Integral Points and the Rank of Elliptic Curves over Imaginary Quadratic Fields

Michitaka KOJIMA

Waseda University
(Communicated by Y. Yamada)

Abstract

One of Silverman's results gives a relationship between the number of integral points and the rank of elliptic curves over \mathbf{Q}. This paper generalizes this result for all imaginary quadratic fields.

1. Introduction

Let $f(x, y)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3} \in \mathbf{Z}[x, y]$ be a homogeneous polynomial of degree 3 with non-zero discriminant. The discriminant is given by

$$
\operatorname{disc}(f)=-27 a^{2} d^{2}-4 a c^{3}+18 a b c d-4 b^{3} d+b^{2} c^{2}
$$

For each non-zero integer $m \in \mathbf{Z}$, let C_{m} be the projective curve

$$
C_{m}: f(x, y)=m z^{3}
$$

The curve C_{m} is non-singular, since $\operatorname{disc}(f) \neq 0$. Suppose that C_{m} has a Q-rational point. Then C_{m} has a structure of an elliptic curve defined over \mathbf{Q}. It is well known that the set $C_{m}(\mathbf{Q})$ forms a finitely generated abelian group, and the order of its torsion part is bounded by 16. Namely the size of $C_{m}(\mathbf{Q})$ is measured by $\operatorname{rank}\left(C_{m}(\mathbf{Q})\right)$, the Mordell-Weil rank of $C_{m}(\mathbf{Q})$. On the other hand, Siegel proved the following fundamental result about the number of integral points:

Theorem (Siegel [9] Ch. 9). The number $N_{f}(m)$ of solutions $(x, y) \in \mathbf{Z}^{2}$ of the equation $f(x, y)=m$ is finite.

The method developed by J. Silverman allows one to give an effective bound for $N_{f}(m)$ in terms of $\operatorname{rank}\left(C_{m}(\mathbf{Q})\right)$.

Theorem (J. Silverman [6]). There are constants κ and m_{0}, with κ absolute and m_{0} depending on f, so that for all cube-free integers m satisfying $|m|>m_{0}$,

$$
N_{f}(m)<\kappa^{\operatorname{rank}\left(C_{m}(\mathbf{Q})\right)+1} .
$$

One naturally asks if this result can be generalized for any number field. In the following, we formulate our problem.

Let K be a number field and let $f(x, y) \in o_{K}[x, y]$ be a homogeneous polynomial of degree 3 with distinct roots in \bar{K}. For each non-zero integer $\beta \in o_{K}$, let

$$
\begin{equation*}
N_{f}(\beta)=\#\left\{(x, y) \in o_{K} \times o_{K} \mid f(x, y)=\beta\right\} \tag{1}
\end{equation*}
$$

and let C_{β} be the smooth curve

$$
\begin{equation*}
C_{\beta}: f(x, y)=\beta z^{3} . \tag{2}
\end{equation*}
$$

From Siegel's theorem, $N_{f}(\beta)$ is finite and if $N_{f}(\beta)>0$, then C_{β} has a structure of an elliptic curve defined over K.

Now we state our problem. In view of Silverman's result and the main theorem of this paper, it may be called a conjecture.

Conjecture. There are constants $\kappa>0, M>0$ with κ depending only on K and M depending on f such that, for all cube-free integers $\beta \in o_{K}$ (i.e., integers divisible by no cube of prime ideals of K) satisfying $H_{K}(\beta) \geq M$, we have

$$
N_{f}(\beta)<\kappa^{\operatorname{rank} C_{\beta}(K)+1}
$$

where H_{K} is a height function (see section 2).
Our main result asserts that this conjecture is true for the case where K is an imaginary quadratic field.

THEOREM A. The conjecture is true for the case where K is an arbitrary imaginary quadratic field.

