S}$
where both sides of (i) resp. (ii) may be simultaneously infinite.

Proof. We only prove (ii). Let $\left[e_{j}: j \in \mathbf{N}_{0}\right]$ be an ONB of H_{h}, then an ONB of H_{ah} is given by $\left[\bar{e}_{j}: j \in \mathbf{N}_{0}\right]$. Now, it follows by (5.3) that:

$$
\left\|H_{g}^{\mathrm{h}} e_{j}\right\|^{2}=\left\|g e_{j}\right\|^{2}-\left\|P_{\mathrm{h}} g e_{j}\right\|^{2}=\left\|\bar{g} \bar{e}_{j}\right\|^{2}-\left\|P_{\mathrm{ah}} \bar{g} \bar{e}_{j}\right\|^{2}=\left\|H_{\bar{g}}^{\mathrm{ah}} \bar{e}_{j}\right\|^{2}
$$

Summing up this equality over $j \in \mathbf{N}_{0}$ yields the desired result.
DEFINITION 5.1. The pluri-harmonic Fock space $H_{\text {ph }}$ consists of all $f \in C^{2}\left(\mathbf{C}^{n}\right) \cap$ $L^{2}\left(\mathbf{C}^{n}, \mu\right)$ such that $\frac{\partial^{2} f}{\partial z_{j} \partial \bar{z}_{k}}=0$ for all $j, k=1, \ldots, n$.

According to [18] it holds $H_{\mathrm{ph}}=H_{\mathrm{h}} \oplus\left\{H_{\mathrm{ah}} \ominus \mathbf{C}\right\}$ and any $f \in H_{\mathrm{ph}}$ can be written as:

$$
\begin{equation*}
f=h+\bar{r}, \quad \text { with } r(0)=0 \tag{5.5}
\end{equation*}
$$

where h and r are holomorphic. With $g \in L^{\infty}\left(\mathbf{C}^{n}\right)$ and the orthogonal projection P_{ph} from $L^{2}\left(\mathbf{C}^{n}, \mu\right)$ onto H_{ph} we define the pluri-harmonic Hankel operator by:

$$
H_{g}^{\mathrm{ph}}:=\left(I-P_{\mathrm{ph}}\right) M_{g}: H_{\mathrm{ph}} \rightarrow H_{\mathrm{ph}}{ }^{\perp} .
$$

For $f \in H_{\mathrm{h}}$ it can be checked by a straightforward calculation that:
(a) $\left\|H_{g}^{\mathrm{ph}} f\right\|^{2}=\left\|H_{g}^{\mathrm{h}} f\right\|^{2}-\left\|P_{\mathrm{ah}} g f\right\|^{2}+|\langle g, \bar{f}\rangle|^{2}$,
(b) $\left\|H_{g}^{\mathrm{ph}} \bar{f}\right\|^{2}=\left\|H_{g}^{\text {ah }} \bar{f}\right\|^{2}-\left\|P_{\mathrm{h}} g \bar{f}\right\|^{2}+|\langle g, f\rangle|^{2}$.

As an application of Corollary 5.4 and Lemma 5.3 we can prove for $g \in L^{\infty}\left(\mathbf{C}^{n}\right)$:
THEOREM 5.4. $H_{g}^{p h} \in \mathcal{L}^{2}\left(H_{p h}, H_{p h}^{\perp}\right)$ iff $H_{\bar{g}}^{p h} \in \mathcal{L}^{2}\left(H_{p h}, H_{p h}^{\perp}\right)$ and $\left\|H_{\bar{g}}^{p h}\right\|_{H S} \leq \sqrt{2}$. $\left\|H_{g}^{p h}\right\|_{H S}$. Moreover, $H_{g}^{h} \in \mathcal{L}^{2}\left(H_{h}, H_{h}^{\perp}\right)$ is sufficient for $H_{g}^{p h}, H_{\bar{g}}^{p h} \in \mathcal{L}^{2}\left(H_{p h}, H_{p h}^{\perp}\right)$ and

$$
\max \left\{\left\|H_{g}^{p h}\right\|_{H S},\left\|H_{\bar{g}}^{p h}\right\|_{H S}\right\} \leq \sqrt{5 \cdot \min \left\{\left\|H_{g}^{h}\right\|_{H S}^{2},\left\|H_{\bar{g}}^{h}\right\|_{H S}^{2}\right\}}
$$

Proof. With an ONB [$\left.e_{0}:=1, e_{j}: j \in \mathbf{N}\right]$ of H_{h}, the system $\left[e_{0}, e_{j}, \bar{e}_{j}: j \in \mathbf{N}\right]$ defines an ONB of H_{ph}. Applying (a), (b) and Lemma 5.3 above it follows that:

$$
\begin{align*}
\left\|H_{g}^{\mathrm{ph}}\right\|_{\mathrm{HS}}^{2}+\left\|H_{g}^{\mathrm{ph}} 1\right\|^{2} & =\sum_{j=0}^{\infty}\left\{\left\|H_{g}^{\mathrm{ph}} e_{j}\right\|^{2}+\left\|H_{g}^{\mathrm{ph}} \bar{e}_{j}\right\|^{2}\right\} \tag{5.6}\\
& =\left\|H_{g}^{\mathrm{h}}\right\|_{\mathrm{HS}}^{2}+\left\|H_{g}^{\mathrm{ah}}\right\|_{\mathrm{HS}}^{2}-\sum_{j=1}^{\infty}\left\{\left\|P_{\mathrm{ah}} g e_{j}\right\|^{2}+\left\|P_{\mathrm{h}} g \bar{e}_{j}\right\|^{2}\right\} \\
& =\left\|H_{g}^{\mathrm{h}}\right\|_{\mathrm{HS}}^{2}+\left\|H_{\bar{g}}^{\mathrm{h}}\right\|_{\mathrm{HS}}^{2}-\sum_{j=1}^{\infty}\left\{\left\|P_{\mathrm{h}} \bar{g}_{e_{j}}\right\|^{2}+\left\|P_{\mathrm{h}} g \bar{e}_{j}\right\|^{2}\right\}
\end{align*}
$$

