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Abstract. One of Silverman’s results gives a relationship between the number of integral points and the rank
of elliptic curves over Q. This paper generalizes this result for all imaginary quadratic fields.

1. Introduction

Let f (x, y) = ax3 + bx2y + cxy2 + dy3 ∈ Z[x, y] be a homogeneous polynomial of
degree 3 with non-zero discriminant. The discriminant is given by

disc(f ) = −27a2d2 − 4ac3 + 18abcd − 4b3d + b2c2 .

For each non-zero integer m ∈ Z, let Cm be the projective curve

Cm : f (x, y) = mz3 .

The curve Cm is non-singular, since disc(f ) �= 0. Suppose that Cm has a Q-rational point.
Then Cm has a structure of an elliptic curve defined over Q. It is well known that the set
Cm(Q) forms a finitely generated abelian group, and the order of its torsion part is bounded
by 16. Namely the size of Cm(Q) is measured by rank(Cm(Q)), the Mordell-Weil rank of
Cm(Q). On the other hand, Siegel proved the following fundamental result about the number
of integral points:

THEOREM (Siegel [9] Ch. 9). The number Nf (m) of solutions (x, y) ∈ Z2 of the
equation f (x, y) = m is finite.

The method developed by J. Silverman allows one to give an effective bound for Nf (m)

in terms of rank(Cm(Q)).

THEOREM (J. Silverman [6]). There are constants κ and m0, with κ absolute and m0

depending on f , so that for all cube-free integers m satisfying |m| > m0,

Nf (m) < κ rank(Cm(Q))+1 .
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One naturally asks if this result can be generalized for any number field. In the following, we
formulate our problem.

Let K be a number field and let f (x, y) ∈ oK [x, y] be a homogeneous polynomial of

degree 3 with distinct roots in K̄ . For each non-zero integer β ∈ oK , let

Nf (β) = #{(x, y) ∈ oK × oK |f (x, y) = β} (1)

and let Cβ be the smooth curve

Cβ : f (x, y) = βz3 . (2)

From Siegel’s theorem, Nf (β) is finite and if Nf (β) > 0, then Cβ has a structure of an elliptic
curve defined over K .

Now we state our problem. In view of Silverman’s result and the main theorem of this
paper, it may be called a conjecture.

CONJECTURE. There are constants κ > 0 , M > 0 with κ depending only on K and
M depending on f such that, for all cube-free integers β ∈ oK (i.e., integers divisible by no
cube of prime ideals of K) satisfying HK(β) ≥ M , we have

Nf (β) < κ rank Cβ(K)+1 ,

where HK is a height function (see section 2).

Our main result asserts that this conjecture is true for the case where K is an imaginary
quadratic field.

THEOREM A. The conjecture is true for the case where K is an arbitrary imaginary
quadratic field.

The proof of Theorem A consists of three steps. First, we give an upper bound for the
height of the integral solutions to the equation f (x, y) = β (Proposition B). Next, we look at
the rational points on elliptic curves of the form

EβD : y2 = x3 + βD

and prove a similar bound for the number of points whose height is bounded in a certain
fashion (Proposition C). Finally we map the equation f (x, y) = β to its Jacobian, which has
a Weierstrass model of the form EβD , and this allows us to combine the previous two steps to
bound the number of integral solutions to the equation f (x, y) = β.

2. The Size of Solutions

In this section we give an upper bound for the height of the integral solutions to the equa-
tion f (x, y) = β. Before stating our proposition, we set notations and review the definitions
of the height functions briefly.

DEFINITIONS. Let MK be a complete set of primes of K . For each v ∈ MK , let | · |v be
the normalized valuation on K which belongs to v and let nv = [Kv : Qv] be the local degree
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at v, where a normalized valuation means that its restriction to Q is one of the normalized
valuations on Q. Let P ∈ PN(K) be a point with homogeneous coordinates

P = [x0, . . . , xN ] , xi ∈ K .

The height of P (relative to K) is defined by

HK(P) =
∏

v∈MK

max{|x0|v, . . . , |xN |v}nv .