The proof of Theorem A consists of three steps. First, we give an upper bound for the height of the integral solutions to the equation $f(x, y)=\beta$ (Proposition B). Next, we look at the rational points on elliptic curves of the form

$$
E_{\beta D}: y^{2}=x^{3}+\beta D
$$

and prove a similar bound for the number of points whose height is bounded in a certain fashion (Proposition C). Finally we map the equation $f(x, y)=\beta$ to its Jacobian, which has a Weierstrass model of the form $E_{\beta D}$, and this allows us to combine the previous two steps to bound the number of integral solutions to the equation $f(x, y)=\beta$.

2. The Size of Solutions

In this section we give an upper bound for the height of the integral solutions to the equation $f(x, y)=\beta$. Before stating our proposition, we set notations and review the definitions of the height functions briefly.

Definitions. Let M_{K} be a complete set of primes of K. For each $v \in M_{K}$, let $|\cdot|_{v}$ be the normalized valuation on K which belongs to v and let $n_{v}=\left[K_{v}: \mathbf{Q}_{v}\right]$ be the local degree
at v, where a normalized valuation means that its restriction to \mathbf{Q} is one of the normalized valuations on \mathbf{Q}. Let $P \in \mathbf{P}^{N}(K)$ be a point with homogeneous coordinates

$$
P=\left[x_{0}, \ldots, x_{N}\right], \quad x_{i} \in K
$$

The height of P (relative to K) is defined by

$$
H_{K}(P)=\prod_{v \in M_{K}} \max \left\{\left|x_{0}\right|_{v}, \ldots,\left|x_{N}\right|_{v}\right\}^{n_{v}}
$$

Further, the absolute height H and the absolute logarithmic height h of P are defined by

$$
H(P)=H_{K}(P)^{1 /[K: \mathbf{Q}]} \quad \text { and } \quad h(P)=\log H(P),
$$

respectively.
Also for each $x \in K$ the three types of heights of x are defined as follows

$$
H_{K}(x)=H_{K}([x, 1]), \quad H(x)=H([x, 1]) \quad \text { and } \quad h(x)=\log H(x) .
$$

Finally, let E / K be an elliptic curve defined over K and let $g \in \bar{K}(E)$ be a non-constant even function. Then for each $P \in E(\bar{K})$ the absolute height H_{g}, the absolute logarithmic height h_{g}, and the canonical height \hat{h} (relative to g) are defined by

$$
H_{g}(P)=H(g(P)), \quad h_{g}(P)=h(g(P)) \quad \text { and } \quad \hat{h}(P)=\frac{1}{\operatorname{deg}(g)} \lim _{n \rightarrow \infty} 4^{-n} h_{g}\left(\left[2^{n}\right] P\right)
$$

respectively.
Now we state our proposition.
Proposition B. Let K be an imaginary quadratic field and $f(x, y) \in o_{K}[x, y] a$ homogeneous polynomial of degree 3 with non-zero discriminant. Then there are constants $c>0$ and $\gamma>0$ with c depending only on K and γ depending on f so that for all non-zero integers $\beta \in o_{K}$ the integral solutions $(x, y) \in o_{K} \times o_{K}$ to the equation $f(x, y)=\beta$ satisfy

$$
H(x), H(y)<\gamma H(\beta)^{c} .
$$

Proof. Write

$$
f(x, y)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3}\left(a, b, c, d \in o_{K}\right)
$$

We will prove that there are constants $c^{\prime}>0$ and $\gamma^{\prime}>0$ with c^{\prime} depending only on K and γ^{\prime} depending on f so that

$$
\begin{equation*}
x, y \in o_{K}, f(x, y) \neq 0 \Longrightarrow H(f(x, y))>\gamma^{\prime} \max (H(x), H(y))^{c^{\prime}} \tag{3}
\end{equation*}
$$

Once this is done, substituting (3) for $f(x, y)=\beta$ gives the desired result. We consider several cases, and then taking the minimum of c^{\prime} and γ^{\prime} obtained by each case gives the desired inequality.