In particular, it holds

$$
\left\|H_{\bar{g}}^{\mathrm{ph}}\right\|_{\mathrm{HS}}^{2}+\left\|H_{\bar{g}}^{\mathrm{ph}} 1\right\|^{2}=\left\|H_{g}^{\mathrm{ph}}\right\|_{\mathrm{HS}}^{2}+\left\|H_{g}^{\mathrm{ph}} 1\right\|^{2} .
$$

Hence H_{g}^{ph} is of Hilbert-Schmidt type if and only if $H_{\bar{g}}^{\mathrm{ph}}$ is of Hilbert-Schmidt type and it holds $\left\|H_{\bar{g}}^{\mathrm{ph}}\right\|_{\mathrm{HS}} \leq \sqrt{2} \cdot\left\|H_{g}^{\mathrm{ph}}\right\|_{\mathrm{HS}}$. Moreover, with $f \in\{g, \bar{g}\}$, Corollary 5.4 and (5.6):

$$
\left\|H_{f}^{\mathrm{ph}}\right\|_{\mathrm{HS}}^{2} \leq\left\|H_{g}^{\mathrm{h}}\right\|_{\mathrm{HS}}^{2}+\left\|H_{\bar{g}}^{\mathrm{h}}\right\|_{\mathrm{HS}}^{2} \leq 5 \cdot \min \left\{\left\|H_{g}^{\mathrm{h}}\right\|_{\mathrm{HS}}^{2},\left\|H_{\bar{g}}^{\mathrm{h}}\right\|_{\mathrm{HS}}^{2}\right\}
$$

5.3. Hilbert space on quadrics. Let H be a closed subspace in $L^{2}(X, \mu)$ with reproducing kernel K. In our analysis on Hankel operators the Berezin measure V defined in (2.3) plays a crucial role. In case of the Fock space (or Segal-Bargmann space) H_{h}, c.f. section 5.2, it is readily verified that:

$$
\begin{equation*}
\pi^{n} V:=\Omega_{\mathbf{C}^{n}}=\text { Liouville volume form } \tag{5.7}
\end{equation*}
$$

where $\Omega_{\mathbf{C}^{n}}$ coincides with the usual Lebesgue measure on $\mathbf{C}^{n} \cong T^{*}\left(\mathbf{R}^{n}\right)$. In fact, H_{h} is only one example of a reproducing kernel Hilbert space which naturally arises from a more general construction method. It was remarked in [20], that H_{h} can be obtained by pairing of polarizations from the real and Käler polarization on the cotangent bundle $T^{*}\left(\mathbf{R}^{n}\right) \cong \mathbf{C}^{n}$. The Bargmann transform between $L^{2}\left(\mathbf{R}^{n}\right)$ and H_{h} can be derived via this method.

By replacing \mathbf{R}^{n} with the n-dimensional sphere \mathbf{S}^{n} the same construction leads to a reproducing kernel Hilbert space $H_{\mathbf{S}^{n}}$ of holomorphic functions on a non-singular cone or quadric $\mathbf{X}_{\mathbf{S}^{n}}$ in $\mathbf{C}^{n+1} \backslash\{0\}$ diffeomorphic to the punctured cotangent bundle $T_{0}^{*}\left(\mathbf{S}^{n}\right)$. We give the definition of $H_{\mathbf{S}^{n}}$ which we consider to be of interest itself and prove an asymptotic version of (5.7) in the case of $H_{\mathbf{S}^{n}}$. For a detailed description of pairing of polarizations we refer to [5] and [20]. More examples of this method are treated in [5], [6], [16] and [17].

Let $\mathbf{S}^{n}:=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbf{R}^{n+1}:|x|^{2}=1\right\}$ be the n-dimensional sphere with the standard Riemann metric induced from the Euclidean metric on \mathbf{R}^{n+1}. As before we write $x \cdot y:=\sum x_{j} \cdot y_{j}$ and $|x|^{2}:=x \cdot x$ for $x, y \in \mathbf{R}^{n+1}$. The tangent bundle $T\left(\mathbf{S}^{n}\right)$ and the cotangent bundle $T^{*}\left(\mathbf{S}^{n}\right)$ can be identified via this metric and are realized in $\mathbf{R}^{n+1} \times \mathbf{R}^{n+1}$:

$$
T^{*}\left(\mathbf{S}^{n}\right) \cong T\left(\mathbf{S}^{n}\right)=\left\{(x, y) \in \mathbf{R}^{n+1} \times \mathbf{R}^{n+1}:|x|=1 \text { and } x \cdot y=0\right\}
$$

With the punctured cotangent bundle $T_{0}^{*}\left(\mathbf{S}^{n}\right):=\left\{(x, y) \in T^{*}\left(\mathbf{S}^{n}\right): y \neq 0\right\}$ we define a diffeomorphism $\tau_{\mathbf{S}^{n}}$ onto a quadric $\mathbf{X}_{\mathbf{S}^{n}}$ by:

$$
\begin{align*}
& \tau_{\mathbf{S}^{n}}: T_{0}^{*}\left(\mathbf{S}^{n}\right) \longrightarrow \mathbf{X}_{\mathbf{S}^{n}}:=\left\{z \in \mathbf{C}^{n+1}: z \cdot z=0 \text { and } z \neq 0\right\} \tag{5.8}\\
&(x, y) \mapsto z=|y| x+\sqrt{-1} y .
\end{align*}
$$

