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Introduction

We are concerned with a question asked by F. Momose whether the φ(n)/2 real numbers
cot(uπ/n) (0 < u < n/2, (u, n) = 1) are independent over Q or not. Here φ(n) denotes
Euler’s phi function. In his book [1], T. Breuer settled the equivalent problem (cf. Proposi-
tion 1.3 and Proposition 3.2 below) in the case where n is a prime power with n > 2, and
conjectured the Q-independence for any n with n > 2 (cf. Conjecture C.12 in [1]). In this
note, reducing to the nonvanishing of L(1, χ), we prove the following, which implies the
Q-independence of cot(uπ/n)’s (cf. §2).

PROPOSITION. Let n be an integer with n > 2. Then the rank of the matrix

(
1

2
−〈

au∗
b

n

〉)
is equal to φ(n)/2, where a, b range over the set {1, . . . , n−1} and {1, . . . , φ(n)/2}

respectively.
As for notations such as 〈 〉, ub, u∗

b, see Notation below.

The Maillet’s determinant, that is the determinant of the matrix in Proposition above in
the case where a ranges over the set {u1, . . . , uφ(n)/2}, has been studied in various way (e.g.,
[2], [7], [6]). It is equal to the first factor of the class number, up to non-zero factor in the case
where n is a prime power (cf. §3).

In this note, we deduce this Proposition by proving the following

THEOREM. Let n be an integer with n > 2. Then the following holds:
∆(ζu1

n /(1 − ζ u1
n ), . . . , ζ

uφ(n)/2
n /(1 − ζ

uφ(n)/2
n ), 1, ζn, ζ 2

n , . . . , ζ
φ(n)/2−1
n )

= ± 2

Qw
(n

√−1)φ(n)/2 · h−
n · d ·

∏
χ :odd

Lχ ,

where as for the notation ∆(t1, . . . , tφ(n)) see Notation below and the other symbols denote
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as follows:
h−
n denotes the first factor of the class number of the n-th cyclotomic

field Q(ζn) where ζn = exp(2π
√−1/n),

Q is equal to 1 (resp. 2) if n is a prime power (resp. otherwise),
w denotes the number of roots of unity in Q(ζn),
d is equal to 1/2 (resp. 1/

√
p, 1) if n is a 2-power (resp. a p-power

with p prime ( �= 2) , otherwise), and
Lχ = ∏

p|n,p|/fχ (1 − χ∗(p)/p) where fχ denotes the conductor of χ
and χ∗ denotes the primitive character belonging to χ .

Here we note that our Theorem implies that the elements

ζ uan /(1 − ζ uan )(a = 1, . . . , φ(n)/2), 1, ζn, ζ 2
n , . . . , ζ

φ(n)/2−1
n

form a Q-basis of the field Q(ζn) (cf. Corollary 2.2 below).
In §1, we consider the equivalent conditions related to the Q-independence. In the proof

we use a certain type of virtual characters of the additive group Z/nZ as a basic tool. In
§2, we give a proof of Theorem. Then, roughly speaking, our determinant equals, up to a
nonzero factor, to the product of Det (cot(uaub π/n)) and Det (cos(2 ua(b − 1)π/n)), where
a, b range over the set {1, . . . , φ(n)/2} (cf. Lemma 2.3). In §3, we give some remarks in the
case where n is a prime power. In fact, we give an another proof of Theorem C.2 in [1] using
the method in the proof of Proposition 1.3.

NOTATION
Q the field of rational numbers.

Z the ring of rational integers.

n an integer.

ζn exp(2π
√−1/n).

Z/nZ the additive group of integers mod n.

u1, . . . , uφ(n) the integers u with 0 < u ≤ n such that (u, n) = 1 in the increasing
order. Moreover put I (n) = { u1, . . . , uφ(n)}.

u∗ the integer such that 0 < u∗ ≤ n with u∗ u ≡ 1 mod n, if exists.

(wab) the matrix of which (a, b)-component is wab.