First, we consider the case $y=0$. Then $f(x, y)=a x^{3}$. If $a=0$, then $f(x, y)=0$ and there is nothing to prove. If $a \neq 0$, then

$$
H(f(x, y))=|a| H(x)^{3}(x \neq 0)
$$

Hence we can take $c^{\prime}=3, \gamma^{\prime}<|a|$ to obtain the inequality (3). Similarly one can obtain the inequality in the case $x=0$.

Next, we consider the case $y \neq 0$ and $H(x) \leq H(y)$. Let $\zeta_{1}, \zeta_{2}, \zeta_{3} \in \mathbf{C}$ be distinct roots of $f(x, 1)$. Then

$$
\begin{equation*}
f(x, y)=a y^{3}\left(\frac{x}{y}-\zeta_{1}\right)\left(\frac{x}{y}-\zeta_{1}\right)\left(\frac{x}{y}-\zeta_{1}\right) \tag{4}
\end{equation*}
$$

Let $\Delta=\min \left\{\left|\zeta_{i}-\zeta_{j}\right| \mid i \neq j\right\}$. If $\left|\frac{x}{y}-\zeta_{i}\right|>\frac{\Delta}{2} \quad$ for all $\quad i=1,2,3$, then from (4)

$$
H(f(x, y))=|f(x, y)|>|a|\left(\frac{\Delta}{2}\right)^{3} H(y)^{3} .
$$

So taking $c^{\prime}=3, \gamma^{\prime}=|a|\left(\frac{\Delta}{2}\right)^{3}$ gives the desired inequality.
In the following, we consider the case $\left|\frac{x}{y}-\zeta_{i_{0}}\right| \leq \frac{\Delta}{2}$ for some i_{0}. Note that if $i \neq i_{0}$ then $\left|\frac{x}{y}-\zeta_{i}\right| \geq \frac{\Delta}{2}$, since it follows from the triangular inequality that

$$
\left|\frac{x}{y}-\zeta_{i}\right| \geq\left|\zeta_{i_{0}}-\zeta_{i}\right|-\left|\zeta_{i_{0}}-\frac{x}{y}\right| \geq \Delta-\frac{\Delta}{2}=\frac{\Delta}{2} .
$$

Hence

$$
\begin{equation*}
H(f(x, y))=|f(x, y)| \geq|a|\left(\frac{\Delta}{2}\right)^{2}|y|^{3}\left|\frac{x}{y}-\zeta_{i_{0}}\right| \tag{5}
\end{equation*}
$$

We will find the lower bound for $\left|\frac{x}{y}-\zeta_{i_{0}}\right|$. Write $K=\mathbf{Q}(\omega)(\omega=\sqrt{-m}, m \in \mathbf{N})$ and $\frac{x}{y}=c+d \omega(c, d \in \mathbf{Q})$. We can also write

$$
\zeta_{i_{0}}=c_{i_{0}}+d_{i_{0}} \omega\left(c_{i_{0}}, d_{i_{0}} \in \mathbf{R}\right),
$$

since $1, \omega \in \mathbf{C}$ are linearly independent over \mathbf{R}. One can easily see that $c_{i_{0}}, d_{i_{0}} \in \overline{\mathbf{Q}}$. Then

$$
\begin{equation*}
\left|\frac{x}{y}-\zeta_{i_{0}}\right|=\sqrt{\left(c-c_{i_{0}}\right)^{2}+m\left(d-d_{i_{0}}\right)^{2}} \geq \max \left\{\left|c-c_{i_{0}}\right|,\left|d-d_{i_{0}}\right|\right\} . \tag{6}
\end{equation*}
$$