Further, the absolute height H and the absolute logarithmic height h of P are defined by

H(P) = HK(P)1/[K :Q] and h(P ) = log H(P) ,

respectively.
Also for each x ∈ K the three types of heights of x are defined as follows

HK(x) = HK([x, 1]) , H(x) = H([x, 1]) and h(x) = log H(x) .

Finally, let E/K be an elliptic curve defined over K and let g ∈ K̄(E) be a non-constant even

function. Then for each P ∈ E(K̄) the absolute height Hg , the absolute logarithmic height

hg , and the canonical height ĥ (relative to g) are defined by

Hg(P ) = H(g(P )) , hg (P ) = h(g(P )) and ĥ(P ) = 1

deg(g)
lim

n→∞ 4−nhg ([2n]P) ,

respectively.

Now we state our proposition.

PROPOSITION B. Let K be an imaginary quadratic field and f (x, y) ∈ oK [x, y] a
homogeneous polynomial of degree 3 with non-zero discriminant. Then there are constants
c > 0 and γ > 0 with c depending only on K and γ depending on f so that for all non-zero
integers β ∈ oK the integral solutions (x, y) ∈ oK × oK to the equation f (x, y) = β satisfy

H(x) ,H(y) < γH(β)c .

PROOF. Write

f (x, y) = ax3 + bx2y + cxy2 + dy3(a, b, c, d ∈ oK) .

We will prove that there are constants c′ > 0 and γ ′ > 0 with c′ depending only on K and γ ′
depending on f so that

x, y ∈ oK , f (x, y) �= 0 �⇒ H(f (x, y)) > γ ′ max(H(x),H(y))c
′
. (3)

Once this is done, substituting (3) for f (x, y) = β gives the desired result. We consider
several cases, and then taking the minimum of c′ and γ ′ obtained by each case gives the
desired inequality.
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First, we consider the case y = 0. Then f (x, y) = ax3. If a = 0, then f (x, y) = 0 and
there is nothing to prove. If a �= 0, then

H(f (x, y)) = |a|H(x)3(x �= 0) .

Hence we can take c′ = 3 , γ ′ < |a| to obtain the inequality (3). Similarly one can obtain the
inequality in the case x = 0.

Next, we consider the case y �= 0 and H(x) ≤ H(y). Let ζ1, ζ2, ζ3 ∈ C be distinct roots
of f (x, 1). Then

f (x, y) = ay3
(

x

y
− ζ1

)(
x

y
− ζ1

)(
x

y
− ζ1

)
. (4)

Let ∆ = min{|ζi − ζj | |i �= j }. If

∣∣∣∣ x

y
− ζi

∣∣∣∣ >
∆

2
for all i = 1, 2, 3, then from (4)

H(f (x, y)) = |f (x, y)| > |a|
(

∆

2

)3

H(y)3 .

So taking c′ = 3 , γ ′ = |a|
(

∆

2

)3

gives the desired inequality.

In the following, we consider the case

∣∣∣∣xy − ζi0

∣∣∣∣ ≤ ∆

2
for some i0. Note that if i �= i0

then

∣∣∣∣xy − ζi

∣∣∣∣ ≥ ∆

2
, since it follows from the triangular inequality that

∣∣∣∣xy − ζi

∣∣∣∣ ≥
∣∣∣∣ζi0 − ζi

∣∣∣∣ −
∣∣∣∣ζi0 − x

y

∣∣∣∣ ≥ ∆ − ∆

2
= ∆

2
.