〈r〉 r − [r], the fractional part of the real number r .

∆(t1, . . . , tφ(n)) =Det (t
σua
b ) for t1, . . . , tφ(n) ∈ Q(ζn), where a, b range over the set

{1, . . . , φ(n)} and σu denotes the Q-automorphism of Q(ζn) defined
by ζn 	−→ ζ un for u with (u, n) = 1.
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1. Equivalent conditions

1.1. Statement. First, to state our proposition on the equivalent conditions, we men-
tion some notations and notion.

NOTATION 1.1. In this note, for n > 2 we denote byMAn the matrix

(
1

2
−
〈
uau

∗
b

n

〉)

where a, b range over the set {1, . . . , φ(n)/2}, byMA
′
n the matrix

(
1

2
−
〈
au∗

b

n

〉)
where a, b

range over the sets {1, . . . , [(n− 1)/2]} and {1, . . . , φ(n)/2} respectively, and by MA
′′
n the

matrix

(
1

2
−
〈
a u∗

b

n

〉)
where a, b range over the sets {1, . . . , n − 1} and {1, . . . , φ(n)/2}

respectively.
Here we note that φ(n) is even for our n.

DEFINITION 1.2 [1, Definition C.1]. A subset I of I (n) = { u1, . . . , uφ(n)} is called
complementary if for each u ∈ I (n), exactly one of u and n − u is contained in I . We
say that n has property (LI) if there is a complementary subset I of I (n) such that the set
{1} ∪ {ζ un /(1 − ζ un ) | u ∈ I } is Q-independent.

Here, by observing the following equality, we note that (LI) implies the Q-independence
for any complementary subset I :

(1) ζ un /(1 − ζ un )+ ζ−u
n /(1 − ζ−u

n ) = −1 .

We prove the following in the subsection 1.3.

PROPOSITION 1.3. For n > 2, the following conditions are equivalent.

(i) The rank of MA
′′
n is φ(n)/2.

(i
′
) The rank of MA

′
n is φ(n)/2.

(ii) The elements 1 , ζ u1
n /(1−ζ u1

n ) , . . . , and ζ
uφ(n)/2
n /(1−ζ uφ(n)/2n ) are Q-independent,

i.e., n has property (LI).

(iii) The elements cot(u1 π/n) , . . . , and cot(uφ(n)/2 π/n) are Q-independent.

1.2. Preliminaries. Here, for later use in the proof we state the notions and lemmas
on virtual characters and the field-theoretic trace maps.

NOTATION 1.4. θn : Z/nZ −→ Q(ζn) the character defined by (1 mod nZ) 	→ ζn.

∆(u)n =
n∑
k=1

(
k

n
− 1

2

)
θkun for u with (u, n) = 1 .

Denoting by Q ⊗ R(Z/nZ) the Q-extension of the group of virtual characters of Z/nZ, we
note that
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(2) the n characters θ0
n , . . . , θ

n−1
n form an orthogonal basis of Q ⊗ R(Z/nZ) with respect

to the scalar product defined by

〈ψ1 , ψ2〉 = 1

n

n∑
j=1

ψ1(j mod nZ)ψ2(−j mod nZ) .

The virtual characters ∆(u)n become essential tools in our proof. The following two lem-
mas are especially basic.

LEMMA 1.5. Assume (u, n) = 1.
(i) For f |n, put m = n/f . Then

∆
(u)
n (f mod nZ) = −ζ um/(1 − ζ um) if f �= n (i.e. m �= 1),

∆
(u)
n (0 mod nZ) = 1/2.

(ii) 〈∆(u)n , θ−a
n 〉 = 1

2
−
〈
au∗

n

〉
.

PROOF. (i) The situation is trivial when n = 1 or f = n. So, we assume that n > 1
and f �= n.

