Токуо J. Матн. Vol. 30, No. 2, 2007

On the Uniqueness of Semistable Embedding and Domain of Semistable Attraction for Probability Measures on *p*-adic Groups

Riddhi SHAH

Tata Institute of Fundamental Research

(Communicated by H. Nakada)

Abstract. We show that on a *p*-adic Lie group, any normal semistable measure has a unique semistable embedding. This, in particular, implies the uniqueness of semistable embedding of any (operator-)semistable measure on a finite dimensional *p*-adic vector space. We compare two classes of probability measures on a unipotent *p*-adic algebraic group: the class of semistable measures and that of measures whose domain of semistable attraction is nonempty.

1. Introduction

Let *G* be a locally compact (Hausdorff) group with identity *e* and let $M^1(G)$ denote the topological semigroup of probability measures on *G* with weak topology and convolution '*' as the semigroup operation. Let Aut(*G*) denote the group of continuous automorphisms of *G* (with compact-open topology).

A probability measure μ on *G* is said to be (τ, c) -semistable for $\tau \in \operatorname{Aut}(G)$ and $c \in [0, 1[$ if μ is embeddable in a continuous (real) one-parameter semigroup $\{\mu_t\}_{t\geq 0} \subset M^1(G)$ as $\mu = \mu_1$ such that $\tau(\mu_t) = \mu_{ct}$ for all $t \geq 0$; we also call $\{\mu_t\}_{t\geq 0}$ (τ, c) -semistable. A measure μ (resp. $\{\mu_t\}_{t\geq 0}$) in $M^1(G)$ is said to be semistable if it is (τ, c) -semistable for some $\tau \in \operatorname{Aut}(G)$ and some $c \in [0, 1[$. Note that in case of (finite dimensional) *p*-adic (resp. real) vector spaces, this definition corresponds to that of operator-semistable (resp. strictly operator-semistable) measures.

It is well-known that if any locally compact group G admits a semistable measure μ embeddable in a (τ, c) -semistable $\{\mu_t\}_{t\geq 0} \subset M^1(G)$ for τ and c as above, then μ is supported on the closure of the K-contraction group of τ , namely $C_K(\tau) = \{x \in G \mid \tau^n(x)K \rightarrow K \text{ in } G/K\}$, where K is a compact subgroup such that $\mu_0 = \omega_K$, the normalised Haar measure of K. The structure of $C(\tau) = C_{\{e\}}(\tau)$, the contraction group of τ , is well-known. If G admits a contracting automorphism τ ; i.e. $C(\tau) = G$, then it is a direct product $G^0 \times D$, where G^0 is a simply connected nilpotent contractible group and D is a totally disconnected contractible group (cf. [Si]). Semistable measures on real vector spaces, or more generally,

Received February 17, 2006; revised July 10, 2006

on simply connected nilpotent groups, have been studied in details (see [HSi2] and references cited therein). In this article, we are interested in investigating some aspects of semistability for measures on *p*-adic Lie groups, which form a significant subclass of totally disconnected groups, (see [V] or [S] for exposition on *p*-adic Lie groups).

In case G is a p-adic Lie group and $\tau \in \operatorname{Aut}(G)$, by Theorem 3.5 of [W], $C(\tau)$ is a unipotent p-adic algebraic group (see section 2 for some details). Also, if $\tau(K) = K$ then $C_K(\tau)$ is closed and $C_K(\tau) = C(\tau) \cdot K$, a semidirect product. Moreover, any (τ, c) -semistable one-parameter semigroup $\{\mu_t\}_{t\geq 0}$ on G can be expressed as $\mu_t = \mu_t^{(0)} * \omega_K = \omega_K * \mu_t^{(0)}$ for all t, where $\{\mu_t^{(0)}\}_{t\geq 0}$ is a (τ, c) -semistable one-parameter semigroup supported on $C(\tau)$ (cf. [DSh1]; a similar result is true for real Lie groups also, see [HSi1]). For a survey of results on semistable measures on locally compact groups, the reader is referred to [HSi2] and for semistable measures on p-adic groups in particular to [DSh1], [Sh1], and also [MSh1]– [MSh2] for more recent results.

For any $x \in G$, let δ_x denote the dirac measure supported on x. Let $\mu \in M^1(G)$. Let $\tilde{\mu} \in M^1(G)$ be defined as $\tilde{\mu}(B) = \mu(B^{-1})$ for all Borel subsets B of G. μ is said to be *normal* if $\mu * \tilde{\mu} = \tilde{\mu} * \mu$. Let $G(\mu)$ denote the closed subgroup generated by supp μ , the support of μ and let $\mathcal{I}(\mu) = \{x \in G \mid \delta_x * \mu = \mu * \delta_x = \mu\}$ which is a compact subgroup of G. We also define the invariance group of μ as $Inv(\mu) = \{\tau \in Aut(G) \mid \tau(\mu) = \mu\}$; it is a closed subgroup of Aut(G).