Hence

H(f (x, y)) = |f (x, y)| ≥ |a|
(

∆

2

)2

|y|3
∣∣∣∣xy − ζi0

∣∣∣∣ . (5)

We will find the lower bound for

∣∣∣∣xy − ζi0

∣∣∣∣. Write K = Q(ω) (ω = √−m , m ∈ N) and

x

y
= c + dω (c, d ∈ Q). We can also write

ζi0 = ci0 + di0ω (ci0, di0 ∈ R) ,

since 1, ω ∈ C are linearly independent over R. One can easily see that ci0 , di0 ∈ Q̄. Then∣∣∣∣xy − ζi0

∣∣∣∣ =
√

(c − ci0)
2 + m(d − di0)

2 ≥ max{|c − ci0 |, |d − di0 |} . (6)

If c = ci0 , d = di0 , then f (x, y) = 0 and there is nothing to consider. So assume that c �= ci0

or d �= di0 . We consider the former case. One can deal similarly with the later case. Fix a
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number ε such that 0 < ε < 1 (ε = 1/2). Then Roth’s theorem (see [3] or [9] Ch. 9) says
that for all but finitely many c ∈ Q

|c − ci0 | > H(c)−(2+ε) .

Hence, there is a sufficiently small γi0 > 0 such that for all c ∈ Q different from ci0

|c − ci0 | > γi0H(c)−(2+ε) . (7)

Substituting (6) into (7) implies ∣∣∣∣xy − ζi0

∣∣∣∣ > γi0H(c)−(2+ε) . (8)

On the other hand

H(c) = H

(
1

2

(
x

y
+

¯(
x

y

)))
≤ γ ′H

(
x

y

)
≤ γ ′ max{H(x) ,H(y)} = γ ′H(y) , (9)

where γ ′ = H( 1
2 ) · 4. (Note that H(α) = H(ᾱ) for α ∈ K .) Substituting (8) into (9) implies∣∣∣∣xy − ζi0

∣∣∣∣ > γ ′
i0
H(y)−(2+ε) . (10)

Finally, substitution (5) into (10) yields

H(f (x, y)) ≥ |a|
(

∆

2

)2

γ ′
i0
H(y)1−ε .

This is the desired result. One can deal similarly with the remaining case x �= 0 , H(x) ≥
H(y).

3. The Equation y2 = x3 + βD

In this section we study the rational points on the elliptic curve EβD : y2 = x3 + βD

as β varies, and prove a result similar to Theorem A for the number of points whose height is
bounded by an expression of the form ch(β) + γ .

PROPOSITION C. Let D( �= 0) ∈ oK , c > 0, and γ ∈ R be given and K is an
imaginary quadratic field. Then there are constants c1, c2, c3 depending only on K and a
constant M > 0 depending on D, c, γ such that for all sixth-power-free integers β satisfying
HK(β) ≥ M ,

#{P ∈ EβD(K)|hx(P ) < c h(β) + γ } < c1(c2
√

c + c3 + 1)rank EβD(K) .

In the following, we will use c1, c2, · · · to denote positive constants depending only on K , and
γ1, γ2, · · · to denote constants which may depend on D and γ . Before proving Proposition
C, we first collect a number of preliminary results.
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LEMMA 1. #(EβD(K))tor ≤ c4.

PROOF. Merel [1] shows for an arbitrary number field K , there is a constant c depend-
ing only on [K : Q] such that for all elliptic curves E/K

#E(K)tor ≤ c .

LEMMA 2. Let E be an elliptic curve defined over a number field K . Then the canon-

ical height ĥ has the following properties.

i) ĥ(P ) ≥ 0 for all P ∈ E(K). Moreover ĥ(P ) = 0 if and only if P ∈ E(K)tor .

ii) ĥ(P ) depends only on the coset P + E(K)tor .

Thus there is a natural map

ĥ : E(K)/E(K)tor → R ,

and this is a positive definite quadratic form on the lattice E(K)/E(K)tor .
PROOF. See in the monograph of Silverman [9, Theorem 9.3 and Remark 9.4 in

Ch.VIII].

LEMMA 3. Let β ∈ oK be a non-zero integer and P be a point on EβD(K). Then

|2ĥ(P ) − hx(P )| < c5h(β) + γ1 .

PROOF. See Chap. VIII Exercise 8.18(b) in [9] or[11].

LEMMA 4. Let β ∈ oK be a non-zero integer and P be a non-torsion point on
EβD(K). Then

ĥ(P ) > c6 log NK(DEβD/K) ,

where DEβD/K is the minimal discriminant of EβD/K and NK(DEβD/K) is the absolute norm

of DEβD/K .

