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Abstract. The aim of this paper is to extend the domain of polygamma function from the set of complex
numbers to the set of bicomplex numbers. We also discuss integral representation, recurrence relation, multiplication
formula and reflection formula for this function.

1. Introduction, Definitions and Preliminaries

Corrado Segre published a paper [10] in 1892, in which he studied an infinite set of
algebras whose elements, he called bicomplex numbers, tricomplex,..., n-complex numbers.
The algebras of quarternions and bicomplex numbers were developed by making use of so
called complex pairs. The work of Segre remained unnoticed for almost a century. But
recently mathematicians have started taking interest in the subject and a new theory of special
functions has started coming up.

Recently G. Baley Price [7] and Rönn [9] have developed the bicomplex algebra and
function theory while Rochon [8] has developed a bicomplex Riemann zeta function. Recently
we have extended the domain of Hurwitz zeta function, Gamma and Beta functions from the
set of complex numbers to the set of bicomplex numbers [4], [5]. Motivated by this, in this
paper we study the Polygamma function whose domain is the set of bicomplex numbers. Also
we discuss integral representation, recurrence relation, multiplication formula and reflection
formula for this function.

1.1. The Bicomplex Number.

DEFINITION 1. The bicomplex number ω is defined as follows [8]

ω = a + bi1 + ci2 + di1.i2 , (a, b, c, d ∈ R) , (1)

(where i21 = i22 = −1).
It can be written as

ω = (a + bi1)+ (c + di1)i2 , (a, b, c, d ∈ R) , (2)
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or

ω = z1 + z2i2 , (z1, z2 ∈ C) , (3)

where z1 = a + bi1 and z2 = c + di1 and C is the set of complex numbers.

Let C2 denotes the set of bicomplex numbers, then

C2 = {a + bi1 + ci2 + di1.i2 : i21 = i22 = −1, a, b, c, d ∈ R} . (4)

Let w = z1 + z2i2 ∈ C2. Then w is non-invertible iff

z2
1 + z2

2 = 0 ⇒ z1 + z2i1 = 0 or z1 − z2i1 = 0 . (5)

The set of non-invertible elements in C2 is denoted byO2.

1.2. Bicomplex Analysis. (a) The bicomplex functions of interest are holomorphic
functions and characterized by the fact that they are differentiable. It is possible to define
differentiability of a function at a point of C2 [8]:

DEFINITION 2. Let U be an open set of C2 and wo ∈ U . Then f : U ⊆ C2 → C2

is said to be C2-differentiable at wo with derivative equal to f ′(wo) ∈ C2, (with (w − wo)

invertible) if

lim
w→wo

f (w)− f (wo)

w −wo
= f ′(wo) (6)

exists.

We shall say that the function f is holomorphic on an open set U iff f is C2-
differentiable at each point of U .

DEFINITION 3. ([8]). Let U be an open set and f : U ⊆ C2 → C2. Also suppose that
f (z1 + z2i2) = f1(z1, z2) + i2f2(z1, z2). Then f is T -holomorphic on U iff f1 and f2 are
holomorphic in U and satisfy

∂f1

∂z1
= ∂f2

∂z2
and

∂f2

∂z1
= − ∂f1

∂z2
on U . (7)

Equations (7) are known as complexified Cauchy-Riemann (C-R) equations and the func-
tion f is said to be in class TH(U), (U ⊆ C2) of holomorphic functions.

(b) The bicomplex integration of a bicomplex function φ(ω) = φ1(z1, z2) +
i2φ2(z1, z2) is defined as a line integral, that is evaluated with respect to some four-
dimensional curve H in C2. More specifically, the bicomplex integration (see, e.g. Rönn [9])
is defined as

I =
∫
H

φ(ω)⊗ dω , dω = (dz1, dz2) (8)
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where H is a piecewise continuously differentiable curve in C2 and has the parametric equa-
tion H : P = P(t), P (t) = (a(t), b(t)), for r ≤ t ≤ s and H can be taken as a curve made
up of two component curves γ1 and γ2 in C1 i.e. H = (γ1, γ2). Thus

I =
∫ s

r

φ[ω(t)] ⊗ ω′(t)⊗ dt . (9)

1.3. The Idempotent Basis. Every Bicomplex numberw = z1 +z2i2 has the follow-
ing unique idempotent representation

w = z1 + z2i2 = (z1 − z2i1)e1 + (z1 + z2i1)e2 , (10)

where e1 = (1 + i1.i2)/2, e2 = (1 − i1.i2)/2.
This representation is very useful because addition, multiplication and division can be

done term by term.

DEFINITION 4. A ⊆ C2 is said to be a C2-cartesian set determined by A1, A2 ⊆ C, if
A = A1 ×e A2 = {z1 + z2i2 ∈ C2 : z1 + z2i2 = w1e1 +w2e2 , (w1, w2) ∈ A1 × A2}.
Obviously if A1, A2 ⊆ C, then A1 ×e A2 ⊆ C2. Thus if w ∈ C2 is in the form w =
w1e1 +w2e2 and also if w = z1 + z2i2, then

w1 = z1 − z2i1 , w2 = z1 + z2i1 , (11)

z1 = (w1 +w2)/2 , z2 = (w1 −w2)i1/2 . (12)

The results contained in the following Lemmas will also be required in the sequel.

