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Abstract. This article shows explicit relations between fractional expressions of Schottky-Klein type for hy-
perelliptic σ -functions and a product of differences of the algebraic coordinates on each stratum of a natural stratifi-
cation in a hyperelliptic Jacobian.

1. Introduction

In this paper we shall consider the addition law on the Jacobian for any hyperelliptic
curve. To motivate our investigation, we start from the genus one case, and recall that Weier-
strass showed that principal relations in the theory of elliptic functions can be derived from
the well-known addition formula

σ(v + u)σ(v − u)

σ(v)2σ(u)2 = ℘(v) − ℘(u) ,(1.1)

where ℘(u) = −(d2/du2) log σ(u).

We consider an elliptic curve C1 defined by y2 = x3 + λ2x
2 + λ1x + λ0 with unique

point ∞ at infinity. Let (x(u), y(u)) be the inverse function of

(x, y) �→ u =
∫ (x,y)

∞
dx

2y
modulo the periods .

Then x(u) is equal to the function ℘(u) attached to C1 up to an additive constant. Hence we
have

σ(v + u)σ(v − u)

σ(v)2σ(u)2 = x(v) − x(u) .(1.2)

We recall some generalizations of (1.1) or (1.2). For the sake of simplicity we restrict

ourselves to the genus two curve C2 defined by y2 = x5 + λ4x
4 + λ3x

3 + λ2x
2 + λ1x + λ0,

but in many cases such generalizations can be proved for any hyperelliptic curve. Before
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describing our generalizations, we note that there is a nice generalization of the Weierstrass

elliptic σ -function (see 3.1 below for the definition), which is a theta function on C2 (now we

are assuming the genus is two). Indeed if we define ℘ij (u) = −(∂2/∂ui∂uj ) log σ(u), then

we have a classical formula1

σ(u + v)σ (u − v)

σ (u)2σ(v)2
= ℘11(v) − ℘11(u) − ℘12(u)℘22(v) + ℘12(v)℘22(u) ,(1.3)

which is a natural generalization of (1.1) based on the idea of Jacobi. This formula is ex-
pressed in terms of the algebraic coordinates as

σ(u + v)σ (u − v)

σ (u)2σ(v)2 = f (x1, x2) − 2y1y2

(x1 − x2)2 − f (z1, z2) − 2w1w2

(w1 − w2)2

+ x1x2(z1 + z2) − z1z2(x1 + x2) ,

(1.4)

where u = ( ∫ (x1,y1)

∞ + ∫ (x2,y2)

∞
)
( dx

2y
, xdx

2y
), v = ( ∫ (z1,w1)

∞ + ∫ (z2,w2)

∞
)(

dx
2y

, xdx
2y

)
, and f (x, z)

is a rather complicated polynomial of x and z such that f (x, z) = f (z, x) (see [B1], p. 211
for this).

On the other hand, the following is another generalization of (1.2) given by the third
author. Let u and v vary on the canonical universal Abelian covering of the curve C2 presented

in C2 (this is κ−1(Θ [1]) in the notation of Section 2 below), and x(u) be a function such that

u = ∫ (x(u),y(u))

∞
(

dx
2y

, xdx
2y

)
. Then we have

−σ(v + u)σ(v − u)

σ2(v)2σ2(u)2 = x(v) − x(u) ,(1.5)

where σ2(u) = ∂σ(u)/∂u2.
It is natural to seek a unified understanding of all the formulae (1.3), (1.4), and (1.5)

above. There are several hints. The first hint is the fact that the right hand side of (1.3) has a

determinantal expression [EEP], which is given by using the genus two case of results in [Ô].
The second hint is the following formula:

− σ(u(1) + u(2) + v)σ (u(1) + u(2) − v)

σ (u(1) + u(2))2σ2(v)2

= x(v)2 − ℘22(u
(1) + u(2))x(v) − ℘12(u

(1) + u(2))

(1.6)

for u(1), u(2), and v varying on the canonical universal Abelian covering of C2 in C2. This
appeared in [G] for the first time, and a generalization of this for any hyperelliptic curve was
reported in [BES], (3.21), without proof.