The symplectic form $\omega_{\mathbf{S}^{n}}$ and the canonical one form $\Theta_{\mathbf{S}^{n}}$ on $T^{*}\left(\mathbf{S}^{n}\right)$ respectively are given by the restriction of $\sum d y_{k} \wedge d x_{k}$ and $\sum y_{k} \cdot d x_{k}$ on $\mathbf{R}^{n+1} \times \mathbf{R}^{n+1}$. Via (5.8) it can be shown that the symplectic form ω_{X} on $\mathbf{X}_{\mathbf{S}^{n}}$ is expressed as:

$$
\omega_{X}=\sqrt{-2} \bar{\partial} \partial|z|
$$

Let $\Omega_{\mathbf{S}^{n}}:=\frac{(-1)^{n(n-1) / 2}}{n!} \cdot \omega_{\mathbf{S}^{n}}$ be the Liouville volume form on $T_{0}^{*}\left(\mathbf{S}^{n}\right)$. Due to the isomorphism (5.8) it can be regarded as a volume form Ω_{X} on $\mathbf{X}_{\mathbf{S}^{n}}$. Let P_{X} denote the restriction
of holomorphic polynomials on \mathbf{C}^{n+1} to $\mathbf{X}_{\mathbf{S}^{n}}$. On P_{X} we consider a family of inner products depending on two real parameters (h, N) where $h>0$ and $N>-n$:

$$
\begin{equation*}
\langle p, q\rangle_{(h, N)}:=\int_{\mathbf{X}_{\mathbf{S}^{n}}} p(z) \overline{q(z)} e^{-h|z|}|z|^{N} d \Omega_{X}, \quad \quad p, q \in P_{X} \tag{5.9}
\end{equation*}
$$

By pairing of polarizations the case $h:=2 \sqrt{2} \pi$ and $N:=n / 2-1$ naturally appears and the measure $d m_{(h, N)}:=e^{-h|z|} \cdot|z|^{N} d \Omega_{X}$ corresponds to the Gaussian measure μ in (5.2). As an analog to the Segal-Bargmann space we define:

$$
H^{2}\left(\mathbf{X}_{\mathbf{S}^{n}}, d m_{(h, N)}\right):=L^{2} \text {-closure of } P_{X} \text { w.r.t. the inner product }(5.9)
$$

It can be shown that $H^{2}\left(\mathbf{X}_{\mathbf{S}^{n}}, d m_{(h, N)}\right)$ is a reproducing kernel Hilbert space. Moreover, its elements can be extended to holomorphic functions on the whole space \mathbf{C}^{n+1}. The reproducing kernel $K_{(h, N)}$ can be calculated in form of an infinite sum and involving the Gamma function. More precisely, it holds (c.f. [5]):

$$
\begin{equation*}
K_{(h, N)}(\lambda, \lambda)=C(h, n, N) \cdot \sum_{k=0}^{\infty} \frac{\Gamma(k+n-1) \cdot(2 k+n-1)}{\Gamma(2 k+N+n) \cdot \Gamma(k+1)} \cdot|h \lambda|^{2 k} \tag{5.10}
\end{equation*}
$$

with $C(h, n, N):=\frac{h^{n+N}}{\operatorname{Vol}\left(\Sigma\left(\mathbf{S}^{n}\right)\right) \cdot \Gamma(n)}$ and $\Sigma\left(\mathbf{S}^{n}\right):=\left\{z \in \mathbf{X}_{\mathbf{S}^{n}}:|z|=1\right\}$.
For $H^{2}\left(\mathbf{X}_{\mathbf{S}^{n}}, d m_{(h, N)}\right)$ we prove an asymptotic property corresponding to (5.7).
Proposition 5.1. For $N>-n$ and $h>0$ it holds:

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty}|\lambda|^{N} \cdot \exp (-|h \lambda|) \cdot K_{(h, N)}(\lambda, \lambda)=\frac{h^{n}}{2^{n-1} \cdot \operatorname{Vol}\left(\Sigma\left(\mathbf{S}^{n}\right)\right) \cdot \Gamma(n)} \tag{5.11}
\end{equation*}
$$

In particular, (5.11) can be written as $2^{-n+1} h^{-N} C(h, n, N)$ and is independent of N.
A direct computation shows, that (5.10) splits into two sums:

$$
\begin{align*}
K_{(h, N)}(\lambda, \lambda)= & C(h, n, N) \cdot\left\{2|h \lambda|^{2} \cdot \sum_{k=0}^{\infty} I(k, n, N) \cdot|h \lambda|^{2 k}\right. \\
& \left.+(n-1) \cdot \sum_{k=0}^{\infty} I(k, n-1, N-1) \cdot|h \lambda|^{2 k}\right\} \tag{5.12}
\end{align*}
$$

where

$$
I(k, n, N):=\frac{\Gamma(k+n)}{\Gamma(2 k+N+n+2) \Gamma(k+1)} .
$$

Using the expression of the Euler integral $\int_{0}^{1} t^{p-1}(1-t)^{q-1} d t$ where $p, q>0$ in terms of the Gamma function together with the well-known duplication formula:

$$
\sqrt{\pi} \cdot 2^{-2 k} \cdot \Gamma(2 k+1)=\Gamma\left(k+\frac{1}{2}\right) \cdot \Gamma(k+1)
$$

one easily verifies in case of $\frac{N-n}{2}>-1$ and $k \in \mathbf{N}_{0}$:

$$
\begin{equation*}
I(k, n, N)=\frac{E(n, N)}{(2 k)!} \cdot \int_{0}^{1} s^{k+n-1} \cdot(1-s)^{\frac{N-n}{2}} d s \cdot \int_{0}^{1} t^{k-\frac{1}{2}} \cdot(1-t)^{\frac{N+n}{2}} d t \tag{5.13}
\end{equation*}
$$

Here $E(n, N)>0$ is given by:

$$
\begin{equation*}
E(n, N):=\frac{1}{2^{N+n+1} \cdot \Gamma\left(\frac{N-n}{2}+1\right) \cdot \Gamma\left(\frac{N+n}{2}+1\right)} . \tag{5.14}
\end{equation*}
$$

