Hyperbolic Knots with a Large Number of Disjoint Minimal Genus Seifert Surfaces

Yukihiro TSUTSUMI*

Sophia University

Abstract

It is known that any genus one hyperbolic knot in the 3-dimensional sphere admits at most seven mutually disjoint and mutually non-parallel genus one Seifert surfaces. In this note, it is shown that for any integers $g>1$ and $n>0$, there is a hyperbolic knot of genus g in the 3-dimensional sphere which bounds n mutually disjoint and mutually non-parallel genus g Seifert surfaces.

1. Introduction

It is known that any genus one hyperbolic knot in the 3-dimensional sphere S^{3} admits at most seven mutually disjoint and mutually non-parallel genus one Seifert surfaces [4]. In this paper, in contrast with the genus one case, we show the following:

THEOREM 1.1. For any integers $g>1$ and $n>0$, there is a hyperbolic knot of genus g in the 3-dimensional sphere which bounds n mutually disjoint and mutually non-parallel genus g Seifert surfaces.

2. Gluing lemmas

In this paper we say that a 3-manifold M (a knot K, a tangle T resp.) is hyperbolic if M (the exterior $E(K), E(T)$ resp.) is irreducible, ∂-irreducible, atoroidal, anannular and not Seifert fibered. Through this paper, unless stated otherwise, all manifolds are assumed to be compact, and 3-manifolds are orientable. See [1] and [3] for basic terminology in 3dimensional topology and knot theory which is not stated here.

We use the following lemmas in the proof of Theorem 1.1. The lemmas in this section are shown by a standard cut and paste argument.

Lemma 2.1. Let M be an irreducible and ∂-irreducible 3-manifold. Let F_{1} and F_{2} be disjoint homeomorphic surfaces in ∂M. If F_{1} and F_{2} are incompressible, then the manifold $M /\left(F_{1}=F_{2}\right)$ obtained from M by identifying F_{1} with F_{2} is irreducible and ∂-irreducible.

Proof. See [6, Lemma 2.1].
Lemma 2.2. Let M be an irreducible, ∂-irreducible, and atoroidal 3-manifold. Let F_{1} and F_{2} be disjoint homeomorphic surfaces in ∂M each component of which has negative Euler characteristic. Suppose that:

- $\partial M-\left(\partial F_{1} \cup \partial F_{2}\right)$ is incompressible in M,
- there is no essential annulus A in M such that a component of ∂A is contained in F_{1} and
- there is no essential annulus whose boundary is contained in $\partial M-\left(F_{1} \cup F_{2}\right)$.

Then the manifold M^{\prime} obtained by gluing F_{1} to F_{2} is hyperbolic.
Proof. See [6, Lemma 2.2].

3. Proof of Theorem $\mathbf{1 . 1}$

Proof of Theorem 1.1. Let τ be a g-string tangle such that the exterior $E(\tau)$ is hyperbolic with a totally geodesic boundary and any "linking number" of the strings is null. Let $\tilde{\tau}$ be the $2 g$-string tangle obtained from τ by multiplying each string of τ so that the "self linking number" of any band is zero. Let τ_{i} and $\tilde{\tau}_{i}$ be copies of τ and $\tilde{\tau}$ respectively. ($i=1$, $2, \ldots, n$.)

Let K be the knot illustrated in Figure 1. It is easy to see that K bounds a genus g Seifert surface S_{1} as illustrated in Figure 1, and the Alexander polynomial $\Delta_{K}(t)=(-2 t+5-$ $\left.2 t^{-1}\right)^{g}$. Then we have that $g(K)=g$.

Let S_{i} be the genus g Seifert surface for K as illustrated in Figure 2. There are $g+1$ annuli between S_{i} and S_{i+1} which cut off a 3-manifold homeomorphic to $E(\tau)$. Thus, the

Figure 2. $\quad S_{i}$ and S_{i+1}.
region between S_{i} and S_{i+1} is not a product. Since S_{n} and S_{n+1} are not isotopic, we see that S_{1} is notd isotopic to S_{n}. Hence S_{1}, \ldots, S_{n} are mutually disjoint and mutually non-parallel.

In the remainder we show that K is a hyperbolic knot.
Note that K is contained in the handlebody H illustrated in Figure 3. Then, $E\left(K, S^{3}\right)$ is obtained from the exterior of the graph Γ in Figure 4 and the exterior $E(K, H)$ by identifying ∂H with $\partial E\left(\Gamma, S^{3}\right)$.

Lemma 3.1. $\quad E(K, H)$ is irreducible, ∂-irreducible, atoroidal and there is no essential annulus whose boundary is contained in $\partial N(K, H)$.

Proof. In H there are g meridian disks P_{1}, \ldots, P_{g} which cut the pair (K, H) into (T, B), where B is a 3-ball B and T is a string as in Figure 3. For the tangle Q in the 3-ball B^{\prime} as in Figure 5, the double branched covering space Σ_{Q}^{2} is obtained from g Seifert fibered spaces each is homeomorphic to $S\left(D^{2} ; 1 / 3,-1 / 3\right)$ by attaching $2 g-21$-handles in a certain way. Therefore $H_{1}\left(\Sigma_{Q}^{2}\right)$ is isomorphic to $(\mathbf{Z} / 3 \mathbf{Z}+\mathbf{Z})^{g}+\mathbf{Z}^{g-1}$. On the other hand, the double branched covering space Σ_{T}^{2} is obtained from Σ_{Q}^{2} by $g-1$ Dehn surgeries on $g-1$ disjoint knots in Σ_{Q}^{2} as the Montesinos tricks [2] about the $g-1$ bands illustrated in Figure 5. Hence $\operatorname{Tor}\left(H_{1}\left(\Sigma_{T}^{2}\right)\right)$ cannot be eliminated by the $g-1$ Dehn surgery. Therefore T is non-trivial since the double branched covering space along the trivial tangle is torsion free. It is easy to see that T is almost trivial. Now we see from the fact that minimally knotted spatial graphs are totally knotted [5] that $E(T)$ is irreducible, ∂-irreducible and T is a prime tangle. Now it

Figure 3. $H, B=\operatorname{cl}\left(H-N\left(P_{1} \cup \cdots \cup P_{g}\right)\right)$.