PROOF. There is a conjecture by Serge Lang, which asserts for any elliptic curve E

defined over a number field K and a non-torsion point P ∈ E(K)

ĥ(P ) > c1 log NK(DE/K) + c2 ,

where c1, c2 are positive constants depending only on K . This conjecture is true for elliptic
curves with integral j -invariant. (See [8] or [10].) Since the j -invariant of EβD is 0, this
completes the proof.

LEMMA 5. For all sixth-power-free integers β ∈ oK ,

log NK(DEβD/K) > c7h(β) − γ2 .

PROOF. We use the fact that β is sixth-power-free. The discriminant of the Weierstrass
model

EβD : y2 = x3 + βD
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is ∆ = −16 · 27(βD)2. Since β is sixth-power-free, this model is already minimal for all but
primes which divide 6D. Write (β) = bb′ as a product of two ideals with (b, 6D) = 1 and b′
contains only primes dividing 6D as prime divisors. Then

b2|DEβD/K , b′|(6D)5 .

Note that since b′ is sixth-power-free, any exponent in the factorization of the ideal b′ as a
product of prime ideal of K is at most 5. Hence,

log NK(DEβD/K) ≥ log NK(b2)

= 2 log NK(b)

= 2 log NK(β/b′)
= 2(log NK(β) − log NK(b′))
≥ 2 log NK(β) − 10 log NK(6D)

= 4h(β) − 10 log NK(6D) .

LEMMA 6. Let Λ be a lattice of rank r with a positive definite quadratic form Q. Let

A = min{Q(λ)|λ ∈ Λ,λ �= 0} .

Then for all positive constants B

#{λ ∈ Λ|Q(λ) ≤ B} ≤ (2
√

B/A + 1)r .

PROOF. Let N be the least integer greater than 2
√

B/A. We will prove that the natural map

{λ ∈ Λ|Q(λ) ≤ B} → Λ/NΛ

λ �→ λ + NΛ

is injective. Suppose that it is not injective. Choose λ1, λ2 ∈ Λ (Q(λi) ≤ B(i = 1, 2) , λ1 �=
λ2) such that

λ1 + NΛ = λ2 + NΛ .

Then there is an element µ ∈ Λ ( �= 0) such that λ1 − λ2 = Nµ.
Hence,

0 < Q(µ) = Q(λ1 − λ2)/N
2 ≤ (Q(λ1) + Q(λ2) + 2

√
Q(λ1)Q(λ2))/N

2

= (
√

Q(λ1) + √
Q(λ2))

2/N2

≤ (
√

B + √
B)2/N2 = 4B/N2 < A .

This contradicts the definition of A. Thus the map is injective. Then

#{λ ∈ Λ|Q(λ) ≤ B} ≤ #Λ/NΛ = Nr ≤ (2
√

B/A + 1)r .



182 MICHITAKA KOJIMA

PROOF OF PROPOSITION C. Let β ∈ oK be a sixth-power-free integer. We use
Lemma 3, Lemma 2, and Lemma 1 successively.

#{P ∈ EβD(K)|hx(P ) < c h(β) + γ }

≤ #

{
P ∈ EβD(K)|ĥ(P ) <

1

2

(
c + c5

)
h(β) + γ3

}

= #(EβD(K)tor) · #

{
P̄ ∈ EβD(K)/EβD(K)tor |ĥ(P ) <

1

2

(
c + c5

)
h(β) + γ3

}

≤ c4 · #

{
P̄ ∈ EβD(K)/EβD(K)tor |ĥ(P ) <

1

2

(
c + c5

)
h(β) + γ3

}
.

On the other hand, if P̄ ( �= 0̄) ∈ EβD(K)/EβD(K)tor , then it follows from Lemmas 4 and 5
that

ĥ(P̄ ) > c6 log NK(DEβD/K) > c6(c7h(β) − γ 2) = c8h(β) − γ4 .