Multiplying (5.13) with $x^{2 k}$ and summing up over $k \in \mathbf{N}_{0}$ leads to:

$$
\begin{equation*}
\sum_{k=0}^{\infty} I(k, n, N) \cdot x^{2 k}=\int_{0}^{1} \int_{0}^{1} \Phi_{n, N}(s, t) \cdot \cosh \{\sqrt{s t} \cdot x\} d s d t \tag{5.15}
\end{equation*}
$$

where $\Phi_{n, N}:(0,1)^{2} \rightarrow \mathbf{R}^{+}$is defined by:

$$
\begin{equation*}
\Phi_{n, N}(s, t):=E(n, N) \cdot \frac{s^{n-1}}{\sqrt{t}} \cdot(1-t)^{\frac{N+n}{2}} \cdot(1-s)^{\frac{N-n}{2}} . \tag{5.16}
\end{equation*}
$$

In (5.15) one can replace n by $n-1$ and N by $N-1$. By using (5.12) we derive the following integral expression of $K_{(h, N)}$ on the diagonal:

COROLLARY 5.5. For $\frac{N-n}{2}>-1$ and with:

$$
\begin{equation*}
\Psi_{n, N}(s, t, x):=C(h, n, N) \cdot\left\{2 x^{2} \cdot \Phi_{n, N}(s, t)+(n-1) \cdot \Phi_{n-1, N-1}(s, t)\right\} \tag{5.17}
\end{equation*}
$$

it holds:

$$
K_{(h, N)}(\lambda, \lambda)=\int_{0}^{1} \int_{0}^{1} \Psi_{n, N}(s, t,|h \lambda|) \cdot \cosh \{\sqrt{s t} \cdot|h \lambda|\} d s d t
$$

Below we analyze the asymptotic behavior of integral expressions having the form (5.15) and apply our results to the proof of Proposition 5.1.

Let $f, g: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$and $k>0$, then we write $f \sim_{k} g$ iff $\lim _{t \rightarrow \infty} t^{k} \cdot f(t)$ exists and

$$
\lim _{t \rightarrow \infty} t^{k} \cdot\{f(t)-g(t)\}=0
$$

Given a sequence of functions $g_{j}: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$where $j \in \mathbf{N}_{0}$ we write $f \sim \sum g_{j}$ and say that the (formal) series $\sum g_{j}$ represents f asymptotically for large values of t whenever:

- For all $k \in \mathbf{N}_{0}: f-\left\{g_{0}+g_{1}+\cdots+g_{k}\right\} \sim_{k} 0$ and
- there is a constant a_{k} such that $g_{k} \sim_{k} \frac{a_{k}}{t^{k}}$.

Let $\Phi:[0,1]^{2} \rightarrow \mathbf{C}$ be integrable and assume that $\rho:[0,1]^{2} \rightarrow \mathbf{R}_{\geq 0}$ is continuous. For any measurable subset $U \subset(0,1)^{2}$ we define $\mathbf{J}_{\rho, \Phi}^{U}: \mathbf{R}^{+} \rightarrow \mathbf{C}$ with $x=(s, t)$ by:

$$
\mathbf{J}_{\rho, \Phi}^{U}(x):=\int_{U} \Phi(s, t) \cdot \exp \{-\rho(s, t) \cdot x\} d x
$$

In our application we examine the case where
(1) $\Phi(s, t)=\Phi_{\alpha, \beta}(s, t):=(1-s)^{\alpha} \cdot(1-t)^{\beta}$ and $\alpha, \beta>-1$,
(2) $\rho(s, t):=1-\sqrt{s t}$.

The Taylor expansion of ρ at $x_{0}:=(1,1)$ and of first order is given by:

$$
\rho(s, t)=\tau(s, t)+\sum_{k+l>1} O\left(|1-s|^{k} \cdot|1-t|^{l}\right)
$$

where $\tau(s, t):=1-\frac{1}{2} \cdot(s+t)$. Hence it follows that:

$$
\begin{equation*}
\lim _{(s, t) \rightarrow x_{0}} \frac{\rho(s, t)}{\tau(s, t)}=1 \tag{5.18}
\end{equation*}
$$

We set $U:=[0,1]^{2}$ and determine the asymptotic behavior of $\mathbf{J}_{\tau, \Phi_{\alpha, \beta}}^{U}$:

$$
\mathbf{J}_{\tau, \Phi_{\alpha, \beta}}^{U}(x)=\exp (-x) \cdot \int_{0}^{1}(1-s)^{\alpha} \cdot \exp \left(\frac{s x}{2}\right) d s \cdot \int_{0}^{1}(1-t)^{\beta} \cdot \exp \left(\frac{t x}{2}\right) d t
$$

From

$$
\int_{0}^{1}(1-s)^{\alpha} \cdot \exp \left(\frac{s x}{2}\right) d s=\left(\frac{2}{x}\right)^{\alpha+1} \exp \left(\frac{x}{2}\right) \cdot \int_{0}^{\frac{x}{2}} t^{\alpha} \cdot \exp (-t) d t
$$

it follows that:

$$
\begin{equation*}
\mathbf{J}_{\tau, \Phi_{\alpha, \beta}}^{U}(x) \sim_{\alpha+\beta+2} \frac{2^{\alpha+\beta+2}}{x^{\alpha+\beta+2}} \cdot \Gamma(\alpha+1) \cdot \Gamma(\beta+1) . \tag{5.19}
\end{equation*}
$$

With our notations in (1) and (2) above we prove:
Lemma 5.4. Let $\Psi:[0,1]^{2} \rightarrow \mathbf{C}$ be continuous in a neighborhood V of $x_{0}:=(1,1)$ and assume that $\alpha, \beta>-1$, such that $\Psi \cdot \Phi_{\alpha, \beta}$ is integrable over V. Then

$$
\begin{equation*}
\mathbf{J}_{\rho, \Psi \cdot \Phi_{\alpha, \beta}}^{V}(x) \sim_{\alpha+\beta+2} \Psi\left(x_{0}\right) \cdot \frac{2^{\alpha+\beta+2}}{x^{\alpha+\beta+2}} \cdot \Gamma(\alpha+1) \cdot \Gamma(\beta+1) . \tag{5.20}
\end{equation*}
$$