The main result (Theorem 4.2 below) of this paper is a unification of (1.5) and (1.6).
There should exist a unification of all the formulae above, and we hope to give such a formu-
lation in the near future.

1 A generalization of this formula to the case g = 3 is given by the Baker pffafian built from Kleinian ℘-functions.
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NOTATION. The symbol (d◦(z) ≥ n) denotes terms of total degree at least n with
respect to a variable z.

2. Stratification of the Jacobian of a Hyperelliptic Curve

Throughout this article we deal with a hyperelliptic (or elliptic) curve Cg of genus g > 0
given by the affine equation

y2 = f (x) ,

where we are assuming that f (x) is of the form

f (x) = x2g+1 + λ2gx2g + · · · + λ2x
2 + λ1x + λ0

with the λj being complex numbers. Then a canonical basis of the space of the differentials
of the first kind on Cg is given by

ω1 := dx

2y
, ω2 := xdx

2y
, . . . , ωg := xg−1dx

2y

using the algebraic coordinate (x, y) of Cg . Let αj and βj (j = 1, . . . , g) be a standard
homology basis on Cg . Namely, they give

H1(Cg , Z) =
g⊕

j=1

Zαj ⊕
g⊕

j=1

Zβj ,

and their intersection products are given by [αi, αj ] = 0, [βi, βj ] = 0, [αi, βj ] =
−[βi, αj ]δi,j . We denote matrices of the half-periods with respect to the differentials ωi

and the homology basis αj , βj by

ω′ := 1

2

[ ∫
αj

ωi

]
, ω′′ := 1

2

[ ∫
βj

ωi

]
.

We introduce differentials of the second kind

drj := 1

2y

2g−j∑
k=j

(k + 1 − j)λk+1+j x
kdx , (j = 1, . . . , g)

and the matrices of half-periods

η′ := 1

2

[ ∫
αj

dri

]
, η′′ := 1

2

[ ∫
βj

dri

]

of this differentials with respect to αj and βj . These 2g meromorphic differentials ui and ri

(i = 1, . . . , g) are chosen in such the way that the half-periods matrices ω′, ω′′, η′, η′′ satisfy
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the generalized Legendre relation

M

[
0 −1g

1g 0

]
tM =

√−1π

2

[
0 −1g

1g 0

]
,

where M =
[
ω′ ω′′
η′ η′′

]
. Let Λ = 2

(
Zgω′ ⊕ Zgω′′). Then Λ is a lattice in Cg and the Jacobi

variety J (Cg ) of Cg is given by

J (Cg ) := Cg/Λ .

We use the modulus T := ω′−1
ω′′ to define the σ -function of Cg later.

For k = 0, . . . , g , the Abel map φk from the k-th symmetric product Symk(Cg ) of the
curve Cg to J (Cg ) is the map

φk : Symk(Cg ) → J (Cg ) given by (Q1, . . . ,Qk) �→
k∑

i=1

∫ Qi

∞
(ω1, . . . , ωg ) mod Λ .

We denote the natural quotient map by κ :

κ : Cg → J (Cg ) = Cg/Λ .

We denote by Θ [k] the image φk(Symk(Cg )) of the Abel map φk above. Now we have the
following stratification:

{O} = Θ [0] ⊂ Θ [1] ⊂ Θ [2] ⊂ · · · ⊂ Θ[g−1] ⊂ Θ[g] = J (Cg ) ,

where O is the origin of J (Cg ). It is known that each Θ [k] is a subvariety of J (Cg ). We

shall refer to the subvariety Θ [k] as the k-th stratum of J (Cg ).
The following Lemma follows from a straightforward calculation of the Abelian integral

ui =
∫ (x,y)

∞
xi−1dx

2y

by using a power series expansion and integrating term by term.

LEMMA 2.1. Let u = (u1, . . . , ug ) ∈ κ−1(Θ [1]). We denote by
(
x(u), y(u)

) ∈ Cg the
algebraic coordinate whose image under the Abel map φk is u modulo Λ. Then we have the
following properties.