If $c=c_{i_{0}}, d=d_{i_{0}}$, then $f(x, y)=0$ and there is nothing to consider. So assume that $c \neq c_{i_{0}}$ or $d \neq d_{i_{0}}$. We consider the former case. One can deal similarly with the later case. Fix a
number ε such that $0<\varepsilon<1(\varepsilon=1 / 2)$. Then Roth's theorem (see [3] or [9] Ch. 9) says that for all but finitely many $c \in \mathbf{Q}$

$$
\left|c-c_{i_{0}}\right|>H(c)^{-(2+\varepsilon)}
$$

Hence, there is a sufficiently small $\gamma_{i_{0}}>0$ such that for all $c \in \mathbf{Q}$ different from $c_{i_{0}}$

$$
\begin{equation*}
\left|c-c_{i_{0}}\right|>\gamma_{i_{0}} H(c)^{-(2+\varepsilon)} \tag{7}
\end{equation*}
$$

Substituting (6) into (7) implies

$$
\begin{equation*}
\left|\frac{x}{y}-\zeta_{i_{0}}\right|>\gamma_{i_{0}} H(c)^{-(2+\varepsilon)} \tag{8}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
H(c)=H\left(\frac{1}{2}\left(\frac{x}{y}+\left(\frac{\bar{x}}{y}\right)\right)\right) \leq \gamma^{\prime} H\left(\frac{x}{y}\right) \leq \gamma^{\prime} \max \{H(x), H(y)\}=\gamma^{\prime} H(y) \tag{9}
\end{equation*}
$$

where $\gamma^{\prime}=H\left(\frac{1}{2}\right) \cdot 4$. (Note that $H(\alpha)=H(\bar{\alpha})$ for $\alpha \in K$.) Substituting (8) into (9) implies

$$
\begin{equation*}
\left|\frac{x}{y}-\zeta_{i_{0}}\right|>\gamma_{i_{0}}^{\prime} H(y)^{-(2+\varepsilon)} \tag{10}
\end{equation*}
$$

Finally, substitution (5) into (10) yields

$$
H(f(x, y)) \geq|a|\left(\frac{\Delta}{2}\right)^{2} \gamma_{i_{0}}^{\prime} H(y)^{1-\varepsilon}
$$

This is the desired result. One can deal similarly with the remaining case $x \neq 0, H(x) \geq$ $H(y)$.

3. The Equation $y^{2}=x^{3}+\beta D$

In this section we study the rational points on the elliptic curve $E_{\beta D}: y^{2}=x^{3}+\beta D$ as β varies, and prove a result similar to Theorem A for the number of points whose height is bounded by an expression of the form $\operatorname{ch}(\beta)+\gamma$.

Proposition C. Let $D(\neq 0) \in o_{K}, c>0$, and $\gamma \in \mathbf{R}$ be given and K is an imaginary quadratic field. Then there are constants c_{1}, c_{2}, c_{3} depending only on K and a constant $M>0$ depending on D, c, γ such that for all sixth-power-free integers β satisfying $H_{K}(\beta) \geq M$,

$$
\#\left\{P \in E_{\beta D}(K) \mid h_{x}(P)<c h(\beta)+\gamma\right\}<c_{1}\left(c_{2} \sqrt{c+c_{3}}+1\right)^{\mathrm{rank} E_{\beta D}(K)} .
$$

In the following, we will use c_{1}, c_{2}, \cdots to denote positive constants depending only on K, and $\gamma_{1}, \gamma_{2}, \cdots$ to denote constants which may depend on D and γ. Before proving Proposition C , we first collect a number of preliminary results.

LEMMA 1. $\#\left(E_{\beta D}(K)\right)_{t o r} \leq c_{4}$.
Proof. Merel [1] shows for an arbitrary number field K, there is a constant c depending only on $[K: \mathbf{Q}]$ such that for all elliptic curves E / K

$$
\# E(K)_{t o r} \leq c
$$

Lemma 2. Let E be an elliptic curve defined over a number field K. Then the canonical height \hat{h} has the following properties.
i) $\hat{h}(P) \geq 0$ for all $P \in E(K)$. Moreover $\hat{h}(P)=0$ if and only if $P \in E(K)_{t o r}$.
ii) $\hat{h}(P)$ depends only on the coset $P+E(K)_{\text {tor }}$.