Proof. For $1>\varepsilon>0$ and with (5.18) we choose a neighborhood $W \subset V$ of x_{0} such that:

$$
[1-\varepsilon] \cdot \tau(s, t) \leq \rho(s, t) \leq[1+\varepsilon] \cdot \tau(s, t)
$$

for all $(s, t) \in W$. Hence, by using $\Phi_{\alpha, \beta} \geq 0$ it follows for $x>0$ that:

$$
\begin{equation*}
\mathbf{J}_{\tau, \Phi_{\alpha, \beta}}^{W}([1+\varepsilon] \cdot x) \leq \mathbf{J}_{\rho, \Phi_{\alpha, \beta}}^{W}(x) \leq \mathbf{J}_{\tau, \Phi_{\alpha, \beta}}^{W}([1-\varepsilon] \cdot x) . \tag{5.21}
\end{equation*}
$$

With $\gamma \in\{\rho, \tau\}$ and $V_{0} \in\{U, V\}$ note that $\mathbf{J}_{\gamma, \Phi_{\alpha, \beta}}^{V_{0}}=\mathbf{J}_{\gamma, \Phi_{\alpha, \beta}}^{V_{0} \backslash W}+\mathbf{J}_{\gamma, \Phi_{\alpha, \beta}}^{W}$ and $\mathbf{J}_{\gamma, \Phi_{\alpha, \beta}}^{V_{0} \backslash W}$ is of order $O\left(x^{-\infty}\right)$ as $x \rightarrow \infty$. An application of (5.19) and (5.21) shows that:

$$
\begin{aligned}
& \frac{2^{\alpha+\beta+2} \cdot \Gamma(\alpha+1) \cdot \Gamma(\beta+1)}{(1+\varepsilon)^{\alpha+\beta+2}} \leq \liminf _{x \rightarrow \infty} x^{\alpha+\beta+2} \cdot \mathbf{J}_{\rho, \Phi_{\alpha, \beta}}^{V}(x) \\
& \quad \leq \limsup _{x \rightarrow \infty} x^{\alpha+\beta+2} \cdot \mathbf{J}_{\rho, \Phi_{\alpha, \beta}}^{V}(x) \leq \frac{2^{\alpha+\beta+2} \cdot \Gamma(\alpha+1) \cdot \Gamma(\beta+1)}{(1-\varepsilon)^{\alpha+\beta+2}}
\end{aligned}
$$

Because $\varepsilon>0$ was arbitrary, it follows for any neighborhood V of x_{0} :

$$
\begin{equation*}
\lim _{x \rightarrow \infty} x^{\alpha+\beta+2} \cdot \mathbf{J}_{\rho, \Phi_{\alpha, \beta}}^{V}(x)=2^{\alpha+\beta+2} \cdot \Gamma(\alpha+1) \cdot \Gamma(\beta+1) . \tag{5.22}
\end{equation*}
$$

By the continuity of Ψ we can assume that $\left|\Psi(s, t)-\Psi\left(x_{0}\right)\right|<\varepsilon$ for all $(s, t) \in W$. Moreover, by (5.22) there is $c>0$ such that $\left|x^{\alpha+\beta+2} \cdot \mathbf{J}_{\rho, \Phi_{\alpha, \beta}}^{W}(x)\right| \leq c$ for all $x>0$. Hence

$$
\left|x^{\alpha+\beta+2} \cdot \mathbf{J}_{\rho, \Psi \cdot \Phi_{\alpha, \beta}}^{W}(x)-x^{\alpha+\beta+2} \cdot \Psi\left(x_{0}\right) \cdot \mathbf{J}_{\rho, \Phi_{\alpha, \beta}}^{W}(x)\right| \leq c \cdot \varepsilon
$$

Finally, (5.22) where V is replace by W and $\mathbf{J}_{\rho, \Psi \cdot \Phi_{\alpha, \beta}}^{V \backslash W}, \mathbf{J}_{\rho, \Phi_{\alpha, \beta}}^{V \backslash W} \in O\left(x^{-\infty}\right)$ as $x \rightarrow \infty$ prove (5.20).

Corollary 5.6. Let V be a neighborhood of $x_{0}:=(1,1)$ and assume that $\Psi \in$ $C^{k}(V)$. With $\alpha, \beta>-1$ is follows in generalization of (5.20):

$$
\mathbf{J}_{\rho, \Psi \cdot \Phi_{\alpha, \beta}}^{V}(x)-\sum_{|\gamma|<k} \frac{(-1)^{|\gamma|}}{\gamma!} \cdot \frac{\partial^{|\gamma|} \Psi}{\partial x^{\gamma}}\left(x_{0}\right) \cdot \mathbf{J}_{\rho, \Phi_{\alpha+\gamma_{1}, \beta+\gamma_{2}}^{V}}(x) \sim_{\alpha+\beta+k+2} G_{k}(x)
$$

where the asymptotic of $\mathbf{J}_{\rho, \Phi_{\alpha+\gamma_{1}, \beta+\gamma_{2}}^{V}}$ is given in (5.22) and

$$
G_{k}(x):=(-1)^{k} \cdot \frac{2^{\alpha+\beta+k+2}}{x^{\alpha+\beta+k+2}} \cdot \sum_{|\gamma|=k} \frac{1}{\gamma!} \cdot \frac{\partial^{|\gamma|} \Psi}{\partial x^{\gamma}}\left(x_{0}\right) \cdot \Gamma\left(\alpha+\gamma_{1}+1\right) \cdot \Gamma\left(\beta+\gamma_{2}+1\right) .
$$

