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Geometric Morita Equivalence for Twisted Poisson Manifolds
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Abstract. We introduce notions of Morita equivalence for both twisted symplectic groupoids and integrable
twisted Poisson manifolds without terms of groupoids. We show that two integrable twisted Poisson manifolds are
Morita equivalent if and only if their associated groupoids are Morita equivalent as twisted symplectic groupoids.

0. Introduction

Morita equivalence was introduced to Poisson Geometry by P. Xu [17], [18]. If two
Poisson manifolds are Morita equivalent, their representation categories are equivalent like
algebraic Morita theory. Subsequently, he defined the notion of Morita equivalence for quasi-
symplectic groupoids to discuss the momentum map theory [16].

Our purpose in this paper is to introduce Morita equivalence for twisted Poisson man-
ifolds which are integrable. A twisted Poisson manifold is a smooth manifold M equipped

with a bivector π ∈ Γ (∧2TM) and a closed 3-form φ ∈ Ω3(M) which satisfy 1
2 [π, π]SN =

∧3π�(φ), where [·, ·]SN denotes the Schouten-Nijenhuis bracket and π� means a contraction,
namely, π� : T ∗M → TM . This concept arose from physics and was called WZW-Poisson
manifold [14]. The integrability means that there exists a twisted symplectic groupoid whose
source fiber is simply-connected over a twisted Poisson manifold. Here, a twisted symplectic
groupoid is a quasi-groupoid (G ⇒ G0, ω,ψ) such that the 2-form ω is non-degenerate. The
notion of Morita equivalence for twisted symplectic groupoids can be defined by adding the
non-degeneracy condition to the one for quasi-symplectic groupoids. Therefore, one of the
way to define Morita equivalence for twisted Poisson manifolds is to use the one for twisted
symplectic groupoids. However, we define Morita equivalence for them without the notion of
groupoids and show that this definition without using the terms of groupoids is equivalent to
the one which we define in terms of twisted symplectic groupoids, namely

MAIN THEOREM. Two integrable twisted Poisson manifolds P and Q are Morita
equivalent if and only if their twisted symplectic groupoids Γ (P) and Γ (Q) whose respective
source fibers are simply-connected are Morita equivalent as twisted symplectic groupoids.
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1. Preliminaries

1.1. Twisted Poisson structures. Let M be a smooth manifold, and φ a closed 3-
form onM . A bivector π ∈ Γ (∧2TM) is called a φ-twisted Poisson bivector if it satisfies the
following condition:

1

2
[π, π]SN = ∧3π�(φ) . (1)

A φ-twisted Poisson manifold is a smooth manifold M equipped with a φ-twisted Poisson
bivector π . This can be understood by means of Dirac structure. We define the following two
operations 〈·, ·〉+, [| ·, · |] on Γ (TM ⊕ T ∗M):

1. 〈(X, ξ), (Y, η)〉+ = ξ(Y )+ η(X) ∈ C∞(M);
2. [| (X, ξ), (Y, η) |] = ([X,Y ], LXη + iY dξ + iX∧Y φ) ∈ Γ (TM ⊕ T ∗M).

A subbundleL ⊂ TM⊕T ∗M is called a φ-twisted Dirac structure if the following conditions
are satisfied:

1. L is maximal isotropic with regard to the first pairing 〈·, ·〉+;
2. L is closed with regard to the second bracket [| ·, · |].

Here, maximal isotropic means that the rank of L is equal to dim M and 〈·, ·〉+ is identically
0 on Γ (L). A bivector π becomes a φ-twisted Poisson bivector if and only if the graph
Lπ ⊂ TM ⊕ T ∗M of π has a φ-twisted Dirac structure.

Similarly, the graph induced by a non-degenerate 2-form ω which satisfies dω + φ = 0
is a φ-twisted Dirac structure. Then ω is called a φ-twisted symplectic form.