In the case where n > 1, we see that

(3)
ζ αn

1 − ζ αn
= 1

n

n−1∑
k=1

kζ−kα
n = − 1

n

n∑
k′=1

k′ζ−k′α
n

for α ∈ Z with α �≡ 0 mod n.
From (3) it follows that

∆(u)n (f mod nZ)=
n∑
k=1

(
k

n
− 1

2

)
ζ
kuf
n

= 1

n

n∑
k=1

kζ kun/f − 1

2

n∑
k=1

(
ζ un/f

)k

= − ζ um

1 − ζ um
,

as asserted.
(ii) Using (3) we obtain (ii) by

〈∆(u)n , θ−a
n 〉 = 1

n

n∑
j=1

ζ
aj
n

n∑
k=1

(
k

n
− 1

2

)
ζ
kuj
n

= 1

n

n∑
k=1

k

n

n∑
j=1

(
ζ a+kun

)j − 1

2n

n∑
k=1

n∑
j=1

(
ζ a+kun

)j

=
(

1 −
〈
au∗

n

〉)
− 1

2
. �
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LEMMA 1.6. Assume n = f m and (u, n) = 1. Embedding Z/fZ into Z/nZ by
sending (1 mod mZ) 	→ (f mod nZ), we have

∆(u)n |Z/fZ =
m∑
k′=1

(
k′

m
− 1

2

)
θk

′u
m , i.e., = ∆(u)m ,

where ∆(u)n |Z/fZ denotes the restriction to Z/fZ of ∆(u)n .

PROOF. This is a consequence of Lemma 1.5 (i).
Here we show it directly. Since θun |Z/fZ = θum, it suffices to show

(4)

〈
n∑
k=1

(
k

n
− 1

2

)
θkun , θ

−a
n

〉
=
〈
m∑
k′=1

(
k′

m
− 1

2

)
θk

′u
m , θ−a

m

〉
.

In fact, we may obtain (4) using (2). �

Form|n, we denote by Trn,m : Q(ζn) −→ Q(ζm) the field-theoretic trace map. Here we
prepare the following

LEMMA 1.7. Assume n = pm with p prime, and (u, n) = 1.
(i) The case m �= 1. Taking αpwith 0 < αp ≤ m such that pαp ≡ 1 mod m in the

case where p � m, we have

Trn,m (ζ un /(1 − ζ un )) =
{
p · ζ um/(1 − ζ um) if p|m ,
p · ζ um/(1 − ζ um)− ζ

αpu
m /(1 − ζ

αpu
m ) otherwise .

(ii) Trn,1(ζ un /(1 − ζ un )) = −φ(n)/2.

PROOF. (i) First, we note that such αp exists uniquely up to modulom and (αp,m) ≡
1 mod m.

Next, we assert that

p−1∑
i=0

ζ 1+im
n

1 − ζ 1+im
n

= p · ζm

1 − ζm
.

In fact, using (3) we see that

p−1∑
i=0

ζ 1+im
n

1 − ζ 1+im
n

= 1

n

n−1∑
k=1

k ζ−k
n


p−1∑
i=0

ζ−mki
n




= p · 1

n

m−1∑
k′=1

k′pζ−k′p
n

= p · 1

m

m−1∑
k′=1

k′ζ−k′
m ,
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which is by (3) equal to p · ζm/(1 − ζm) as asserted.
The case p|m. Since (1 + i m, n) = 1 for i = 0, . . . , p − 1 , we have that

Aut(Q(ζn)/Q(ζm)) = { σ1+im | i = 0, . . . , p − 1}
and hence by the definition of Trn,m that

Trn,m(ζn/(1 − ζn)) =
p−1∑
i=0

(
ζn

1 − ζn

)σ1+im
=
p−1∑
i=0

ζ 1+im
n

1 − ζ 1+im
n

.

The case p � m. Since (1 + i m, n) = 1 for i = 0, . . . , p − 1 with omitting i such that
1 + i m = p αp , we have that

Trn,m(ζn/(1 − ζn)) =
p−1∑
i=0

ζ 1+im
n

1 − ζ 1+im
n

− ζ
pαp
n

1 − ζ
pαp
n

.