Proof. By multiplying the Taylor expansion of Ψ at $x_{0}=(1,1)$ with $\Phi_{\alpha, \beta}$ one obtains for y in a neighborhood of x_{0} that:

$$
\begin{aligned}
F(y): & =\Psi(y) \cdot \Phi_{\alpha, \beta}(y)-\sum_{|\gamma|<k} \frac{(-1)^{|\gamma|}}{\gamma!} \cdot \frac{\partial^{|\gamma|} \Psi}{\partial x^{\gamma}}\left(x_{0}\right) \cdot \Phi_{\alpha+\gamma_{1}, \beta+\gamma_{2}}(y) \\
& =(-1)^{k} \cdot \sum_{|\gamma|=k} \frac{\Psi_{\gamma}(y)}{\gamma!} \cdot \Phi_{\alpha+\gamma_{1}, \beta+\gamma_{2}}(y)
\end{aligned}
$$

where $\Psi_{\gamma}(y):=k \cdot \int_{0}^{1}(1-t)^{k-1} \cdot \frac{\partial|\gamma| \Psi}{\partial x^{\gamma}}\left(x_{0}+t \cdot\left[y-x_{0}\right]\right) d t$ and $\Psi_{\gamma}\left(x_{0}\right)=\frac{\partial^{|\gamma|} \mid}{\partial x^{\gamma}}\left(x_{0}\right)$. Lemma 5.4 shows for a neighborhood V of x_{0} that $\mathbf{J}_{\rho, F}^{V}(x) \sim_{\alpha+\beta+k+2} G_{k}(x)$.

In particular, for $\Psi \in C^{\infty}(V)$ we have proved $x^{\alpha+\beta+2} \cdot \mathbf{J}_{\rho, \Psi \cdot \Phi_{\alpha, \beta}}^{V} \sim \sum g_{j}$ where the functions g_{j} are given by:

$$
g_{j}(x):=(-1)^{j} \cdot x^{\alpha+\beta+2} \cdot \sum_{|\gamma|=j} \frac{1}{\gamma!} \cdot \frac{\partial^{|\gamma|} \Psi}{\partial x^{\gamma}}\left(x_{0}\right) \cdot \mathbf{J}_{\rho, \Phi_{\alpha+\gamma_{1}, \beta+\gamma_{2}}^{V}}^{V}(x) .
$$

Lemma 5.5 follows by straightforward arguments. We omit the proof.
Lemma 5.5. Let $a_{k}, b_{k}>0$ such that $\alpha(t):=\sum_{k \geq 0} a_{k} t^{k}$ converges on \mathbf{R}. If $\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=1$ then $\beta(t):=\sum_{k \geq 0} b_{k} t^{k}$ converges on \mathbf{R} and $\lim _{t \rightarrow \infty} \alpha(t) \cdot \beta^{-1}(t)=1$.

In Proposition 5.2 we apply Corollary 5.6 to (5.15) which holds for $\frac{N-n}{2}>-1$:
Proposition 5.2. Let $\beta:=\frac{N+n}{2}>\alpha:=\frac{N-n}{2}>-1$, then it holds:

$$
\begin{equation*}
x^{N+2} \cdot \exp (-x) \cdot \sum_{k=0}^{\infty} I(k, n, N) \cdot x^{2 k} \sim \sum g_{j} \tag{5.23}
\end{equation*}
$$

where V is a neighborhood of $(1,1)$ and with $g_{j}: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$of order $O\left(x^{-j}\right)$ as $x \rightarrow \infty$:

$$
\begin{equation*}
g_{j}(x)=(-1)^{j} \cdot \frac{E(n, N)}{2} \cdot x^{\alpha+\beta+2} \cdot \sum_{|\gamma|=j}\binom{-\frac{1}{2}}{\gamma_{1}} \cdot\binom{n-1}{\gamma_{2}} \cdot \mathbf{J}_{\rho, \Phi_{\alpha+\gamma_{1}, \beta+\gamma_{2}}^{V}}^{V}(x) . \tag{5.24}
\end{equation*}
$$

Proof. It follows from (5.15) and the notation in (5.16) that:

$$
\begin{equation*}
x^{N+2} \cdot \exp (-x) \cdot \sum_{k=0}^{\infty} I(k, n, N) \cdot x^{2 k}=x^{\alpha+\beta+2} \cdot \mathbf{J}_{\rho, \Psi \cdot \Phi_{\alpha, \beta}}(x)+O\left(x^{-\infty}\right) \tag{5.25}
\end{equation*}
$$

where $\Psi(s, t):=\frac{E(n, N)}{2} \cdot s^{n-1} \cdot t^{-\frac{1}{2}}$. In particular, it holds with $\gamma:=\left(\gamma_{1}, \gamma_{2}\right) \in \mathbf{N}_{0}^{2}$:

$$
\frac{1}{\gamma!} \cdot \frac{\partial^{|\gamma|} \Psi}{\partial x^{\gamma}}\left(x_{0}\right)=\frac{E(n, N)}{2} \cdot\binom{-\frac{1}{2}}{\gamma_{1}} \cdot\binom{n-1}{\gamma_{2}} .
$$

Finally, we can apply our remark above.
REMARK 5.1. The integral expression (5.15) of the left hand side in (5.25) is not unique. It can be checked that in the case $N+\frac{1}{2}>-1$ a second integral formula is given by:

$$
\begin{align*}
\exp (-x) \cdot \sum_{k=0}^{\infty} I(k, n, N) \cdot x^{2 k}= & \int_{0}^{1} \int_{0}^{1} \tilde{\Phi}_{n, N}(s, t) \cdot(1-t)^{N+\frac{1}{2}} \\
& \times \cosh \{-(1-2 \sqrt{s(1-s) t}) \cdot x\} d s d t \tag{5.26}
\end{align*}
$$

where

$$
\tilde{\Phi}_{n, N}(s, t):=\frac{1}{\sqrt{\pi} \cdot \Gamma\left(N+\frac{3}{2}\right)} \cdot \frac{s^{n-1} \cdot(1-s)^{N+1}}{\sqrt{t}} .
$$

Using (5.26) instead of (5.15) in the proof of Proposition 5.2 an asymptotic expansion of the form (5.23) also can be derived for $N+\frac{1}{2}>-1$. In this case the functions g_{j} are given
in terms of the integral expressions:

$$
\mathbf{I}_{\alpha, \beta}^{W}(x):=\int_{W}\left(\frac{1}{2}-s\right)^{\alpha} \cdot(1-t)^{\beta} \cdot \exp \{-(1-2 \sqrt{s(1-s) t}) \cdot x\} d x
$$

where $x=(s, t)$ and $\alpha, \beta>-1$ and W is a neighborhood of $\left(\frac{1}{2}, 1\right)$. We will not present a detailed calculation here.