One of the remarkable properties for φ-twisted Poisson manifold is that the Jacobi iden-
tity does not necessarily hold. We define brackets and Hamiltonian vector fields by using a
φ-twisted Poisson bivector π ;

{f, g} = π(df, dg) , Hf = π�(df ) .
Then, (1) is equivalent to the condition

{{f, g}, h} + {{g, h}, f } + {{h, f }, g} + φ(Hf ,Hg ,Hh) = 0 (2)

for all smooth functions f, g, h. Here, we give some examples.

EXAMPLE 1.1. Let A be a set of elements (x1, x2, x3, x4) ∈ R4 that satisfy x1 = 0

or x3 = 0. For a closed 3-form φ = ((1/x3
2)dx2 − (1/x1

2)dx4) ∧ dx1 ∧ dx3 on R4 \ A, a
bivector π = x3(∂/∂x1)∧(∂/∂x2)+x1(∂/∂x3)∧(∂/∂x4) satisfies the condition (1) . Namely,

(R4 \ A,π, φ) is a φ-twisted Poisson manifold.

EXAMPLE 1.2. The set of 2×2 matrices with real entriesM2(R) has a twisted Poisson
structure. Let Ei(i = 1, 2, 3, 4) be a standard basis ofM2(R) and we denote the dual basis of
Ei by Ei∗(i = 1, 2, 3, 4). By giving a bivector π = E1 ∧ E4 + E2 ∧ E3 for a closed 3-form
φ = −(E1

∗ + E4
∗) ∧E2

∗ ∧ E3
∗, π is a φ-twisted Poisson bivector on M2(R).

1.2. Dirac maps. Let (Q, LQ) and (P , LP ) be φQ-twisted and φP -twisted Dirac
structures, respectively. A smooth map J : Q→ P is said to be a forward Dirac map when
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the following condition holds for all x ∈ Q:

(LP )J (x) = { (J∗(V ), η) | V ∈ TxQ, η ∈ T ∗J (x)P and (V , η ◦ J∗) ∈ (LQ)x} .
If both Q and P are twisted Poisson manifolds, we call the forward-Dirac map J : Q → P

(φQ, φP )-twisted Poisson map. A (φQ, φP )-twisted Poisson map J : Q → P implies the
following condition:

πP (α, β) = πQ(J ∗α, J ∗β) (3)

for any 1-form α, β ∈ Ω1(P ). Then the next lemma follows from (1) and (3) .

LEMMA 1.3. Let (Q, πQ, φQ) and (P, πP , φP ) be twisted Poisson manifold. Suppose
that J : Q → P is a (φQ, φP )-twisted Poisson map, then φQ and φP satisfy the following
condition:

∧3(π
�
Q ◦ J ∗)(φQ) = ∧3π

�
P (φP )

Here, we define a analogue of a symplectic realization for a subsequent discussion.

DEFINITION 1.4. Let (P, π, φ) be a φ-twisted Poisson manifold. A twisted symplec-
tic realization of (P, π, φ) is an forward Dirac map J : Q → P , where Q is a J ∗φ-twisted
symplectic manifold.

2. Morita equivalence for twisted symplectic groupoids

We need some preparations before discussing Morita equivalence of twisted Poisson
manifolds. Suppose that there is a left (or right) action of a Lie groupoid G over X on a
smooth manifold M . The groupoid action is called principal with regard to a smooth map
J : M → Y between M and any smooth manifolds Y if J is surjective submersion and G
acts on freely and transitively on each fiber of J .

If Lie groupoids G and H act on a smooth manifold X from the left and right, respec-
tively, and the actions commute, we call X a (G,H)-bibundle. A (G,H)-bibundle is left
principal when the left G-action is principal with regard to the momentum map for the right
H -action. Similarly, it is called right principal when the right H -action is principal with re-
gard to the momentum map for the left G-action, and biprincipal when it is principal with
regard to both left and right actions.