Together with these we obtain (i), considering the automorphism σu.
(ii) Assume temporarily that n = p . By the definition and (3), we have that

Trn,1(ζn/(1 − ζn))= 1

n

n−1∑
k=1

k

n−1∑
j=1

(
ζ−k
n

)j

= 1

n
{−1 − · · · − (n− 1)}

= −(n− 1)/2 ,

which implies (ii) in this case, because then φ(n) = n− 1.
To prove the general case, we use an induction on n. If n is a prime (i.e., m = 1) then

(ii) holds by the above consideration. Assume now m �= 1. Then

Trn,1(ζn/(1 − ζn))

= Trm,1
(
Trn,m(ζn/(1 − ζn))

)
=
{

Trm,1(p · ζm/(1 − ζm)) if p|m ,
Trm,1(p · ζm/(1 − ζm)− ζ

αp
m /(1 − ζ

αp
m )) if p � m .

On the other hand, we have

φ(n) =
{
p φ(m) if p|m ,
(p − 1) φ(m) if p � m .

By our induction hypothesis, these yield (ii). �

1.3. Proof of Proposition 1.3. The equivalence between (i) and (i’) is deduced from
the relation

(5)

〈
au∗

b

n

〉
+
〈−au∗

b

n

〉
= 1 ,
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for a = 1, . . . , n− 1 and b = 1, . . . , φ(n).
To prove the equivalence between (ii) and (iii), we note that

(6) Re(ζ un /(1 − ζ un )) = −1

2
, Im (ζ un /(1 − ζ un )) = 1

2
cot(u π/n) ,

for u ∈ Z with u �≡ 0 mod n.
Using (6), we see the equivalence by taking the real- and imaginary- parts of Q-linear relations
between the numbers in (ii) resp. (iii).

Now we show the implication (ii) ⇒ (i). Assume (ii). To see (i), let lu∗
1
, . . . , lu∗

φ(n)/2
be

elements of Q such that

(7) MA"
n




lu∗
1
...

lu∗
φ(n)/2


 =




0
...

0




Put χ =∑φ(n)/2
b=1 lu∗

b
∆
(ub)
n . Then, from Lemma 1.5 (ii) it follows that

MA"
n




lu∗
1
...

lu∗
φ(n)/2


 =




〈χ, θ−1〉
...

〈χ, θ−(n−1)〉


 .

Hence we have by (7) that 〈χ, θ−a〉 = 0 for a = 1, . . . , n− 1. From this, considering (2) we
see that

χ =
n−1∑
a=1

〈χ, θ−a〉θ−a + 〈χ, θ0〉θ0 = 〈χ, θ0〉θ0 .

By Lemma 1.5 (i), this yields that

χ(1 mod nZ) = −
φ(n)/2∑
b=1

lu∗
b
ζ ubn /(1 − ζ ubn ) = 〈χ, θ0〉 ,

which is an element of Q. Applying the assumption (ii), we have lu1
∗ = · · · = lu∗

φ(n)/2
= 0,

as desired.
Finally we show the implication (i) ⇒ (ii). Here we prepare the following

LEMMA 1.8. Assume n > 1 and lu ∈ Q(u ∈ I (n)). Put χ = ∑
u∈I (n) lu∗∆

(u)
n . If

χ(1 mod nZ) ∈ Q then χ is a constant map.

PROOF. First, we note by Lemma 1.5 (i) and Lemma 1.7 that

(8) χ(α mod nZ) = −
∑

lu∗
(
ζ un /(1 − ζ un )

)σα = χ(1 mod nZ)σα
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for (α, n) = 1 , and

χ(0 mod nZ) = 1

2

∑
lu∗ = 1

φ(n)
Trn,1(χ(1 mod nZ)) .

Next, assume n = pm with p prime, and m �= 1. Here we assert

(9) χ(p α mod nZ) = χ(1 mod nZ)σα for (α, n) = 1 .

