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Hyperbolic Knots with a Large Number of Disjoint
Minimal Genus Seifert Surfaces

Yukihiro TSUTSUMI∗

Sophia University

Abstract. It is known that any genus one hyperbolic knot in the 3-dimensional sphere admits at most seven
mutually disjoint and mutually non-parallel genus one Seifert surfaces. In this note, it is shown that for any integers
g > 1 and n > 0, there is a hyperbolic knot of genus g in the 3-dimensional sphere which bounds n mutually disjoint
and mutually non-parallel genus g Seifert surfaces.

1. Introduction

It is known that any genus one hyperbolic knot in the 3-dimensional sphere S3 admits at
most seven mutually disjoint and mutually non-parallel genus one Seifert surfaces [4]. In this
paper, in contrast with the genus one case, we show the following:

THEOREM 1.1. For any integers g > 1 and n > 0, there is a hyperbolic knot of genus
g in the 3-dimensional sphere which bounds n mutually disjoint and mutually non-parallel
genus g Seifert surfaces.

2. Gluing lemmas

In this paper we say that a 3-manifold M (a knot K , a tangle T resp.) is hyperbolic
if M (the exterior E(K), E(T ) resp.) is irreducible, ∂-irreducible, atoroidal, anannular and
not Seifert fibered. Through this paper, unless stated otherwise, all manifolds are assumed
to be compact, and 3-manifolds are orientable. See [1] and [3] for basic terminology in 3-
dimensional topology and knot theory which is not stated here.

We use the following lemmas in the proof of Theorem 1.1. The lemmas in this section
are shown by a standard cut and paste argument.

LEMMA 2.1. Let M be an irreducible and ∂-irreducible 3-manifold. Let F1 and F2 be
disjoint homeomorphic surfaces in ∂M . If F1 and F2 are incompressible, then the manifold
M/(F1 = F2) obtained from M by identifying F1 with F2 is irreducible and ∂-irreducible.
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PROOF. See [6, Lemma 2.1]. �

LEMMA 2.2. Let M be an irreducible, ∂-irreducible, and atoroidal 3-manifold. Let
F1 and F2 be disjoint homeomorphic surfaces in ∂M each component of which has negative
Euler characteristic. Suppose that:

• ∂M − (∂F1 ∪ ∂F2) is incompressible in M ,
• there is no essential annulus A in M such that a component of ∂A is contained in F1

and
• there is no essential annulus whose boundary is contained in ∂M − (F1 ∪ F2).

Then the manifold M ′ obtained by gluing F1 to F2 is hyperbolic.

PROOF. See [6, Lemma 2.2]. �

3. Proof of Theorem 1.1

PROOF OF THEOREM 1.1. Let τ be a g-string tangle such that the exterior E(τ) is
hyperbolic with a totally geodesic boundary and any “linking number” of the strings is null.
Let τ̃ be the 2g-string tangle obtained from τ by multiplying each string of τ so that the “self
linking number” of any band is zero. Let τi and τ̃i be copies of τ and τ̃ respectively. (i = 1,
2, . . . , n.)

Let K be the knot illustrated in Figure 1. It is easy to see that K bounds a genus g Seifert
surface S1 as illustrated in Figure 1, and the Alexander polynomial ∆K(t) = (−2t + 5 −
2t−1)g . Then we have that g(K) = g .

Let Si be the genus g Seifert surface for K as illustrated in Figure 2. There are g + 1
annuli between Si and Si+1 which cut off a 3-manifold homeomorphic to E(τ). Thus, the

FIGURE 1. K = ∂S1.
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FIGURE 2. Si and Si+1.

region between Si and Si+1 is not a product. Since Sn and Sn+1 are not isotopic, we see that
S1 is notd isotopic to Sn. Hence S1, . . . , Sn are mutually disjoint and mutually non-parallel.

In the remainder we show that K is a hyperbolic knot.
Note that K is contained in the handlebody H illustrated in Figure 3. Then, E(K, S3) is

obtained from the exterior of the graph Γ in Figure 4 and the exterior E(K,H) by identifying

∂H with ∂E(Γ, S3).

LEMMA 3.1. E(K,H) is irreducible, ∂-irreducible, atoroidal and there is no essen-
tial annulus whose boundary is contained in ∂N(K,H).