According to (5.12) the kernel $K_{(h, N)}(\lambda, \lambda)$ on the diagonal can be expressed as $K_{(h, N)}(\lambda, \lambda)=F(|h \lambda|)$ with $F: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$. By (5.23) an asymptotic expansion of

$$
\begin{equation*}
x \mapsto x^{N} \cdot \exp (-x) \cdot F(x) \tag{5.27}
\end{equation*}
$$

in terms of $\mathbf{J}_{\rho, \Phi_{\alpha, \beta}}^{V}$ where V is a neighborhood of $x_{0}:=(1,1)$ can be obtained explicitly in the case $\frac{N-n}{2}>-1$. We only calculate the 0 th-order term \tilde{g}_{0} and we find that $\lim _{x \rightarrow \infty} \tilde{g}_{0}(x)$ is independent of N. This enables us to prove Proposition 5.1 in the case $N>-n$:

Proof of Proposition 5.1. Let us first assume that $\frac{N-n}{2}>-1$, then it follows from (5.14) and (5.24) in the case $j=0$ together with (5.22) and $U:=[0,1]^{2}$ that:

$$
\lim _{x \rightarrow \infty} g_{0}(x)=\frac{E(n, N)}{2} \cdot \lim _{x \rightarrow \infty} x^{\alpha+\beta+2} \cdot \mathbf{J}_{\rho, \Phi_{\alpha, \beta}}^{U}(x)=\frac{1}{2^{n}}
$$

where $\beta=\frac{N+n}{2}>\alpha=\frac{N-n}{2}>-1$. Because of (5.23) one also has:

$$
\begin{equation*}
\lim _{x \rightarrow \infty} x^{N+2} \cdot \exp (-x) \cdot \sum_{k=0}^{\infty} I(k, n, N) \cdot x^{2 k}=\frac{1}{2^{n}} \tag{5.28}
\end{equation*}
$$

In the case $-n<N \leq n-2$ we choose $k_{0} \in \mathbf{N}$ with $N+2 k_{0}>n-2$. We define:

$$
\beta(x):=\sum_{k=0}^{\infty} \frac{\Gamma\left(k+k_{0}+n\right)}{\Gamma\left(2 k+2 k_{0}+N+n+2\right) \cdot \Gamma\left(k+k_{0}+1\right)} \cdot x^{2 k} .
$$

According to Lemma 5.5 and the identity

$$
\lim _{k \rightarrow \infty} \frac{\Gamma(k+n) \cdot \Gamma\left(k+k_{0}+1\right)}{\Gamma(k+1) \cdot \Gamma\left(k+k_{0}+n\right)}=1
$$

it follows that $\lim _{x \rightarrow \infty} \beta(x) \cdot \alpha(x)^{-1}=1$ where $\alpha(x):=\sum_{k=0}^{\infty} I\left(k, n, N+2 k_{0}\right) \cdot x^{2 k}$. In particular, one obtains from (5.28) where N is replaced by $N+2 k_{0}$:

$$
\begin{equation*}
\exp (-x) \cdot \beta(x) \sim_{N+2 k_{0}+2} \exp (-x) \cdot \alpha(x) \sim_{N+2 k_{0}+2} \frac{1}{2^{n} x^{N+2 k_{0}+2}} \tag{5.29}
\end{equation*}
$$

Because $\sum_{k=0}^{\infty} I(k, n, N) \cdot x^{2 k}-x^{2 k_{0}} \cdot \beta(x)$ is a polynomial and by applying (5.29), the asymptotic (5.28) in the case $-n<N<n-2$ is given by:

$$
\lim _{x \rightarrow \infty} x^{N+2} \cdot \exp (-x) \cdot \sum_{k=0}^{\infty} I(k, n, N) \cdot x^{2 k}=\lim _{x \rightarrow \infty} x^{N+2 k_{0}+2} \cdot \exp (-x) \cdot \beta(x)=\frac{1}{2^{n}}
$$

Finally, (5.11) follows from (5.28) for $N>-n$ and (5.12) which shows that the 0thorder term \tilde{g}_{0} of the expansion (5.27) coincides with $2 \cdot C(h, n, N) \cdot g_{0}$.

Let H_{f} be the Hankel operator on $H^{2}\left(\mathbf{X}_{\mathbf{S}^{n}}, d m_{(h, N)}\right)$ where $h>0$ and $N \geq-n$.
Corollary 5.7. For $f \in L^{2}\left(\mathbf{X}_{\mathbf{S}^{n}}, \Omega_{X}\right)$ the operator H_{f} is Hilbert-Schmidt. Moreover, there is $c>0$ independent from f such that $\left\|H_{f}\right\|_{H S}=\left\|H_{\bar{f}}\right\|_{H S} \leq c \cdot\|f\|_{L^{2}\left(\mathbf{X}_{\mathbf{S}^{n}}, \Omega_{X}\right)}$.

Proof. Apply Proposition 4.1 and Proposition 5.1 which shows that there is $c>0$ with $\int_{\mathbf{X}_{\mathbf{S}^{n}}}|f(\lambda)|^{2} K_{(h, N)}(\lambda, \lambda) d m_{(h, N)}(\lambda) \leq c \cdot \int_{\mathbf{X}_{\mathbf{S}^{n}}}|f|^{2} d \Omega_{X}<\infty$.