To see (9), it suffices to show it in the case α = 1, since we consider σα as above. In this case
by Lemma 1.5 (i) we first note that

χ(p mod nZ) = −
∑

lu∗ ζ um/(1 − ζ um)

= −
∑

u′∈I (m)


 ∑
u∈I (n),u≡u′ mod m

lu∗


 ζ u′

m /(1 − ζ u
′

m ) .
(10)

In the case p|m, from (10) it follows that

χ(p mod nZ)= − 1

p

∑
u′

∑
u

lu∗Trn,m(ζ un /(1 − ζ un ))

= − 1

p

∑
u

lu∗Trn,m(ζ un /(1 − ζ un ))

= − 1

p
Trn,m

(∑
u

lu∗ζ un /(1 − ζ un )

)

= 1

p
Trn,m(χ(1 mod nZ))

= χ(1 mod nZ) ,

as asserted.
In the case p � m, assume α̃p ∈ Z be such that (α̃p, n) = 1 with α̃p ≡ αp mod m. From (10)
it follows that

χ(p mod nZ)

= − 1

p

∑
u′

∑
u

lu∗{Trn,m(ζ un /(1 − ζ un ))+ ζ
αpu
m /(1 − ζ

αpu
m )}

= 1

p

{
Trn,m(χ(1 mod nZ))−

(∑
u

lu∗∆(u)(p mod nZ)

)σα̃p}

= 1

p

{
Trn,m(χ(1 mod nZ))+ χ(p mod nZ)σα̃p

}
.
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Thus we have

χ(p mod nZ)σα̃p − 1

p − 1
Trn,m(χ(1 mod nZ))

= p{χ(p mod nZ)− 1

p − 1
Trn,m(χ(1 mod nZ))} .

Since σα̃p is of finite order and χ(1 mod nZ) is a rational number by our assumption, this
means

χ(p mod nZ) = 1

p − 1
Trn,m(χ(1 mod nZ))

= χ(1 mod nZ) ,

as asserted.
Finally, to prove Lemma 1.8 we apply an induction on n. In fact, putting

χm =
∑

u′∈I (m)


 ∑
u∈I (m),u≡u′ mod m

lu∗


∆(u′)

m ,

where∆(u
′)

m =
m∑
k′=1

(
k′

m
− 1

2

)
θk

′u′
m by the definition (cf. Lemma 1.6), we have by Lemma 1.6

and (9) that χ |Z/fZ = χm, and hence χm(1 mod mZ) = χ(p mod nZ) = χ(1 mod nZ).
Thus, applying an induction on n, we see that χm is a constant map, and hence by (9) that χ
is a constant map. This completes the proof of Lemma 1.8. �

PROOF OF PROPOSITION 1.3 (continued). Assume (i). To see (ii), let lu∗
1
, . . . ,

lu∗
φ(n)/2

, c be elements of Q such that
∑φ(n)/2
b=1 lub∗ζ

ub
n /(1 − ζ

ub
n ) = c. Put χ =∑φ(n)/2

b=1 lu∗
b
∆
(ub)
n . Then, by Lemma 1.5 (i) we see that χ(1 mod nZ) = c, which is a ra-

tional number. Hence by Lemma 1.8, χ is a constant map i.e., χ = χ(0 mod nZ)θ0 . By (2)
this means that 〈χ, θ−a〉 = 0 for a = 1, . . . , n− 1. On the other hand, by Lemma 1.5 (ii) we
have that

MA"
n




lu∗
1
...

lu∗
φ(n)/2


 =




〈χ, θ−1〉
...

〈χ, θ−(n−1)〉


 .

By our assumption on the rank of MA"
n, this means that lu∗

1
= · · · = lu∗

φ(n)/2
= 0 and

hence c = 0, as desired. This completes the proof of Proposition 1.3. �
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2. Q-basis

In this section, we give a proof of our Theorem.