We say that a semistable measure on *G* has a *unique semistable embedding* if the following holds: if μ is embeddable in (τ, c) -semistable and (ψ, d) -semistable one-parameter semigroups $\{\mu_t\}_{t\geq 0}$ and $\{\nu_t\}_{t\geq 0}$ in $M^1(G)$ respectively as $\mu_1 = \mu = \nu_1$, for some $\tau, \psi \in \text{Aut}(G)$ and $c, d \in [0, 1[$, then $\mu_t = \nu_t$ for all $t \geq 0$.

In section 2, we discuss the uniqueness of semistable embedding on a p-adic Lie group G under certain conditions and show that any normal semistable measure on G has a unique semistable embedding (see Theorem 2.1). In particular, this implies the uniqueness of semistable embedding of any (operator-)semistable measure on any p-adic vector space. In section 3, on a unipotent p-adic algebraic group, we compare semistable measures with measures whose domain of semistable attraction is nonempty, (in particular, see Theorem 3.1).

2. On the uniqueness of semistable embedding on *p*-adic groups

In this section, we discuss the uniqueness of semistable embedding on a p-adic Lie group G under certain conditions. The reader is referred to [C] for generalities on p-adic vector spaces and to [V] and [S] for p-adic Lie groups.

For a prime p, let \mathbf{Q}_p denote the field of p-adic numbers with the usual p-adic absolute value $|\cdot|_p$. Let $GL_m(\mathbf{Q}_p)$ be the group of $m \times m$ non-singular matrices with entries in \mathbf{Q}_p , with the topology as a subset of $\mathbf{Q}_p^{m^2}$. Then $GL_m(\mathbf{Q}_p)$ is a p-adic Lie group. Let \tilde{G} be a p-adic algebraic group and let $G = \tilde{G}(\mathbf{Q}_p)$ be the \mathbf{Q}_p -rational points of \tilde{G} . i.e. \tilde{G} (resp. G)

is the set of common zeros in $GL_m(\overline{\mathbf{Q}_p})$ (resp. in $GL_m(\mathbf{Q}_p)$) of finitely many polynomials with coeffifients in \mathbf{Q}_p , where $\overline{\mathbf{Q}_p}$ denotes the algebraic closure of \mathbf{Q}_p . Then *G* is a closed subgroup of $GL_m(\mathbf{Q}_p)$ for some $m \in \mathbf{N}$ (the set of natural numbers), in particular, it is a *p*-adic Lie group; We will occasionally call *G* itself a *p*-adic algebraic group. A subgroup *H* of $G = \tilde{G}(\mathbf{Q}_p)$ is said to be algebraic if $H = \tilde{H}(\mathbf{Q}_p)$ for some algebraic group $\tilde{H} \subset \tilde{G}$; *H* is closed in *G*. An algebraic group \tilde{G} is said to be unipotent if it consists of unipotent elements. If \tilde{G} is unipotent, then $G = \tilde{G}(\mathbf{Q}_p)$ is a subgroup of $U_m(\mathbf{Q}_p)$ (for some $m \in \mathbf{N}$), the group of $m \times m$ upper triangular matrices with all diagonal entries equal to 1, (see [B], [Ho] and [Hu] for generalities on algebraic groups).

Let \tilde{G} be a *p*-adic algebraic group and let $G = \tilde{G}(\mathbf{Q}_p)$. For a probability measure μ on G, we will denote by $\tilde{G}(\mu)$ the smallest (closed) algebraic subgroup of G containing supp μ . A probability measure μ on G is said to be *full* (resp. *S-full*) if $\tilde{G}(\mu) = G$ (resp. $\tilde{G}(\mu * \tilde{\mu}) = G$). Note that these definitions are consistent with the definitions on (*p*-adic) vector spaces as all its algebraic subgroups are subspaces.