P. Xu introduced Morita equivalence for quasi-symplectic groupoids in [16]. We can
define Morita equivalence for twisted symplectic groupoids easily by deforming his definition.

A φ-twisted symplectic groupoid Γ is a Lie groupoid equipped with a non-degenerate
2-form ω such that φ + ω is 3-cocycle in the bar-de Rham complex obtained from Γ . That is
to say, a Lie groupoid Γ1 ⇒ Γ0 is called φ-twisted symplectic groupoid if and only if it has

a non-degenerate 2-form ω ∈ Ω2(Γ1) and a closed 3-form φ ∈ Ω3(Γ0) which satisfies the
following conditions:

1. dω = s∗φ − t∗φ;
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2. A 2-form ω ⊕ ω ⊕ (−ω) vanishes on the graph of the groupoid multiplication

graph(Γ (2)1 → Γ1) ⊂ Γ1 × Γ1 × Γ1,

where s and t are the source and target maps of Γ1 ⇒ Γ0 respectively, and Γ (2)1 denotes a fiber

product with regard to source and target maps. Namely, Γ (2)1 = { (g, h) | g, h ∈ Γ1, s(g) =
t (h) }.

EXAMPLE 2.1. Let (P, ω, φ) be a φ-twisted symplectic manifold. Then the pair
groupoid (P × P ⇒ P,ω ⊕ (−ω), φ ⊕ (−φ)) is a φ-twisted symplectic groupoid.

DEFINITION 2.2. Twisted symplectic groupoids (G ⇒ G0, ωG, φG) and (H ⇒
H0, ωH , φH ) are said to be Morita equivalent if there exists a biprincipal (G,H)-bibundle

G0
ρ← X

σ→ H0 together with a non-degenerate 2-form ωX ∈ Ω2(X) such that
1. dωX + ρ∗φG − σ ∗φH = 0;
2. A 2-form ωG⊕ (−ωH )⊕ωX⊕ (−ωX) vanishes on the graph of the (G×H)-action

Λ ⊂ G × H × X × X, where the action is given by (g, h) · x = gxh−1 for any
g ∈ G,h ∈ H, x ∈ X such that s(g) = ρ(x) and s(h) = σ(x).

Note that the following proposition holds:

PROPOSITION 2.3. Let (G ⇒ G0, ωG, φG) and (H ⇒ H0, ωH , φH ) be twisted sym-
plectic groupoids, and X a biprincipal (G,H)-bibundle equipped with a non-degenerate 2-
form. Then, the following are equivalent:

1. ωG⊕ωX⊕ (−ωX) vanishes on the graph ofG-action, and ωX⊕ωH ⊕ (−ωX) also
does on the graph of H -action;

2. A 2-form ωG⊕ (−ωH )⊕ωX⊕ (−ωX) vanishes on the graph of the (G×H)-action

Λ ⊂ G × H × X × X, where the action is given by (g, h) · x = gxh−1 for any
g ∈ G,h ∈ H, x ∈ X such that s(g) = ρ(x) and s(h) = σ(x).

PROOF. Suppose that p is any point in Λ and the mappings

t �→ (gi (t), hi(t), xi(t), ui(t)) ∈ Λ (ui(t) = gi (t) · xi(t) · hi(t)−1, i = 1, 2) (4)

are any smooth path through p at t = 0.
We consider two new paths in the graph of the left action ofG onX denoted by graph(G∗X→
X) by using (4)

t �→ (gi (t), xi(t), vi(t))

where vi = gi (t) · x(t). Then we obtain

ωG(g ′1(0), g ′2(0))+ ωX(x ′1(0), x ′2(0))− ωX(v′1(0), v′2(0)) = 0 (5)

by the assumption.
Similarly, by considering the following two paths in the graph of the right action of H

on X denoted by graph(X ∗H → X)

t �→ (ui(t), hi(t), vi(t)) .
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We obtain

ωX(u
′
1(0), u

′
2(0))+ ωH (h′1(0), h′2(0))− ωX(v′1(0), v′2(0)) = 0 . (6)

By (5) and (6) , we can verify

ωG(g ′1(0), g
′
2(0))− ωH (h′1(0), h′2(0))+ ωX(x ′1(0), x ′2(0))− ωX(u′1(0), u′2(0)) = 0 .