2.1. Remarks. Before giving a proof we remark some consequences of our main
theorem. First, noting (5) in §1 and Proposition 1.3, we see the following

COROLLARY 2.1 Assume n > 2. Then, we have the following:
(i) The rank of MA

′
n is φ(n)/2.

(ii) n has property (LI).

Next, applying σ−1 (i.e. the complex conjugation) and considering (1) in the subsection
1.1, we obtain other types of Q-bases.

COROLLARY 2.2. Assume n > 2. Then, we have the following:
(i) The elements ζ uan /(1 − ζ

ua
n ) and ζ 1−a

n (a = 1, . . . , φ(n)/2) form a Q-basis of
Q(ζn).

(ii) The elements ζ uan /(1−ζ uan ) and ζ 1−a
n /(1−ζn)(a = 1, . . . , φ(n)/2) form a Q-basis

of Q(ζn). �

2.2. Decomposition. To prove our Theorem, first we see the following

LEMMA 2.3. Assume n > 2. Then we have

∆(ζu1
n /(1 − ζ u1

n ), . . . , ζ
uφ(n)/2
n /(1 − ζ

uφ(n)/2
n ), 1, ζn , ζ 2

n , . . . , ζ
φ(n)/2−1
n )

= ±
(√−1

2

)φ(n)/2
Det (cot(uaub π/n))Det (2 cos(2 ua(b − 1) π/n)) ,

where a, b range over the set {1, . . . , φ(n)/2}.
PROOF. First we put

∆=∆(ζu1
n /(1 − ζ u1

n ), . . . , 1, ζn, . . . , ζ
φ(n)/2−1
n )

= Det




1

ζ
uaub
n

1−ζuaubn

... ζ
ua(b−1−φ(n)/2)
n

1
1

ζ
uaub
n

1−ζuaubn

... ζ
ua(b−1−φ(n)/2)
n

1



,

where a , b range over the set {1, . . . , φ(n)} .
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Next, observing that uφ(n)+1−i = n− ui , we have by (1) in the subsection 1.1 that

∆ = Det




1

ζ
uaub
n

1−ζuaubn

... ζ
ua(b̃−1)
n

1
−1 . . . −1 2
...

...
... ζ

ua(b̃−1)
n + ζ

−ua(b̃−1)
n

−1 . . . −1 2




=
(

1

2

)φ(n)/2
Det




1

2 ζ
uaub
n

1−ζuaubn

+ 1
... ζ

ua(b̃−1)
n

1
0 . . . 0 2
...

...
... ζ

ua(b̃−1)
n + ζ

−ua(b̃−1)
n

0 . . . 0 2




= 2

(
1

2

)φ(n)/2
Det


 2 ζ

uaua
n

1−ζuaubn

+ 1


 Det


 ζ

ŭa(b−1)
n + ζ

−ŭa(b−1)
n


 ,

where we put ŭa = uφ(n)/2+1−a and b̃ = b − φ(n)/2 .
We consider these determinants separately.

As for the former, from

(11) 2
ζ
uaub
n

1 − ζ
uaub
n

+ 1 = ζ
uaub
n

1 − ζ
uaub
n

− ζ
−uaub
n

1 − ζ
−uaub
n

= √−1 cot(uaub π/n) ,

it follows that

Det

(
2

ζ
uaub
n

1 − ζ
uaub
n

+ 1

)
= √−1

φ(n)/2
Det (cot(uaubπ/n)) .

As for the latter, exchanging rows and noting that uφ(n)+1−a = n− ua , we see that

Det
(
ζ ŭa(b−1)
n + ζ−ŭa(b−1)

n

)
= ±Det

(
ζ ua(b−1)
n + ζ−ua(b−1)

n

)
= ±Det (2 cos(2ua(b − 1) π/n)) .