LEMMA 1. If fe1 : A1 → C1 and fe2 : A2 → C are holomorphic (analytic) functions
in C on the domains A1 and A2 respectively, Then the function f : A1 ×e A2 → C2 defined
as

f (z1 + z2i2) = fe1(z1 − z2i1)e1 + fe2(z1 + z2i1)e2 (13)

∀z1 + z2i2 ∈ A1 ×e A2, is T-holomorphic on the domain A1 ×e A2 ⊆ C2.

LEMMA 2. If fe1 : A1 → C and fe2 : A2 → C are holomorphic functions in C on the
domains A1 and A2 respectively, Then we can define a function f : A1 ×e A2 → C2 as

f (ω) = fe1(ω1)e1 + fe2(ω2)e2 (14)

where ω = ω1e1 +ω2e2 ⇒ dω = (dω1)e1 + (dω2)e2 ∀ ω ∈ A1 ×e A2 ⊆ C2. Now we have∫
H

f (ω)⊗ dω =
{∫

γ1

fe1(ω1)⊗ dω1

}
e1 +

{∫
γ2

fe2(ω2)⊗ dω2

}
e2 (15)

where H : ω = ω(t), ω(t) = ω1(t)e1 + ω2(t)e2 for r ≤ t ≤ s.

1.4. Polygamma Function. A special function which is given by the (n+ 1)th deriv-
ative of the logarithm of the gamma function is called the Polygamma function and is denoted
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by ψn(z) (see, e.g. [2], [6])

ψn(z) = dn+1

dzn+1 ln[Γ (z)]

= dn

dzn

Γ ′(z)
Γ (z)

= dn

dzn
ψ0(z), n > 0

(16)

where ψ0(z) is Digamma function.
Also, Polygamma function is related to Hurwitz Zeta function ζ(s, a) as

ψn(z) = (−1)n+1n!
∞∑
k=0

1

(z+ k)n+1

= (−1)n+1n!ζ(n+ 1, z) .

(17)

The polygamma function obeys the recurrence relation

ψn(z + 1) = ψn(z)+ (−1)nn!z−n−1 , (18)

the reflection formula

ψn(1 − z)+ (−1)n+1ψn(z) = (−1)nπ
dn

dzn
cot(πz) , (19)

and the multiplication formula

ψn(mz) = δn0 ln m+ 1

mn+1

m−1∑
k=0

ψn

(
z+ k

m

)
, (20)

where δmn is Kronecker delta.
The Euler Mascheroni constant is a special value of the Digamma function ψ0(z) given

by

γ = −Γ ′(1) = −ψ0(1) . (21)

The Polygamma function may be represented in integral form as

ψn(z) =
∫ ∞

0

tme−zt

1 − e−t
dt (22)

which holds for Re(z) > 0.
The Taylor series at z = 1 is

ψn(z+ 1) =
∞∑
k=0

(−1)n+k+1(n+ k)!ζ(n+ k + 1)
zk

k! (23)
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which converges for |z| < 1. Here ζ(n) is the Riemann zeta function. This series can be
derived easily from the corresponding Taylor series for the Hurwitz zeta function.

The Polygamma functions are analytic everywhere in the complex plane except for the
poles (of order n+1) at all non-positive integers. The residues at these poles are all given by

(−1)n+1n!.

2. Bicomplex Polygamma Functions

DEFINITION 5. Let n ∈ N, ω = z1 +z2i2 ∈ C2. Then bicomplex polygamma function
ψn(ω) is defined by

ψn(ω) = (−1)n+1n!ζ(n+ 1, ω)

= dn+1

dωn+1
[lnΓ (ω)]

(24)

(m+ ω) 
∈ O2, m ∈ N ∪ {0} and O2 is the set of non-invertible elements in C2.

This definition is well justified by the following

THEOREM 2. Let ω = z1 + z2i2 ∈ C2, m+ ω 
∈ O2, m ∈ N ∪ {0}. Then

ψn(ω) = (−1)n+1n!
[ ∞∑
k=0

1

(z1 − z2i1 + k)n+1
e1 +

∞∑
k=0

1

(z1 + z2i1 + k)n+1
e2

]

= ψn(z1 − z2i1)e1 + ψn(z1 + z2i1)e2 .

(25)

PROOF. By the definition of Bicomplex Hurwitz Zeta function [4], we have

ζ(n+ 1, ω) = ζ(n+ 1, z1 − z2i1)e1 + ζ(n+ 1, z1 + z2i1)e2

=
∞∑
k=0

1

(z1 − z2i1 + k)n+1
e1 +

∞∑
k=0

1

(z1 + z2i1 + k)n+1
e2 .

(26)

Thus

(−1)n+1n!ζ(n+ 1, ω) = (−1)n+1n!ζ(n+ 1, z1 − z2i1)e1

+ (−1)n+1n!ζ(n+ 1, z1 + z2i1)e2

= ψn(z1 − z2i1)e1 + ψn(z1 + z2i1)e2 .