Conversely, suppose that the condition 2. in Proposition 2.3 holds, and we define two
path in graph(G ∗X→ X)

t �→ (αi(t), βi(t), γi(t)) (γi(t) = αi(t) · βi(t), i = 1, 2) (7)

We construct new paths as follows by using (7)

t �→ (αi(t), κi(t), γi(t)) , (i = 1, 2)

where κi(t) = εH ◦ σ ◦ βi(t). Here εH is the identity section of H . By the assumption, we
then obtain

ωG(α
′
1(0), α

′
2(0))+ ωX(β ′1(0), β ′2(0))− ωH (κ ′1(0), κ ′2(0))− ωX(γ ′1(0), γ ′2(0)) = 0 .

Here, we notice ωH(κ ′1(0), κ ′2(0)) = 0. becauseH is twisted symplectic groupoid. Therefore,
it follows that

ωG(α
′
1(0), α

′
2(0))+ ωX(β ′1(0), β ′2(0))− ωX(γ ′1(0), γ ′2(0)) = 0 .

Similarly, we obtain

ωX(λ
′
1(0), λ

′
2(0))+ ωH (µ′1(0), µ′2(0))− ωX(ν′1(0), ν′2(0)) = 0

from the following two paths in graph(X ∗H → X).

t �→ (λi(t), µi(t), νi(t)) (νi(t) := λi(t) · µi(t), i = 1, 2)

�

We observe that twisted symplectic groupoids (G ⇒ G0, ωG, φG) and (H ⇒
H0, ωH , φH ) are Morita equivalent if and only if there exists a biprincipal (G,H)-bibundle

G0
ρ← X

σ→ H0 together with a non-degenerate 2-form ωX such that dωX+ρ∗φG−σ ∗φH =
0 and they satisfy either of the conditions in Proposition 2.3.

3. Morita equivalence for integrable twisted Poisson manifolds

Given a Lie groupoid G ⇒ X, we can construct Lie algebroid whose fiber on x ∈ X is
Ker(ds)x , where s is a source map of the Lie groupoid. We denote by A(G) the Lie algebroid
associated with G ⇒ X. A Lie algebroid A is said to be integrable if there exists a Lie
groupoidG such that A(G) is isomorphic to A.



190 YUJI HIROTA

If (P, π, φ) is a φ-twisted Poisson manifold, then the cotangent bundle T ∗P has Lie
algebroid structure with bracket

[α, β] = Lπ�αβ − Lπ�βα + d(π(α, β))+ φ(π�α, π�β, ·)
for all α, β ∈ Ω1(P ). A φ-twisted Poisson manifold P is called integrable when the Lie
algebroid T ∗P is integrable. As is explained in [6], there exists twisted symplectic groupoid
Γ (P) over P whose fibers are source-simply connected if and only if P is integrable.

Let us recall how to construct Γ (P) from T ∗P . A C1-curve a : [0, 1] → T ∗P is called
cotangent path if

(π� ◦ a)(t) = d

dt
(� ◦ a)

where � : T ∗P → P is a bundle projection, and � ◦ a is of class C2. We denote the space
of cotangent paths with the topology of uniform convergence by P(T ∗P).

Given a TM-connection ∇̃ on T ∗P , we define a connection ∇ on T ∗P by ∇αβ :=
∇̃π�αβ. Then, the torsion of ∇ is defined as usual:

T∇(α, β) = ∇αβ −∇βα − [α, β]
.