(1) The variable ug is a local parameter around (0, . . . , 0) on κ−1(Θ [1]), and u1, . . . ,

ug are functions of ug on κ−1(Θ [1]) near (0, . . . , 0).
(2) The functions x(u), y(u) have the following Laurent expansions around

(0, 0, . . . , 0) on κ−1(Θ [1]):

x(u) = ug
−2 + (d◦(ug ) ≥ 0) ,

y(u) = ug
−2g−1 + (d◦(ug ) ≥ −2g + 1) .
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For a proof of the above, we refer the reader to Lemmas 3.8 and 3.9 in [Ô], for in-
stance. �

3. The Sigma Function and Its Derivatives

In this section, we will introduce the hyperelliptic θ -function and σ -function. The later
is a natural generalization of the Weierstrass σ -function.

Let a and b be two vectors in Rg . We recall the theta function with respect to the lattice

of periods generated by 1g and T = ω′−1
ω′′ with characteristic t [a b], which is a function of

z ∈ Cg defined by

θ

[
a

b

]
(z) = θ

[
a

b

]
(z; T) =

∑
n∈Zg

exp

[
2π

√−1

{
1

2
t (n + a)T(n + a) + t (n + a)(z + b)

}]
,

as usual. Let δ′ = t
[1

2 , 1
2 , . . . , 1

2

]
and δ′′ = t

[ g
2 ,

g−1
2 , . . . , 1

2

]
. Then the half-period vector

δ′ω′ + δ′′ω′′ is the so-called Riemann constant for J (Cg ).

DEFINITION 3.1. The σ -function (see, for example, [B1], p. 336) is given by

σ(u) = γ0 exp

(
− 1

2
tuη′ω′−1

u

)
ϑ

[
δ′′
δ′

](
1

2
ω′−1

u; T
)

,

where γ0 is a certain non-zero constant depending of Cg , which is explained in [BEL] p. 32

and [Ô], Lemma 4.2. We regard the domain Cg where this function is defined as κ−1(J (Cg )).

Following the paper [Ô], we introduce multi-indices �n and their associated derivatives
σ�n(u) of σ(u) as follows:

DEFINITION 3.2. We define

�n =
{

{n + 1, n + 3, . . . , g − 1} if g − n ≡ 0 mod 2 ,

{n + 1, n + 3, . . . , g} if g − n ≡ 1 mod 2 .

By using this notation we have partial derivatives of σ(u) associated with these multi-indices,
namely,

σ�n(u) =
( ∏

i∈�n

∂

∂ui

)
σ(u) .

Moreover we write � := �1 and � := �2, so that σ�(u) = σ�1(u) and σ�(u) = σ�2(u).
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Several examples of σ�n(u) are given in the following table2.

genus σ� ≡ σ�1 σ� ≡ σ�2 σ�3 σ�4 σ�5 σ�6 σ�7 σ�8 · · ·
1 σ σ σ σ σ σ σ σ · · ·
2 σ2 σ σ σ σ σ σ σ · · ·
3 σ2 σ3 σ σ σ σ σ σ · · ·
4 σ24 σ3 σ4 σ σ σ σ σ · · ·
5 σ24 σ35 σ4 σ5 σ σ σ σ · · ·
6 σ246 σ35 σ46 σ5 σ6 σ σ σ · · ·
7 σ246 σ357 σ46 σ57 σ6 σ7 σ σ · · ·
8 σ2468 σ357 σ468 σ57 σ68 σ7 σ8 σ · · ·
...

...
...

...
...

...
...

...
...

. . .

For u ∈ κ−1J (Cg ), we denote by u′ and u′′ the unique elements in Rg such that u =
2(u′ω′ + u′′ω′′). We introduce a C-valued R-bilinear form L( , ) defined by

L(u, v) = tu(η′u′ + η′′u′′)

for u, v ∈ κ−1J (Cg )(= Cg). Let

χ(�) = exp[2π
√−1(t �′δ′′ − t �′′δ′) − π

√−1 t �′�′′] .

The following facts are essential for our main result.