Thus there is a natural map

$$
\hat{h}: E(K) / E(K)_{t o r} \rightarrow \mathbf{R},
$$

and this is a positive definite quadratic form on the lattice $E(K) / E(K)_{t o r}$.
Proof. See in the monograph of Silverman [9, Theorem 9.3 and Remark 9.4 in Ch.VIII].

Lemma 3. Let $\beta \in o_{K}$ be a non-zero integer and P be a point on $E_{\beta D}(K)$. Then

$$
\left|2 \hat{h}(P)-h_{x}(P)\right|<c_{5} h(\beta)+\gamma_{1} .
$$

Proof. See Chap. VIII Exercise 8.18(b) in [9] or[11].
Lemma 4. Let $\beta \in o_{K}$ be a non-zero integer and P be a non-torsion point on $E_{\beta D}(K)$. Then

$$
\hat{h}(P)>c_{6} \log N_{K}\left(\mathfrak{D}_{E_{\beta D} / K}\right),
$$

where $\mathfrak{D}_{E_{\beta D} / K}$ is the minimal discriminant of $E_{\beta D} / K$ and $N_{K}\left(\mathfrak{D}_{E_{\beta D} / K}\right)$ is the absolute norm of $\mathfrak{D}_{E_{\beta D} / K}$.

Proof. There is a conjecture by Serge Lang, which asserts for any elliptic curve E defined over a number field K and a non-torsion point $P \in E(K)$

$$
\hat{h}(P)>c_{1} \log N_{K}\left(\mathfrak{D}_{E / K}\right)+c_{2},
$$

where c_{1}, c_{2} are positive constants depending only on K. This conjecture is true for elliptic curves with integral j-invariant. (See [8] or [10].) Since the j-invariant of $E_{\beta D}$ is 0 , this completes the proof.

Lemma 5. For all sixth-power-free integers $\beta \in o_{K}$,

$$
\log N_{K}\left(\mathfrak{D}_{E_{\beta D} / K}\right)>c_{7} h(\beta)-\gamma_{2} .
$$

Proof. We use the fact that β is sixth-power-free. The discriminant of the Weierstrass model

$$
E_{\beta D}: y^{2}=x^{3}+\beta D
$$

is $\Delta=-16 \cdot 27(\beta D)^{2}$. Since β is sixth-power-free, this model is already minimal for all but primes which divide $6 D$. Write $(\beta)=\mathfrak{b b}^{\prime}$ as a product of two ideals with $(\mathfrak{b}, 6 D)=1$ and \mathfrak{b}^{\prime} contains only primes dividing $6 D$ as prime divisors. Then

$$
\mathfrak{b}^{2}\left|\mathfrak{D}_{E_{\beta D} / K}, \mathfrak{b}^{\prime}\right|(6 D)^{5}
$$

Note that since \mathfrak{b}^{\prime} is sixth-power-free, any exponent in the factorization of the ideal \mathfrak{b}^{\prime} as a product of prime ideal of K is at most 5. Hence,

$$
\begin{aligned}
\log N_{K}\left(\mathfrak{D}_{E_{\beta D} / K}\right) & \geq \log N_{K}\left(\mathfrak{b}^{2}\right) \\
& =2 \log N_{K}(\mathfrak{b}) \\
& =2 \log N_{K}\left(\beta / \mathfrak{b}^{\prime}\right) \\
& =2\left(\log N_{K}(\beta)-\log N_{K}\left(\mathfrak{b}^{\prime}\right)\right) \\
& \geq 2 \log N_{K}(\beta)-10 \log N_{K}(6 D) \\
& =4 h(\beta)-10 \log N_{K}(6 D) .
\end{aligned}
$$