Thus, together with these, we obtain the equality in Lemma 2.3. �
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2.3. Det (2 cos (2ua(b−1)π/n)). In this subsection we calculate Det (2 cos (2ua(b−
1)π/n)) in terms of the discriminants. For an algebraic number field K we denote by d(K)
the discriminant of K . In fact, we prove the following

PROPOSITION 2.4. Assume n > 2. Then

Det (2 cos(2ua(b − 1)π/n)) = ±2
√
d(Q(ζn + ζ−1

n )) ,

where a, b range over the set {1, . . . , φ(n)/2}.
PROOF. First we note that Z[ζn + ζ−1

n ] is the ring of algebraic integers of Q(ζn + ζ−1
n )

(cf. e.g., [11, Proposition 2.16]). On the other hand, it is easy to see that the elements 1, ζn +
ζ−1
n , ζ 2

n + ζ−2
n , . . . , ζ

φ(n)/2−1
n + ζ

−(φ(n)/2−1)
n forms an integral basis of Q(ζn + ζ−1

n ) . Thus,
by the definition of the discriminant

d(Q(ζn + ζ−1
n ))=∆(1, ζn + ζ−1

n , . . . , ζ
φ(n)/2−1
n + ζ

−(φ(n)/2−1)
n )2

= 1

4
Det

(
ζ ua(b−1)
n + ζ−ua(b−1)

n

)2
.

Since d(Q(ζn + ζ−1
n )) > 0 (e.g., [11, Lemma 2.2]), this implies the desired equality of our

proposition. �

2.4. Det (cot(uau∗
bπ/n)). In this subsection we calculate Det (cot(uau∗

bπ/n)) in
terms of the values L(1, χ) at 1 of L-functions attached to Dirichlet characters χ mod
n. Note that the matrix (cot(uaubπ/n)) is obtained by exchanging columns of the matrix
(cot(uau∗

bπ/n)).

PROPOSITION 2.5. Assume n > 2. Then

Det
(
cot(uau

∗
bπ/n)

) =
(
n

π

)φ(n)/2 ∏
χ : odd

L(1, χ) ,

where a, b range over the set {1, . . . , φ(n)/2}.
PROOF We use the Dedekind determinants such as

LEMMA 2.6 (cf. e.g., [9, Lemma], [8]). Assume n > 2. Let G be the group (Z/nZ)×.
Then, for a complex-valued odd function f : G −→ C, we have

Det (f (ūaūb−1)) =
∏
χ : odd

(
1

2

∑
ū∈G

χ(ū)f (ū−1)

)
,
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where a, b range over the set {1, . . . , φ(n)/2}, and ū denotes the corresponding class in G
for u ∈ Z with (u, n) = 1. �

Put G = (Z/nZ)×, and f (ū) = cot(uπ/n) for ū ∈ G with u ∈ Z its representative.
Noting that f : G −→ C is odd, we have by Lemma 2.6 that

Det
(
cot(uau∗

b π/n)
) =

∏
χ : odd

(
1

2

∑
ū∈G

χ̄(ū) f (ū)

)
.

Next, we put h1(t) = 1 + t

2 (1 − t)
. To prove our Proposition, we need the following:

PROPOSITION 2.7 (cf. [4, Theorem 3.4]). Assume n > 1. Then

L(1, χ) =
(

−2π
√−1

n

)
1

2

∑
u∈I (n)

χ(ū)h1(ζ
u
n ) . �

Here we note that the equality in Proposition 2.7 is deduced from the equation

h1(t) = −1

2

1

2π
√−1

∑
k∈Z

(
1

x + k
+ 1

x − k

)

for x ∈ C with x �∈ Z and t = exp(2π
√−1x),

which is a consequence of the Euler’s product for the sin −function

sin(πx)/πx =
∞∏
k=1

(1 − x2/k2) .

Returning to the proof, we see by (11) that

f (ū) = −2
√−1h1(ζ

u
n ) .

Hence, from Proposition 2.7 it follows that

1

2

∑
u∈I (n)

χ̄(ū)f (ū)= 1

2
(−2

√−1)
∑
u∈I (n)

χ̄(ū)h1(ζ
u
n )

= n

π
L(1, χ̄) .