PROPOSITION 3.3. (1) For u ∈ κ−1(Θ [n]) and � ∈ Λ, we have

σ�n(u + �) = χ(�)σ�n(u) exp L(u + 1
2�, �) .

(2) Let n be a positive integer n ≤ g . Let v, u(1), u(2), . . . , u(n) be elements in

κ−1(Θ [1]). If u(1)+· · ·+u(n) 
∈ κ−1(Θ [n−1]), then the function v �→ σ�n+1(u(1)+· · ·+u(n)+v)

has zeros only at v = (0, . . . , 0) modulo Λ of order g − n and at −u(1) modulo Λ of order 1.
Around (0, 0, . . . , 0) following expansion with respect to vg :

σ�n+1(u(1) + · · · + u(n) + v) = (−1)(g−n)(g−n−1)/2σ�n(u)vg
g−n + (d◦(vg ) ≥ g − n + 1) .

(3) For v ∈ κ−1(Θ [1]),

σ�1(v) = −(−1)g(g−1)/2vg
g + (d◦(vg ) ≥ g + 2) .

PROOF. The assertion (1) is proved by Lemma 7.3 in [Ô]. The assertions (2) and (3)

are proved by Proposition 7.5 in [Ô]. �

2 One can see that numbers appearing in those multi-index �n are naturally related to the Weierstrass gap sequence 1,
3, 5, . . . , 2g − 1 at the Weierstrass point ∞ at infinity.
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REMARK 3.4. (1) If n = g , the assertion 3.3(1) is the classical relation for σ(u)

with respect to a translation by any period � ∈ Λ (see [B1], p. 286).
Namely, we have the same relations for translations by any period � ∈ Λ for the special

partial-derivatives σ�n(u) on κ−1(Θ [n]) as that for σ itself. The essence of the proof in [Ô]

of this fact is that the derivative σ
�̌n (u) for any proper subset �̌n of �n vanishes on the stratum

Θ [n], which is proved by investigating the Riemann singularity theorem explicitly.
(2) We see by considering the unification of 3.3(2) and 3.3(3) above that it would be

natural to define σ�0(u) = −1 (a constant function).
(3) The statements 3.3(2) and (3) complement the Riemann singularity theorem ([R])

(see also [ACGH], p. 226–227) by exhibiting the orders of vanishing on each stratum Θ [n] in
terms of the σ function.

4. Main Result

We start by recalling the following formula (Lemma 8.1 in [Ô]) without proof.

LEMMA 4.1. Suppose u and v are variables on κ−1(Θ [1]). Then we have

(−1)g
σ�(u + v)σ�(u − v)

σ�(u)2σ�(v)2 = x(u) − x(v) .

The following relation is our main theorem and is an extension of both (3.21) in [BES]
and the formula above.

LEMMA 4.2. Let m and n be positive integers such that m + n ≤ g + 1. Let

u =
m∑

i=1

∫ (xi ,yi)

∞
(ω1, . . . , ωg ) ∈ κ−1(Θ [m]) , v =

n∑
j=1

∫ (x ′
j ,y

′
j )

∞
(ω1, . . . , ωg ) ∈ κ−1(Θ [n])

Then the following relation holds:

σ�m+n (u + v)σ�m+n (u − v)

σ�m(u)2σ�n(v)2 = (−1)δ(g,n)
m∏

i=1

n∏
j=1

(xi − x ′
j ) ,

where δ(g, n) = 1
2n(n − 1) + gn.

PROOF. We prove the desired formula by induction with respect to m and n. First we

suppose that the 2g points u(1), . . . , u(g) and v(1), . . . , v(g) are given. Then by 3.3 we see that

both sides of the desired formula are functions on Θ [1] with respect to each variable in the

u(i) and v(j). We let u[i] = u(1) + · · · + u(i) and v[j ] = v(1) + · · · + v(j) for 0 ≤ i ≤ g and
0 ≤ j ≤ g . If m = n = 1, the assertion is just Lemma 4.1. Therefore, the assertion is proved
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by reducing

σ�m+n+1(u[m] + v[n+1])σ�m+n+1(u[m] − v[n+1])