LEMMA 6. Let Λ be a lattice of rank r with a positive definite quadratic form Q. Let

$$
A=\min \{Q(\lambda) \mid \lambda \in \Lambda, \lambda \neq 0\}
$$

Then for all positive constants B

$$
\#\{\lambda \in \Lambda \mid Q(\lambda) \leq B\} \leq(2 \sqrt{B / A}+1)^{r}
$$

Proof. Let N be the least integer greater than $2 \sqrt{B / A}$. We will prove that the natural map

$$
\begin{gathered}
\{\lambda \in \Lambda \mid Q(\lambda) \leq B\} \rightarrow \Lambda / N \Lambda \\
\lambda \mapsto \lambda+N \Lambda
\end{gathered}
$$

is injective. Suppose that it is not injective. Choose $\lambda_{1}, \lambda_{2} \in \Lambda\left(Q\left(\lambda_{i}\right) \leq B(i=1,2), \lambda_{1} \neq\right.$ λ_{2}) such that

$$
\lambda_{1}+N \Lambda=\lambda_{2}+N \Lambda
$$

Then there is an element $\mu \in \Lambda(\neq 0)$ such that $\lambda_{1}-\lambda_{2}=N \mu$.
Hence,

$$
\begin{aligned}
0<Q(\mu) & =Q\left(\lambda_{1}-\lambda_{2}\right) / N^{2} \leq\left(Q\left(\lambda_{1}\right)+Q\left(\lambda_{2}\right)+2 \sqrt{Q\left(\lambda_{1}\right) Q\left(\lambda_{2}\right)}\right) / N^{2} \\
& =\left(\sqrt{Q\left(\lambda_{1}\right)}+\sqrt{Q\left(\lambda_{2}\right)}\right)^{2} / N^{2} \\
& \leq(\sqrt{B}+\sqrt{B})^{2} / N^{2}=4 B / N^{2}<A .
\end{aligned}
$$

This contradicts the definition of A. Thus the map is injective. Then

$$
\#\{\lambda \in \Lambda \mid Q(\lambda) \leq B\} \leq \# \Lambda / N \Lambda=N^{r} \leq(2 \sqrt{B / A}+1)^{r}
$$

Proof of Proposition C. Let $\beta \in o_{K}$ be a sixth-power-free integer. We use Lemma 3, Lemma 2, and Lemma 1 successively.

$$
\begin{aligned}
\# & \{P \\
& \leq \#\left\{P \in E_{\beta D}(K) \mid h_{x}(P)<c h(\beta)+\gamma\right\} \\
& =\#\left(E_{\beta D}(K)_{t o r}\right) \cdot \#\left\{\bar{P} \in E_{\beta D}(K) \left\lvert\, \hat{h}(P)<\frac{1}{2}\left(c+c_{\beta D}\right) h(\beta)+\gamma_{3}\right.\right\} \\
& \leq c_{4} \cdot \#\left\{\bar{P} \in E_{\beta D}(K) / \hat{h}(P)<\frac{1}{2}\left(c+c_{5}\right) h(\beta)+\gamma_{3}\right\} \\
& \left.(K)_{t o r} \left\lvert\, \hat{h}(P)<\frac{1}{2}\left(c+c_{5}\right) h(\beta)+\gamma_{3}\right.\right\} .
\end{aligned}
$$

On the other hand, if $\bar{P}(\neq \overline{0}) \in E_{\beta D}(K) / E_{\beta D}(K)_{t o r}$, then it follows from Lemmas 4 and 5 that

$$
\hat{h}(\bar{P})>c_{6} \log N_{K}\left(\mathfrak{D}_{E_{\beta D} / K}\right)>c_{6}\left(c_{7} h(\beta)-\gamma^{2}\right)=c_{8} h(\beta)-\gamma_{4} .
$$