Let us fix a connection ∇ with torsion T∇ and a family of cotangent path aε which is of

class C2 on ε and the base paths� ◦ aε have fixed end points. Then the differential equation

∂tb − ∂εaε = T∇(aε, bε) , b(ε, 0) = 0

has a unique solution b(ε, t). Moreover the solution does not depend on ∇ (see [8]).
The cotangent paths a1, a2 are said to be homotopic and write a1 ∼ a2, if there exists a

family aε(t) of cotangent paths with the property that the solution b of the above differential
equation satisfies b(ε, 1) = 0 for any ε ∈ [0, 1]. We denote by Γ (P) the space of cotangent
homotopy classes of cotangent paths, that is Γ (P) = P(T ∗P)/ ∼. It is known that Γ (P) ⇒
P becomes a twisted symplectic groupoid with source-simply connected fibers (see [2], [6]
and [8]).

DEFINITION 3.1. Let P and Q be integrable φP -twisted and φQ-twisted Poisson
manifolds, respectively. P and Q are said to be Morita equivalent when there exists a
smooth manifold X together with a non-degenerate 2-form ωX and two surjective submer-
sions J1 : X→ P and J2 : X→ Q which satisfy the following conditions:

1. J1 and J2 are complete twisted symplectic realization and complete anti-twisted
symplectic realization, respectively;

2. (X,ωX) is a (J1
∗φP − J2

∗φQ)-twisted symplectic manifold;
3. J1 and J2 have connected, and simply-connected fibers;
4. {J1

∗C∞(P ), J2
∗C∞(Q)}X = 0

where {·, ·}X is the Poisson bracket induced from non-degenerate 2-form ωX.
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EXAMPLE 3.2. In the case of φP = φQ = 0, our definition of Morita equivalence
corresponds to the one for usual Poisson manifolds (see [18]).

EXAMPLE 3.3. Let S be an ordinary symplectic manifold which is connected. We de-

note by S the universal cover of S with base point p. Then S is a biprincipal (Γ (S), π(S, p))-
bibundle. Note that π(S, p) ⇒ {p} is a symplectic groupoid over the zero-dimensional Pois-
son manifold p (see [3] and [4]).

If two integrable twisted Poisson manifolds P and Q are Morita equivalent, the twisted
symplectic groupoids which are associated with them respectively must be Morita equivalent
in the meaning of Definition 2.2.

In order to prove Main Theorem, we prepare the following proposition.

PROPOSITION 3.4. Suppose that integrable twisted Poisson manifolds P and Q are

Morita equivalent P
ρ← X

σ→ Q. Then it follows that [Hρ∗f ,Hσ ∗g ] = 0 for any smooth
functions f ∈ C∞(P ) and g ∈ C∞(Q).

PROOF. We note that the following claim (∗) holds for any h ∈ C∞(X):
([Hρ∗f ,Hσ ∗g ] +H{ρ∗f,σ ∗g})h = (ρ∗φP − σ ∗φQ)(Hρ∗f ,Hσ ∗g ,Hh) . (∗)

Assuming this claim for the moment, we complete the proof. From the assumption that X is
φ-twisted symplectic manifold and {ρ∗C∞(P ), σ ∗C∞(Q)}X = 0, we have

[Hρ∗f ,Hσ ∗g ]h = −dωX(Hρ∗f ,Hσ ∗g ,Hh)
= (iHσ∗gdiHρ∗f ωX − iHσ∗gLHρ∗f ωX)(Hh)
= (LHσ∗g iHρ∗f ωX)(Hh)− (iHσ∗gLHρ∗f ωX)(Hh) .

The first term in the right hand side is

LHσ∗g iHρ∗f ωX(Hh) = (LHσ∗gd(ρ∗f ))(Hh) = Hh(Hσ ∗g (ρ∗f ))
= Hh(ωX(Hρ∗f ,Hσ ∗g )) = 0 .