Now apply Lemma 6 to the lattice Λ = EβD(K)/EβD(K)tor and the positive definite qua-

dratic form Q = ĥ, with

A > c8h(β) − γ4

and

B = 1

2
(c + c5)h(β) + γ3 .

This yields

#{P ∈ EβD(K)|hx(P ) < c h(β) + γ } < c4

(
2

√
1
2 (c + c5)h(β) + γ3

c8h(β) − γ4
+ 1

)rank EβD(K)

.

Now if HK(β) is arbitrarily large, then h(β) becomes large. Thus

1
2 (c + c5)h(β) + γ3

c8h(β) − γ4
→

1
2 (c + c5)

c8
.

Hence, there is a sufficiently large constant M depending on D and γ such that for all sixth-
power-free integers β ∈ oK such that HK(β) ≥ M

1
2 (c + c5)h(β) + γ3

c8h(β) − γ4
<

c + c5

c8
.

Then we have

#{P ∈ EβD(K)|hx(P ) < c h(β) + γ } < c4

(
2

√
c + c5

c8
+ 1

)rank EβD(K)

.
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This is the desired result if we set c1 = c4 , c2 =
√

2
c8

, c3 = c5.

4. Proof of Main Theorem

THEOREM A. Let K be an arbitrary imaginary quadratic field and let Nf (β) and Cβ

be the same as in Section 1. (For the definitions of these, see Section 1 (1), (2) respectively.)
Then there are constants κ > 0 , M > 0 with κ depending only on K and M depending on
f , such that for all cube-free integers β ∈ oK satisfying HK(β) ≥ M , we have

Nf (β) < κ rank Cβ(K)+1 .

PROOF. As before, c, c1, c2, ... will denote constants depending only on K , and
γ, γ1, γ2, · · · will be constants depending on f . Write

f (x, y) = ax3 + bx2y + cxy2 + dy3(a, b, c, d ∈ oK) .

The discriminant of the polynomial f is given by

D = disc(f ) = −27a2d2 − 4ac3 + 18abcd − 4b3d + b2c2 .

Let Jβ be the Jacobian of Cβ . (For the definition of Cβ , see Section 1 (2).) Then Jβ has a
model

Jβ : y2z = x3 − 432β2Dz3 .

We have a map of degree 3, defined over K , given by

φ : Cβ → Jβ

[x, y, z] �→ [−4zG(x, y), 4H(x, y), z3] ,

where G(x, y) and H(x, y) are the covariant polynomials of f of degree 2 and 3, respectively.
They are given by

G(x, y) = (3ac − b2)x2 + (9ad − bc)xy + (3bd − c2)y2

H(x, y) = (27a2d − 9abc + 2b3)x3 − 3(6ac2 − b2c − 9abd)x2y

+3(6b2d − bc2 − 9acd)xy2 − (27ad2 − 9bcd + 2c3)y3 .

(For the derivation of these formulas, see [4, pp. 175–178].)
Let (x, y) ∈ oK × oK be a solution of f (x, y) = β. Then from Proposition B

H(x),H(y) < γ1H(β)c4 .

Thus

hx(φ([x, y, 1])) = h(−4G(x, y)) = log H(−4G(x, y)) < 2c4h(β) + γ2 .
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Now we apply Proposition C with (β,D, c, γ ) = (β2,−432D, 2c4, γ2). (Note that β is

cube-free, so that β2 is sixth-power-free as required in Proposition C.) We obtain an upper
bound

#{P ∈ Jβ(K)|hx(P ) < 2c4h(β) + γ2} < c1(c2
√

2c4 + c3 + 1)rank Jβ(K)

for sufficiently large HK(β). Since deg(φ) = 3 and rank(Jβ(K)) = rank(Cβ(K)),
for all cube-free integers β whose height HK(β) is sufficiently large, we obtain

Nf (β) < 3c1(c2
√

2c4 + c3 + 1)rank(Jβ(K)) ≤ κ rank(Cβ(K))+1 ,

where κ = max(3c1, c2
√

2c4 + c3 + 1) is a constant depending only on K .
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