Now apply Lemma 6 to the lattice $\Lambda=E_{\beta D}(K) / E_{\beta D}(K)_{t o r}$ and the positive definite quadratic form $Q=\hat{h}$, with

$$
A>c_{8} h(\beta)-\gamma_{4}
$$

and

$$
B=\frac{1}{2}\left(c+c_{5}\right) h(\beta)+\gamma_{3} .
$$

This yields

$$
\#\left\{P \in E_{\beta D}(K) \mid h_{x}(P)<c h(\beta)+\gamma\right\}<c_{4}\left(2 \sqrt{\frac{\frac{1}{2}\left(c+c_{5}\right) h(\beta)+\gamma_{3}}{c_{8} h(\beta)-\gamma_{4}}}+1\right)^{\operatorname{rank} E_{\beta D}(K)} .
$$

Now if $H_{K}(\beta)$ is arbitrarily large, then $h(\beta)$ becomes large. Thus

$$
\frac{\frac{1}{2}\left(c+c_{5}\right) h(\beta)+\gamma_{3}}{c_{8} h(\beta)-\gamma_{4}} \rightarrow \frac{\frac{1}{2}\left(c+c_{5}\right)}{c_{8}} .
$$

Hence, there is a sufficiently large constant M depending on D and γ such that for all sixth-power-free integers $\beta \in o_{K}$ such that $H_{K}(\beta) \geq M$

$$
\frac{\frac{1}{2}\left(c+c_{5}\right) h(\beta)+\gamma_{3}}{c_{8} h(\beta)-\gamma_{4}}<\frac{c+c_{5}}{c_{8}} .
$$

Then we have

$$
\#\left\{P \in E_{\beta D}(K) \mid h_{x}(P)<c h(\beta)+\gamma\right\}<c_{4}\left(2 \sqrt{\frac{c+c_{5}}{c_{8}}}+1\right)^{\operatorname{rank} E_{\beta D}(K)} .
$$

This is the desired result if we set $c_{1}=c_{4}, c_{2}=\sqrt{\frac{2}{c_{8}}}, c_{3}=c_{5}$.

4. Proof of Main Theorem

THEOREM A. Let K be an arbitrary imaginary quadratic field and let $N_{f}(\beta)$ and C_{β} be the same as in Section 1. (For the definitions of these, see Section 1 (1), (2) respectively.) Then there are constants $\kappa>0, M>0$ with κ depending only on K and M depending on f, such that for all cube-free integers $\beta \in o_{K}$ satisfying $H_{K}(\beta) \geq M$, we have

$$
N_{f}(\beta)<\kappa^{\operatorname{rank} C_{\beta}(K)+1}
$$

Proof. As before, c, c_{1}, c_{2}, \ldots will denote constants depending only on K, and $\gamma, \gamma_{1}, \gamma_{2}, \cdots$ will be constants depending on f. Write

$$
f(x, y)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3}\left(a, b, c, d \in o_{K}\right)
$$

The discriminant of the polynomial f is given by

$$
D=\operatorname{disc}(f)=-27 a^{2} d^{2}-4 a c^{3}+18 a b c d-4 b^{3} d+b^{2} c^{2}
$$

Let J_{β} be the Jacobian of C_{β}. (For the definition of C_{β}, see Section 1 (2).) Then J_{β} has a model

$$
J_{\beta}: y^{2} z=x^{3}-432 \beta^{2} D z^{3}
$$

We have a map of degree 3 , defined over K, given by

$$
\begin{gathered}
\phi: C_{\beta} \rightarrow J_{\beta} \\
{[x, y, z] \mapsto\left[-4 z G(x, y), 4 H(x, y), z^{3}\right]}
\end{gathered}
$$

where $G(x, y)$ and $H(x, y)$ are the covariant polynomials of f of degree 2 and 3 , respectively. They are given by

$$
\begin{aligned}
G(x, y)= & \left(3 a c-b^{2}\right) x^{2}+(9 a d-b c) x y+\left(3 b d-c^{2}\right) y^{2} \\
H(x, y)= & \left(27 a^{2} d-9 a b c+2 b^{3}\right) x^{3}-3\left(6 a c^{2}-b^{2} c-9 a b d\right) x^{2} y \\
& +3\left(6 b^{2} d-b c^{2}-9 a c d\right) x y^{2}-\left(27 a d^{2}-9 b c d+2 c^{3}\right) y^{3} .
\end{aligned}
$$