Similarly, the second term is

(iHσ∗gLHρ∗f ωX)(Hh) = LHρ∗f iHσ∗gωX(Hh)− i[Hρ∗f ,Hσ∗g ]ωX(Hh)
= −i[Hρ∗f ,Hσ∗g ]ωX(Hh) .

Therefore, we obtain

[Hρ∗f ,Hσ ∗g ]h = i[Hρ∗f ,Hσ∗g ]ωX(Hh) = −iHhωX([Hρ∗f ,Hσ ∗g ])
= −dh([Hρ∗f ,Hσ ∗g ]) = −[Hρ∗f ,Hσ ∗g ]h ,

which implies [Hρ∗f ,Hσ ∗g ]h = 0, �

It remains to show the claim (∗) in Proposition 3.4
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CLAIM. Let P be a φ-twisted Poisson manifold. Then the following equation holds

([Hf ,Hg ] +H{f,g})h = φ(Hf ,Hg ,Hh) (f, g, h ∈ C∞(P )) (8)

PROOF. Note that the left hand side is equivalent to {h, {f, g}}+{f, {g, h}}+{g, {h, f }}.
Then (8) is easily obtained from (2). �

Let us assume that J : Q → P is a complete (φQ, φP )-twisted Poisson map which
satisfies φQ = J ∗φP , where completeness means that the Hamiltonian vector field HJ ∗f is
complete for any complete Hamiltonian vector field Hf on P . Then due to φQ = J ∗φP , we
can verify that J : Q→ P induces a Lie algebroid action of T ∗P on Q by

Ω1(P )→ X(Q) , α �→ π
�
Q(J

∗α)

We can see that this Lie algebroid action raises a groupoid action of Γ (P) on Q when P is
integrable(see [1], [7] and [12]). We prove Main Theorem on the basis of this fact.

PROOF. Let us assume that two integrable twisted Poisson manifoldP andQ are Morita

equivalent. From Proposition 3.4, we obtain that θJ1
s ◦ θJ2

t = θJ2
t ◦ θJ1

s whenever either side

is defined. Here we denote by θJit (i = 1, 2) the Hamiltonian flow induced by a smooth
function J ∗i f . The commutativity for Hamiltonian flows shows that two groupoid actions
commute with each other (see [9], [11] and [18]). The proof for that X is biprincipal (Γ (P),
Γ (Q))-bibundle is the same as that for Theorem 3.2 in [18]. According to the fact mentioned
above, the left groupoid action of Γ (P) on J1 : X → P and right groupoid action of Γ (Q)
on J2 : X → Q− arise respectively. We consider the groupoid action of Γ (P) × Γ (Q) on
J1 × J2 : X → P × Q− obtained from their two actions, where Γ (P) × Γ (Q)-action is
given by (g, h) · x := gxh−1 for any x ∈ X, g ∈ G, h ∈ H such that s(g) = J1(x) and
s(h) = J2(x). The map J1 × J2 : X → P ×Q− is complete, and X is (J1

∗φP − J2
∗φQ)-

twisted symplectic manifold. Therefore we can see that a non-degenerate 2-form ωΓ (P ) ⊕
(−ωΓ (Q))⊕ ωX ⊕ (−ωX) vanishes on the graph of Γ (P)× Γ (Q)-action by using Corollary
7.4 in [2]. It is shown that the condition 2 in Definition 2.2 holds.

Conversely, suppose that Γ (P) ⇒ P and Γ (Q) ⇒ Q are Morita equivalent as twisted
symplectic groupoids. It is clear that biprincipal (Γ (P), Γ (Q))-bibundle X has a (J ∗1 φP −
J ∗2 φQ)-twisted symplectic structure. The groupoid Γ (P) ⇒ P acts on X from the left such
that ωΓ (P ) ⊕ ωX ⊕ (−ωX) vanishes on the graph of Γ (P)-action. Therefore, J1 : X → P

is complete Poisson map (see [11] and [18]). We can prove that J2 : X → Q is complete
anti-Poisson map in the same way. �
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