We note that any symmetric semistable measure on any locally compact group has a unique semistable embedding. This is because if a symmetric measure is embeddable in a continuous one-parameter semigroup which consists of symmetric measures then such an embedding is unique and if $\{\mu_t\}_{t\geq 0}$ is (τ, c) -semistable for some automorphism τ and some $c \in]0, 1[$ where μ_1 is symmetric then $\tau^n(\mu_1)^m = \mu_{mc^n}$ is symmetric for $m, n \in \mathbb{N}$, and since $\{\mu_{mc^n} \mid m, n \in \mathbb{N}\}$ is a dense subset of $\{\mu_t\}_{t\geq 0}$, each μ_t is symmetric. Here, we show that any normal semistable measure on a *p*-adic Lie group *G* has a unique semistable embedding. In particular, any (operator-)semistable measure on a *p*-adic vector space (or more generally) on an abelian *p*-adic Lie group has a unique semistable embedding. Note that on a simply connected nilpotent group, the uniqueness of semistable embedding has been shown (see [H]).

THEOREM 2.1. Any normal semistable measure on a p-adic Lie group has a unique semistable embedding.

The following corollary follows easily from the above theorem. In particular, it holds for any (operator-)semistable measure on any *p*-adic vector space.

COROLLARY 2.2. Any semistable measure on an abelian p-adic Lie group has a unique semistable embedding.

Before proving the above theorem, we state and prove several results, some of which will be of independent interest. We also state a specific case of convergence-of-types theorem which we will use often.

THEOREM 2.3 ([Sh2]). Let G be a unipotent p-adic algebraic group. Let $\{\mu_n\} \subset M^1(G)$ and $\{\tau_n\} \subset \operatorname{Aut}(G)$ be such that $\mu_n \to \mu$ and $\tau_n(\mu_n) \to \lambda$ for some full measures μ and λ in $M^1(G)$. Then $\{\tau_n\}$ is relatively compact in Aut(G). Moreover, for any limit τ of $\{\tau_n\}$ in Aut(G), $\tau(\mu) = \lambda$. In particular, Inv(μ) is compact in Aut(G).

THEOREM 2.4. Let G be a p-adic Lie group and let $\{\mu_t\}_{t\geq 0}$ and $\{v_t\}_{t\geq 0}$ be respectively (τ, c) -semistable and (ψ, d) -semistable one-parameter semigroups in $M^1(G)$ for some $\tau, \psi \in \operatorname{Aut}(G)$ and $c, d \in]0, 1[$ such that $\mu_1 = v_1 = \mu \neq \delta_e$ and $\mu_0 = \delta_e$. Then $\log c$ and $\log d$ are commensurable. Moreover, If τ and ψ commute with each other, then $\mu_t = v_t$ for all $t \geq 0$.

PROOF. Since G is totally disconnected, it is well known that μ_t and ν_t are supported on $G(\mu)$ and, in fact, $G(\mu_t) = G(\mu) = G(\nu_t)$, t > 0. Therefore, $\tau(G(\mu)) = G(\mu)$ and $\psi(G(\mu)) = G(\mu)$. Hence without loss of any generality, we may assume that $G = G(\mu)$. Since $\mu_0 = \delta_e$, $G = C(\tau)$ (cf. [Si]). This implies that $G = \tilde{G}(\mathbf{Q}_p)$, where \tilde{G} is a unipotent *p*-adic algebraic group, (cf. [W], Theorem 3.5), and τ contracts G. Also, τ and ψ are \mathbf{Q}_p rational automorphisms of G (cf. [Sh2], Theorem 2.1).

Step 1: If possible, suppose log c and log d are incommensurable. Then c and d generate a dense subsemigroup (say) B of \mathbf{R}^*_+ (the semigroup of positive real numbers with the usual topology). Hence, for any $t \in \mathbf{R}^*_+$, there exist sequences $\{l_n\}, \{m_n\} \subset \mathbf{Z}$ such that $l_n \to -\infty$ and $m_n \to \infty$ and $c^{m_n} d^{l_n} \to t$. For any $r \in \mathbf{R}_+$, let [r] denote the largest integer less than or equal to r. We have, for $n \in \mathbf{N}$,

$$\psi^{l_n}(\mu) = \mu^{[d^{l_n}]} * \nu_{b_n}$$
, where $b_n = d^{l_n} - [d^{l_n}]$, $0 \le b_n < 1$.