(For the derivation of these formulas, see [4, pp. 175-178].)
Let $(x, y) \in o_{K} \times o_{K}$ be a solution of $f(x, y)=\beta$. Then from Proposition B

$$
H(x), H(y)<\gamma_{1} H(\beta)^{c_{4}}
$$

Thus

$$
h_{x}(\phi([x, y, 1]))=h(-4 G(x, y))=\log H(-4 G(x, y))<2 c_{4} h(\beta)+\gamma_{2} .
$$

Now we apply Proposition C with $(\beta, D, c, \gamma)=\left(\beta^{2},-432 D, 2 c_{4}, \gamma_{2}\right)$. (Note that β is cube-free, so that β^{2} is sixth-power-free as required in Proposition C.) We obtain an upper bound

$$
\#\left\{P \in J_{\beta}(K) \mid h_{x}(P)<2 c_{4} h(\beta)+\gamma_{2}\right\}<c_{1}\left(c_{2} \sqrt{2 c_{4}+c_{3}}+1\right)^{\mathrm{rank} J_{\beta}(K)}
$$

for sufficiently large $H_{K}(\beta)$. Since $\operatorname{deg}(\phi)=3$ and $\operatorname{rank}\left(J_{\beta}(K)\right)=\operatorname{rank}\left(C_{\beta}(K)\right)$, for all cube-free integers β whose height $H_{K}(\beta)$ is sufficiently large, we obtain

$$
N_{f}(\beta)<3 c_{1}\left(c_{2} \sqrt{2 c_{4}+c_{3}}+1\right)^{\operatorname{rank}\left(J_{\beta}(K)\right)} \leq \kappa^{\operatorname{rank}\left(C_{\beta}(K)\right)+1}
$$

where $\kappa=\max \left(3 c_{1}, c_{2} \sqrt{2 c_{4}+c_{3}}+1\right)$ is a constant depending only on K.

References

[1] Merel, L., Bounds for the torsion of elliptic curves over number fields, Invent. Math. 124 (1996), 437-449.
[2] Lang, S., Elliptic Curves: Diophantine Analysis, Springer-Verlag, 1978.
[3] Lang, S., Fundamentals of Diophantine Geometry, Springer-Verlag, 1983.
[4] Salmon, G., Lessons Introductory to the Modern Higher Algebra, 3rd ed., Cambridge:Hodges, Foster, and Co. 1876.
[5] Silverman, J., Computing Heights on Elliptic Curves, Math. Comp. 51 (1988), 339-358.
[6] Silverman, J., Integer Points and the Rank of Thue Elliptic Curves, Invent. Math. 66 (1982), 395-404.
[7] Silverman, J., Integer points on curves of genus 1, J. London Math. Soc. 28 (1983), 1-7.
[8] Silverman, J., Lower bound for the canonical height on elliptic curves, Duke Math.J. 48 (1981), 633-648.
[9] Silverman, J., The Arithmetic of Elliptic Curves, Springer-Verlag, 1986.
[10] Silverman, J., The canonical height and integral points on elliptic curves, Invent. Math. 93 (1988), 419-450.
[11] Silverman, J., The difference between the Weil height and the canonical height on elliptic curves, Math. Comp. 55 (1990), 723-743.

Present Address:
Department of Mathematics,
School of Fundamental Science and Engineering,
Waseda University,
TOKYO, JAPAN.