σ�m(u[m])2σ�n+1(u[n+1])2

= (−1)δ(g,n+1)
m∏

i=1

n+1∏
j=1

(xi − x ′
j )

(4.3a)

and

σ�m+n+1(u[m+1] + v[n])σ�m+n+1(u[m+1] − v[n])

σ�m+1(u[m+1])2σ�n(u[n])2

= (−1)δ(g,n)
m+1∏
i=1

n∏
j=1

(xi − x ′
j ) ,

(4.3b)

to the formula

σ�m+n(u[m] + v[n])σ�m+n (u[m] − v[n])

σ�m(u[m])2σ�n(v[n])2
= (−1)δ(g,n)

m∏
i=1

n∏
j=1

(xi − x ′
j ) .(4.4)

We denote the index of the sign in 3.3(2) by ε(g, n), that is ε(g, n) = (g − n)(g − n − 1)/2.
Then the left hand side of (4.3a) is

σ�m+n+1(u[m] + v[n+1])σ�m+n+1(u[m] − v[n+1])

σ�m(u[m])2σ�n+1(v[n+1])2

= [
σ�m+n (u[m] + v[n])

{
(−1)ε(g,m+n)

(
v(n+1)
g

)g−m−n + · · · }
× σ�m+n(u[m] − v[n])

{
(−1)ε(g,m+n)

( − v(n+1)
g

)g−m−n + · · · }]/
σ�m(u[m])2σ�n(v[n])2{(−1)ε(g,n)

(
v(n+1)
g

)g−n + · · · }2

= σ�m+n (u[m] + v[n])σ�m+n (u[m] − v[n])

σ�m(u[m])2σ�n(u[n])2

{
(−1)g−m−n 1(

v
(n+1)
g

)2m
+ · · ·

}
(4.3a′)

by Lemma 2.1. The right hand side of (4.3a) is

(−1)δ(g,n+1)

m∏
i=1

n+1∏
j=1

(xi − x ′
j )

= (−1)δ(g,n+1)(−x ′
n+1)

m
m∏

i=1

n∏
j=1

(xi − x ′
j ) + (

d◦(xn+1) ≤ m − 1
)

= (−1)δ(g,n+1)+m(
v(n+1)

)2m

m∏
i=1

n∏
j=1

(xi − x ′
j ) + (

d◦(v(n+1)) ≥ −2m + 1
)

(4.3a′′)
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The index of the sign of the last expression in (4.3a′′) is

δ(g, n + 1) + m = 1
2 (n + 1)n + g(n + 1) − 1 + m

= 1
2n(n − 1) + n + gn + g − 1 + m

≡ 1
2n(n − 1) + gn − 1 + (g − n − m) mod 2

= δ(g, n) + (g − n − m) .

This is equal to the sum of the indices of the signs in (4.4) and one of the last factors in (4.3a′).
Thus, the leading terms of the expansions with respect to v

(n+1)
g of the two sides completely

coincide. Until this point, the assumption m + n ≤ g + 1 was not essential. Now we check
the divisors of the two sides regarded as functions of v(n+1) modulo Λ. Using the assumption
m + n ≤ g + 1, we can determine the divisors of the two sides exactly by Proposition 3.4.

For the left hand side of (4.3a), the numerator has zeros at v(n+1) = (0, 0, . . . , 0) of order
2(g − m − n) modulo Λ, at ± u(1), . . . , ± u(m), −v(1), . . . , −v(n) of order 1 modulo Λ.
The denominator has zeros at v(n+1) = (0, 0, . . . , 0) of order 2(g − n) modulo Λ, at −v(1),
. . . , −v(n) of order 1 modulo Λ. Therefore the left hand side of (4.3a) has only poles at

v(n+1) = (0, 0, . . . , 0) of order 2m modulo Λ, and has zeros at ± u(1), . . . , ± u(m) of order 1
modulo Λ. These pole and zeros coincide with those of the left hand side and have the same

order, because, for u and v ∈ κ−1(Θ [1]), we have x(u)−x(v) if and only if u = ±v. Thus, we
have reduced the formula (4.3a) to the equality (4.4). The formula (4.3b) is similarly reduced
to (4.4). Hence, we have proved the assertion. �

Baker ([B1] and [B2]) defined

℘ij (u) = − ∂2

∂ui∂uj

log σ(u)

for 0 ≤ i ≤ g , 0 ≤ j ≤ g , and u = (u1, . . . , ug ) ∈ Cg , which is the natural generalizations of
the Weierstrass ℘ function. As we mentioned earlier, the following special case of (m, n) =
(g, 1) in 4.2 appeared in [BES], (3.21), which was the motivation of this paper.