PROOF. In H there are g meridian disks P1, . . . , Pg which cut the pair (K,H) into
(T , B), where B is a 3-ball B and T is a string as in Figure 3. For the tangle Q in the 3-ball

B ′ as in Figure 5, the double branched covering space Σ2
Q is obtained from g Seifert fibered

spaces each is homeomorphic to S(D2; 1/3,−1/3) by attaching 2g − 2 1-handles in a certain

way. Therefore H1(Σ
2
Q) is isomorphic to (Z/3Z+Z)g +Zg−1. On the other hand, the double

branched covering space Σ2
T is obtained from Σ2

Q by g − 1 Dehn surgeries on g − 1 disjoint

knots in Σ2
Q as the Montesinos tricks [2] about the g − 1 bands illustrated in Figure 5. Hence

Tor(H1(Σ
2
T )) cannot be eliminated by the g − 1 Dehn surgery. Therefore T is non-trivial

since the double branched covering space along the trivial tangle is torsion free. It is easy to
see that T is almost trivial. Now we see from the fact that minimally knotted spatial graphs
are totally knotted [5] that E(T ) is irreducible, ∂-irreducible and T is a prime tangle. Now it
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FIGURE 3. H , B = cl(H − N(P1 ∪ · · · ∪ Pg )).

FIGURE 4. Γ .

is easy to see that Pi ∩ E(K,H) is incompressible and we have that E(K,H) is irreducible
and ∂-irreducible by Lemma 2.1.

There are g meridian disks P1, . . . , Pg in H as noted before and g − 1 disks Pg+1, . . . ,
P2g−1 which decompose H into g 3-balls Bi together as in Figure 3. Notice that each tangle
(Ti, Bi) = (K ∩ Bi, Bi) is trivial.

Suppose that there is an essential torus F in E(K,H). We suppose that F ∩⋃
Pi is min-

imal among essential tori. Since E(Ti, Bi) is a handlebody, F intersects some Pi essentially.
That is, any component A of F ∩Bi is an incompressible annulus. If A is a meridionally com-
pressible annulus in Bi with respect to Ti , we see that T is not a prime tangle, a contradiction.
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FIGURE 5. (Q,B ′).

Then we may assume that A is meridionally incompressible. There are 3g − 1 loops lj in ∂B

coming from ∂Pi as illustrated in Figure 3. It is easy to see that any two of li and lj are not
isotopic in B − T . Hence F ∩ ⋃

Pi is contained in one disk, say Pi , and ∂A is on the same
side of Pi . We may assume that A is contained in Bi and any component of ∂A is not null
homologous in Bi − Ti . Then ∂A cobounds an annulus A′ in Pi , and F ′ = A ∪ A′ is a torus.
By the incompressibility of F and by the minimality of F ∩ ⋃

Pi , we see that F ′ bounds a
solid torus V and a component � of ∂A′, which is isotopic to lj ⊂ ∂Pi in Pi , goes around V

at least two times. This means that the homology class represented by � is not primitive in
H1(Bi −Ti). However the homology class of lj is primitive in H1(Bi −Ti) since it is the sum
of two elements represented by two longitudes of cl(Bi − N(Ti)). This implies that E(K,H)

is atoroidal.
Suppose that there is an essential annulus A such that ∂A ⊂ ∂N(K,H). If ∂A is merid-

ional, then T is not a prime tangle, a contradiction. We may assume that each of A ∩ P1, . . . ,
A ∩ Pg is essential. That is, A ∩ B is an essential rectangle R in E(T ,B). In this case, R

becomes an essential disk in E(T ,B), a contradiction to the ∂-irreducibility of E(T ,B).
This completes the proof of Lemma 3.1. �

LEMMA 3.2. E(Γ ) is hyperbolic.

PROOF. Note that E(Γ ) is homeomorphic to the exterior of the tangle τ1 +τ2+· · ·+τn,
where “+” denote the sum of tangles. There are (g + 1)-punctured spheres X1, . . . , Xn−1 in
E(Γ ) which cut E(Γ ) into E(τ1), . . . , E(τn). Since each E(τi) is hyperbolic, there is no
essential annulus A such that ∂A ⊂ Xi ∩ Xi+1. Then we see from Lemma 2.2 that E(Γ ) is
hyperbolic. This completes the proof of Lemma 3.2. �

Then by Lemmas 2.2, 3.1 and 3.2, we see that that E(K) is hyperbolic. This completes
the proof of Theorem 1.1.
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