Together with these, we obtain

Det (cot(uau∗
bπ/n)) =

( n
π

)φ(n)/2 ∏
χ : odd

L(1, χ) ,

as asserted. �
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2.5. Proof of Theorem. First we settle the part including Lχ in the following:

PROPOSITION 2.8. Assume n > 2 with n = fm. Let χ be a Dirichlet character
mod n such that χ �= 1. Assume χf be a Dirichlet character mod f such that χf induces χ .

Then,

L(1, χ) = L(1, χf )
∏

p|n,p�fχ

(1 − χf (p)/p) .

PROOF. This follows from the Euler’s product of L(s, χ) (e.g., [10, Proposition 12 in
3.3]). �

As for the parts of the class numbers and the discriminants, we quote the following:

PROPOSITION 2.9 [11, P. 42]. Assume n > 2. Then,

∏
χ : odd

L(1, χ∗) = 1

Qw
(2π)φ(n)/2 · h−

n · 1√
|d(Q(ζn))|

d(Q(ζn+ζ−1
n ))

,

where χ∗ denotes the primitive character belonging to χ . �

PROPOSITION 2.10 [11, P. 44]. Assume n > 2. Then

d(Q(ζn + ζ−1
n ))√|d(Q(ζn))| =




1/2 if n is a 2-power ,
1/

√
p if n is a p-power with p prime ( �= 2) ,

1 otherwise . �

Together with these, we complete the proof of our Theorem. In fact, we obtain the equation
in Theorem by Lemma 2.3, Proposition 2.4 and Proposition 2.5, substituting by Proposition
2.8, Proposition 2.9 and Proposition 2.10. �

3. Remarks in the case n is a prime power

In the case n is a prime power, the situations are somewhat simple (cf. e.g., Remark 3.1
below). In this section, also we provide an alternative proof of a theorem in [1, Theorem C.2]
(cf. Proposition 3.3 below) in the line given in Proposition 1.3.

3.1. Statement As for our main theorem, considering that Lχ = 1 in the case n is a
prime power, we have

REMARK 3.1. Let n be a prime power with n > 2. Then, we have

∆(ζu1
n /(1 − ζ u1

n ), . . . , ζ
uφ(n)/2
n /(1 − ζ

uφ(n)/2
n ) , 1, ζn, ζ 2

n , . . . , ζ
φ(n)/2−1
n )
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=




± 1

n
(n

√−1)φ(n)/2 · h−
n if n is a 2-power ,

± 1

n
√
p
(n

√−1)φ(n)/2 · h−
n if n is a p-power with p �= 2 ,

where we use the notations as in Theorem. �

As for the Maillet’s determinants, we have

PROPOSITION 3.2 [7]. Let n be a prime power with n > 2. Then we have

Det (MAn) =




1

n
h−
n if n is a 2-power ,

1

2n
h−
n if n is a p-power with p prime ( �= 2) . �

Thus, applying the implication (i) ⇒ (ii) in Proposition 1.3 we also have

PROPOSITION 3.3 [1, Theorem C.2]. Let n be a prime power with n > 2. Then the

elements 1 , ζ u1
n /(1 − ζ

u1
n ) , . . . , ζ

uφ(n)/2
n /(1 − ζ

uφ(n)/2
n ) are Q-independent. �

3.2. A remark on the alternative proof. Seeing the proof of the implication (i) ⇒
(ii) in Proposition 1.3, we moreover have the following:

PROPOSITION 3.4. Let n be a prime power with n > 2 and assume n = f m. Put

χ =∑u∈I (n) lu∗ ∆(u)n with lu∗ ∈ Q(u ∈ I (n)). Then

χ(f mod nZ) = φ(m)

φ(n)
Trn,m (χ(1 mod nZ)) �

This means that the virtual character
∑
u∈I (n) lu∗∆

(u)
n is completely determined by the

value at 1 mod nZ in our case.
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