Figure 4. Γ.
is easy to see that $P_{i} \cap E(K, H)$ is incompressible and we have that $E(K, H)$ is irreducible and ∂-irreducible by Lemma 2.1.

There are g meridian disks P_{1}, \ldots, P_{g} in H as noted before and $g-1$ disks P_{g+1}, \ldots, $P_{2 g-1}$ which decompose H into g 3-balls B_{i} together as in Figure 3. Notice that each tangle $\left(T_{i}, B_{i}\right)=\left(K \cap B_{i}, B_{i}\right)$ is trivial.

Suppose that there is an essential torus F in $E(K, H)$. We suppose that $F \cap \bigcup P_{i}$ is minimal among essential tori. Since $E\left(T_{i}, B_{i}\right)$ is a handlebody, F intersects some P_{i} essentially. That is, any component A of $F \cap B_{i}$ is an incompressible annulus. If A is a meridionally compressible annulus in B_{i} with respect to T_{i}, we see that T is not a prime tangle, a contradiction.

Figure 5. $\left(Q, B^{\prime}\right)$.

Then we may assume that A is meridionally incompressible. There are $3 g-1$ loops l_{j} in ∂B coming from ∂P_{i} as illustrated in Figure 3. It is easy to see that any two of l_{i} and l_{j} are not isotopic in $B-T$. Hence $F \cap \bigcup P_{i}$ is contained in one disk, say P_{i}, and ∂A is on the same side of P_{i}. We may assume that A is contained in B_{i} and any component of ∂A is not null homologous in $B_{i}-T_{i}$. Then ∂A cobounds an annulus A^{\prime} in P_{i}, and $F^{\prime}=A \cup A^{\prime}$ is a torus. By the incompressibility of F and by the minimality of $F \cap \bigcup P_{i}$, we see that F^{\prime} bounds a solid torus V and a component ℓ of ∂A^{\prime}, which is isotopic to $l_{j} \subset \partial P_{i}$ in P_{i}, goes around V at least two times. This means that the homology class represented by ℓ is not primitive in $H_{1}\left(B_{i}-T_{i}\right)$. However the homology class of l_{j} is primitive in $H_{1}\left(B_{i}-T_{i}\right)$ since it is the sum of two elements represented by two longitudes of $\operatorname{cl}\left(B_{i}-N\left(T_{i}\right)\right)$. This implies that $E(K, H)$ is atoroidal.

Suppose that there is an essential annulus A such that $\partial A \subset \partial N(K, H)$. If ∂A is meridional, then T is not a prime tangle, a contradiction. We may assume that each of $A \cap P_{1}, \ldots$, $A \cap P_{g}$ is essential. That is, $A \cap B$ is an essential rectangle R in $E(T, B)$. In this case, R becomes an essential disk in $E(T, B)$, a contradiction to the ∂-irreducibility of $E(T, B)$.

This completes the proof of Lemma 3.1.
Lemma 3.2. $E(\Gamma)$ is hyperbolic.
Proof. Note that $E(\Gamma)$ is homeomorphic to the exterior of the tangle $\tau_{1}+\tau_{2}+\cdots+\tau_{n}$, where " + " denote the sum of tangles. There are $(g+1)$-punctured spheres X_{1}, \ldots, X_{n-1} in $E(\Gamma)$ which cut $E(\Gamma)$ into $E\left(\tau_{1}\right), \ldots, E\left(\tau_{n}\right)$. Since each $E\left(\tau_{i}\right)$ is hyperbolic, there is no essential annulus A such that $\partial A \subset X_{i} \cap X_{i+1}$. Then we see from Lemma 2.2 that $E(\Gamma)$ is hyperbolic. This completes the proof of Lemma 3.2.

Then by Lemmas 2.2, 3.1 and 3.2, we see that that $E(K)$ is hyperbolic. This completes the proof of Theorem 1.1.

References

[1] W. JACO, Lectures on Three-Manifold Topology, AMS. Conference board of Math. No. 43, 1977.
[2] J. M. Montesinos, Surgery on links and double branched coverings of S^{3}, Ann. Math. Studies, 84 (1975), 227-259.
[3] D. Rolfsen, Knots and links, Publish or Perish, Inc, 1976
[4] Y. Tsutsumi, Universal bounds for genus one Seifert surfaces for hyperbolic knots and surgeries with nontrivial JSJT-decompositions, Interdiscip. Inform. Sci. 9 (2003), 53-60.
[5] M. Ozawa and Y. Tsutsumi, Minimally knotted spatial graphs are totally knotted, Tokyo J. Math. 26 (2003), 413-421.
[6] Y. Tsutsumi, Excellent non-orientable spanning surfaces with distinct boundary slopes, Topology Appl. 139 (2004), 199-210.

Present Address:
Department of Mathematics, Faculty of Science and Technology,
Keio University,
Hiyoshi 3-14-1, KOHOKU-KU, Yоконамa, 223-8522 Japan.
e-mail: yukihiro@math.keio.ac.jp