COROLLARY 4.5 ([BES], (3.21)). We suppose that (x, y), (x1, y1), . . . , (xg , yg ) are
g + 1 points on Cg . Let

Fg (x) = (x − x1)(x − x2) · · · (x − xg)

u =
g∑

i=1

∫ (xi ,yi)

∞
(ω1, . . . , ωg ) ∈ κ−1(Θ[g])(= Cg ) ,

v =
∫ (x,y)

∞
(ω1, . . . , ωg ) ∈ κ−1(Θ [1]) .
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Then we have the relation

σ(u + v)σ (u − v)

σ (u)2σ�(v)2 = (−1)
1
2 g(g+1)Fg (x)

= xg − ℘gg(u)xg−1 − ℘g,g−1(u)xg−2 − · · · − ℘g1(u) .

PROOF. The first equality is obvious from 4.2. The second equality follow from the fact
that

℘g,g−k+1(u) = (−1)k+1
∑

1≤i1<i2<···<ik≤g

xi1xi2 · · · xik

for 1 ≤ k ≤ g , which was given by Baker (see [B3], for example). �

5. Some Remarks

We remark finally on related work and on future possibilities for our result. The polyno-
mial Fg plays the role of the master polynomial in the theory of hyperelliptic functions. Bolza
showed how to express the polynomial Fg in terms of Kleinian ℘-functions; in this context
we shall call the master polynomial Fg the Bolza polynomial. Its zeros give the solution to
the Jacobi inversion problem. In the 2 × 2 Lax representation of a dynamical system asso-
ciated with a hyperelliptic curve, it plays the role of the U polynomial among Jacobi’s U ,
V , W -triple ([Mu]). Vanhaecke studied the properties of Θ [k] using U , V , W -polynomials
which are constructed on the basis of the master polynomial Fg ([V2]). In [BES], the authors
applied a particular case of the addition theorem mentioned above with a Bolza polynomial to
compute the norm of a wave function to the Schrödinger equation with a finite-gap potential.

A similar polynomial Fk(z) ≡ U(z) := (z − x1) · · · (z − xk) over Θ [k] plays an essential
role in the studies of the structures of the subvarieties ([AF] and [Ma]), namely,

σ�k+1(u − v)σ�k+1(u + v)

σ�1(v)2σ�k (u)2
= (−1)g−kFk(x) .

For the case k = 1, it appeared in [Ô] as a Frobenius-Stickelberger type relation of higher
genus, which determines an algebraic structure of the curve.

We emphasize that studies of the θ -divisor are currently of interest. In particular, the
inversion of higher genera hyperelliptic integrals with respect to the restriction to the θ -divisor
was recently used in the problem of the analytic description of a conformal map of a domain
in the half-plane to its complement, by means of a reduction of the Benney system [BG1],
[BG2]. The same method of inversion of an ultraelliptic integral was used in [EPR] to describe
motion of a double pendulum.

In was shown in a series of publications by Vanhaecke [V1], [V2], Abenda and Fedorov
[AF] and one of the current authors [Ma] and others that the θ -divisor can serve as a carrier of
integrability. Grant [G], and Cantor [C] found algebraic structures on Θ [1] which are related
to division polynomials whose zeros determine n-time points. Recently one of the authors and
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Eilbeck and Previato used the Grant-Jorgenson formula ([G] and [J]) to derive an analogue
of the Frobenius-Stickelberger addition formula for three variables in the case of a genus two
hyperelliptic curve ([EEP]).

Thus we hope that our main theorem will have some influence on this type of study based
on the Riemann singularity theorem.
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