(27)

Further, using (16) in (27), we get
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ψn(ω) = dn+1

d(z1 − z2i1)n+1
ln[Γ (z1 − z2i1)]e1 + dn+1

d(z1 + z2i1)n+1
ln[Γ (z1 + z2i1)]e2

=
(

dn+1

d(z1 − z2i1)n+1 e1 + dn+1

d(z1 + z2i1)n+1 e2

)
× (ln{Γ (z1 − z2i1)e1 + Γ (z1 + z2i1)e2})

= dn+1

dωn+1
ln[Γ (ω)] (using [5, p.136, (30)]) .

(28)

2.1. Domain of Bicomplex Polygamma Functions. If O2 is set of non-invertible
elements as in (5) in C2, we extend the domain ofψn(ω) on the set C2/{−m+O2},m ∈ N∪{0}
as follows:

We know from definition of Polygamma function that it has poles of order (n + 1) with

residue (−1)n+1n! when

(z1 − z2i1) = −m or (z1 + z2i1) = −m, m ∈ N ∪ {0}
combining above and using (25), we get poles of bicomplex polygamma function for

ω ∈ {−m+O2} , m ∈ N ∪ {0} . (29)

LEMMA 3. Bicomplex Polygamma functions are T-holomorphic on C2/{−m+O2},
m ∈ N ∪ {0}.

PROOF. We define C2 cartesian set

A = A1 ×e A2 = {ω = z1 + z2i2 ∈ C2 : z1 + z2i2

= ω1e1 + ω2e2, ω1, ω2 
= (−m), (ω1, ω2) ∈ A1 × A2} .
(30)

Let us define fe1 : A1 → C, fe1(x) = ψn(x) and fe2 : A2 → C, fe2(x) = ψn(x). Then
the function f : A1 ×e A2 → C2 is defined by f (ω) = ψn(ω), ∀ ω ∈ A1 ×e A2.

Now since the functionψn(x) is analytic in C on the domainsA1 andA2 respectively, by
definition (25) and Lemma 1, we find thatψn(ω) is T -holomorphic on the domainA1×eA2 ⊆
C2.

REMARK. Let ω0 ∈ {−m+O2} then for ω 
∈ {−m+O2}
lim
ω→ω0

|ψn(ω)| = ∞ . (31)

Hence the domain C2/{−m+O2} is the best possible.

2.2. Integral Representation. Integral representation for bicomplex Polygamma
function is given by

ψn(ω) =
∫
H

e−ωp ⊗ pn

1 − e−p
⊗ dp (32)
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provided that Re(z1) > |Im(z2)|. Where ω = z1 + i2z2 ∈ C2, p = p1e1 + p2e2 ∈ C2,
p1, p2 ∈ R+, and H ≡ (γ1, γ2), γ1 ≡ γ1(p1) and γ2 ≡ γ2(p2).

PROOF. The representation given by (32) is justified since by using (22) and Lemma 2,
we have∫

H

e−ωp ⊗ pn

1 − e−p
⊗ dp =

∫ ∞

0

e−(z1−i1z2)p1pn1

1 − e−p1
dp1e1 +

∫ ∞

0

e−(z1+i1z2)p2pn2

1 − e−p2
dp2e2

= ψn(z1 − i1z2)e1 + ψn(z1 + i1z2)e2 = ψn(ω) .

(33)

Also, by the condition for the integral representation (22) for Polygamma function, we
have

Re(z1 − i1z2) > 0 and Re(z1 + i1z2) > 0

Let z1 = σ1 + t1i1 and z2 = σ2 + t2i1 , σ1, σ2, t1, t2 ∈ R. Then

σ1 + t2 > 0 and σ1 − t2 > 0

⇒ σ1 > 0 and − σ1 < t2 < σ1

⇒ Re(z1) > 0 and |Im(z2)| < Re(z1) . (34)

2.3. Recurrence relation. Recurrence relation for Polygamma function is given by

ψn(ω + 1) = ψn(ω)+ (−1)nn!ω−(n+1) (35)

PROOF. By the recurrence relation (18) and the result (25), we have

ψn(ω + 1) = ψn(z1 − z2i1 + 1)e1 + ψn(z1 + z2i1 + 1)e2

= {ψn(z1 − z2i1)e1 + ψn(z1 + z2i1)e2}
+ (−1)nn![(z1 − z2i1)

−(n+1)e1 + (z1 + z2i1)
−(n+1)e2] .

(36)

Hence using (25), we get (35).

2.4. Reflection formula and Multiplication formula. Using (19), (20) and (25), we
have the Reflection formula for bicomplex Polygamma function given by

ψn(1 − ω)+ (−1)n+1ψn(ω) = (−1)nπ
dn

dωn
cot(πω) , (37)

and multiplication formula given by

ψn(mω) = δn0 ln m+ 1

mn+1

m−1∑
k=0

ψn

(
ω + k

m

)
. (38)
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