REMARK 5.2. In [5] (see also [16] and [17]) a family of reproducing kernel Hilbert spaces with kernel $K_{(h, N)}^{\mathbf{C}}$ on rank one complex matrices A and naturally arising from the complex projective space $P^{n} \mathbf{C}$ by pairing of polarizations is introduced. Here we only state the main result on the kernel asymptotic in [5]. As an analog to the quadric case one has:

Proposition 5.3 ([5]). Let $N>-n$ and $h>0$, then

$$
\begin{equation*}
\lim _{\|A\| \rightarrow \infty} K_{(h, N)}^{\mathbf{C}}(A, A) \cdot e^{-h \sqrt{\|A\|}} \cdot\|A\|^{N}=\frac{2^{1-2 n}}{c} \cdot \frac{h^{2 n}}{\Gamma(n) \Gamma(n-1)} \tag{5.30}
\end{equation*}
$$

where $c>0$ is independent of N and h. In particular, (5.30) is independent of N.
5.4. Problems and Remarks. (1) Is there an extension of Corollary 5.4 or Theorem 5.4 to Schatten-p-class $(p \neq 2)$ or compact Hankel operators? (The compact case for H_{h} is treated in [10], [21]).
(2) Determine the bounded fix points of the Berezin transform in the case of the pluriharmonic Fock space or the spaces $H^{2}\left(\mathbf{X}_{\mathbf{S}^{n}}, d m_{(h, N)}\right)$.

References

[1] P. Ahern, M. Flores, W. Rudin, An invariant volume-mean-value property, J. Funct. Anal. 111 (1993), 380-397.
[2] J. Arazy, M. Englis, Iterates and the boundary behavior of the Berezin transform, Ann. Inst. Fourier, Grenoble 51 (4) (2001), 1101-1133.
[3] S. AXLER, D. ZHENG, Compact operators via the Berezin transform, Indiana University Math. Journ. 47 (2) (1998), 387-400.
[4] W. BauEr, Hilbert-Schmidt Hankel operators on the Segal-Bargmann space, Proc. Amer. Math. Soc. 132 (2004), 2989-2998.
[5] W. Bauer, K. Furutani, Quantization operators on quadrics, Kyushu J. Math. 62 (1) (2008), 221-258
[6] W. BAUER, K. FURUTANI, Quantization operator on quaternion projective space and Cayley projective plane, in preparation.
[7] D. BÉKOLLÉ C.A. BERGER, L.A. COBURN, K.H. ZhU, BMO in the Bergman metric on bounded symmetric domains, J. Funct. Anal. 93 no. 2 (1990), 310-350.
[8] F.A. Berezin, Quantization, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1116-1175.
[9] F.A. BEREZIN, Covariant and contravariant symbols of operators, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 1134-1167.
[10] C.A. Berger, L.A. Coburn, Toeplitz operators on the Segal-Bargmann space, Trans. Amer. Math. Soc. 301 (1987), 813-829.
[11] L.A. Coburn, Sharp Berezin Lipschitz estimates, Proc. Amer. Math. Soc. 135 (2007), 1163-1168.
[12] L.A. Coburn, A Lipschitz estimate for Berezin's operator calculus, Proc. Amer. Math. Soc. 133 No. 1 (2005), 127-131.
[13] L.A. Coburn, Singular integral operators and Toeplitz operators on odd spheres, Indiana Univ. Math. J. 23 (1973/74), 433-439.
[14] M. Englis, Compact Toeplitz operators via the Berezin transform on bounded symmetric domains, Int. Equ. Op. Theory 33 (1999), 426-455.
[15] M. Englis, Functions invariant under the Berezin transform, J. Funct. Anal. 121 no. 1 (1994), 233-254.
[16] K. Furutani, Quantization of the geodesic flow on quaternion projective spaces, Ann. Global Anal. Geom. 22 no. 1, (2002), 1-27.
[17] K. Furutani, S. Yoshizawa, A Kähler structure on the punctured cotangentbundle of complex and quaternion projective spaces and its application to geometric quantization II, Japan J. Math. 21 (1995), 355-392.
[18] S.G. Krantz, Function theory of several complex variables, AMS Chelsea Publishing, second edition, 1992.
[19] T. MAZUR, P. Pflug, M. Skwarczynski, Invariant distances related to the Bergman function, Proc. Amer. Math. Soc. 94 no. 1 (1985), 72-76.
[20] J. H. Rawnsley, A nonunitary pairing of polarizations for the Kepler problem, Trans. Amer. Math. Soc. 250 (1979), 167-180.
[21] K. Stroethoff, Hankel and Toeplitz operators on the Fock space, Michigan Math. J. 39 no. 1 (1992), 3-16.
[22] K. Stroethoff, Compact Hankel operators on weighted harmonic Bergman spaces, Glasgow Math. J. 39 no. 1 (1997), 77-84.
[23] J. XiA, D. Zheng, Standard deviation and Schatten class Hankel operators on the Segal-Bargmann space, Indiana Univ. Math. J. 53 no. 5 (2004), 1381-1399.
[24] U. Venugopalkrishna, Fredholm operators associated with strongly pseudoconvex domains in \mathbf{C}^{n}, J. Funct. Anal. 9 (1972), 349-373.
[25] K. ZHU, Hilbert-Schmidt Hankel operators on the Bergman space, Proc. Amer. Math. Soc. 109 no. 3 (1990), 721-730.

Present Addresses:

WOLFRAM BAUER
Institut FÜr Mathematik und Informatik, ERNST-MORITZ-ARNDT-UNIVERSITÄT GREIFSWALD, JAHNSTRASSE $15 \mathrm{~A}, 17487$ GREIFSWALD, GERMANY. e-mail: bauerwolfram@web.de
Kenro Furutani Department of Mathematics, Science University of Tokyo, NODA, CHIBA, 278-8510 JAPAN. e-mail: furutani@ma.noda.sut.ac.jp

[^0]: Received October 27, 2006; revised February 22, 2007
 2000 Mathematics Subject Classification: 47B35, 47B10, 32A25, 32Q15, 53D50
 Key words: Hilbert-Schmidt Hankel operators, Berezin transform, reproducing kernel, pairing of polarizations, sphere, complex projective space, kernel asymptotic
 *has been supported by a JSPS (Japanese Society for the Promotion of Science) postdoctoral fellowship (PE 05570) for North American and European Researchers.
 ${ }^{\dagger}$ has been partially supported by the Grant-in-aid Scientific Research (C) (No. 17540202), Japan Society for the Promotion of Science.