Here, $\{v_{b_n}\}$ is relatively compact and since τ is contracting, we get $\tau^{m_n}(v_{b_n}) \to \delta_e$. Also, $c^{m_n}b_n \to 0$ and hence $c^{m_n}[d^{l_n}] \to t$. Now we get

$$\tau^{m_n}\psi^{l_n}(\mu) = \tau^{m_n}(\mu^{[d^{i_n}]} * \nu_{b_n}) = \mu_{c^{m_n}[d^{l_n}]} * \tau^{m_n}(\nu_{b_n}) \to \mu_t.$$

Since each μ_t is full, the above implies, by the convergence-of-types theorem (cf. Theorem 2.3), that $\{\tau^{m_n}\psi^{l_n}\}$ is relatively compact and for any limit point σ of it, we have that $\sigma(\mu) = \mu_t$. That is, all limit points of $\{\tau^{m_n}\psi^{l_n}\}$ are contained in $\tau_t \operatorname{Inv}(\mu)$ for some $\tau_t \in \operatorname{Aut}(G)$, $t \in \mathbf{R}^*_+$. Moreover, by the convergence-of-types theorem, we get that $\{\tau_t \operatorname{Inv}(\mu)\}_{t \in \mathbf{R}^*_+}$ form a continuous image of \mathbf{R}^*_+ in the quotient space $\operatorname{Aut}(G)/\operatorname{Inv}(\mu)$ and hence it is a connected set. Since $\operatorname{Aut}(G)$ is totally disconnected and locally compact, $\operatorname{Aut}(G)/\operatorname{Inv}(\mu)$ is totally disconnected. Hence $\tau_t \operatorname{Inv}(\mu) = \tau_1 \operatorname{Inv}(\mu) = \operatorname{Inv}(\mu)$ for all t > 0. This implies that $\mu = \mu_t$ for all t and hence $\mu = \delta_e$, a contradiction. Therefore, $\log c$ and $\log d$ are commensurable.

Step 2: Now we assume that τ and ψ commute with each other and show that $\mu_t = v_t$ for all t. Since log c and log d are commensurable, there exist a > 0 and $l, m \in \mathbb{N}$ such that $c = a^l$ and $d = a^m$. Then $c^m = d^l$ and hence $\{\mu_t\}_{t\geq 0}$ (resp. $\{v_t\}_{t\geq 0}$) is (τ^m, c^m) semistable (resp. (ψ^l, d^l) -semistable). If necessary, replacing τ and ψ by τ^m and ψ^l respectively, without loss of any generality, we may assume c = d, i.e. $\{\mu_t\}_{t\geq 0}$ and $\{v_t\}_{t\geq 0}$ are respectively (τ, c) -semistable and (ψ, c) -semistable on a unipotent p-adic algebraic group G and $\mu = \mu_1 = v_1$ is full on G.

Now for the sequence $\{k_n = [c^{-n}]\} \subset \mathbf{N}$, we have that $\tau^n(\mu^{k_n}) \to \mu$ and $\psi^n(\mu^{k_n}) \to \mu$. Moreover, $\tau^n(\mu^{[k_nt]}) \to \mu_t$ and $\psi^n(\mu^{[k_nt]}) \to v_t$ for all t > 0. From the first assertion,

 $(\psi^n \tau^{-n})\tau^n(\mu^{k_n}) = \psi^n(\mu^{k_n}) \to \mu$. Since μ is full, using the convergence-of-types theorem (cf. Theorem 2.3), we get that $\{\sigma_n = \psi^n \tau^{-n}\}$ is relatively compact and all its limit points belong to $\text{Inv}(\mu)$. Also, since τ and ψ commute with each other, we can choose $\sigma_n = \rho_n \alpha_n = \alpha_n \rho_n$, where $\alpha_n \in \text{Inv}(\mu)$, α_n and ρ_n commute with both τ and ψ , and $\rho_n \to I$, the identity in Aut *G*. Now for all t > 0,

$$v_t = \lim_n \psi^n(\mu^{[k_n t]}) = \lim_n \sigma_n \tau^n(\mu^{[k_n t]})$$
$$= \lim_n \tau^n \sigma_n(\mu^{[k_n t]})$$
$$= \lim_n \tau^n \rho_n(\mu^{[k_n t]})$$
$$= \lim_n \rho_n \tau^n(\mu^{[k_n t]})$$
$$= \mu_t .$$

The above also implies that $v_0 = \mu_0$. This completes the proof.

We now state a simple result which will be useful.

LEMMA 2.5. Let G be a p-adic Lie group, let $\mu \in M^1(G)$ and let $i \in \{1, 2\}$. Suppose μ is embeddable in $\{\mu_t\}_{t\geq 0}$ and $\{v_t\}_{t\geq 0}$ in $M^1(G)$, (as $\mu = \mu_1 = v_1$), which are (τ_1, c_1) -semistable and (τ_2, c_2) -semistable respectively for some $\tau_i \in \text{Aut}(G)$ and $c_i \in [0, 1[$. Let K_1, K_2 be compact subgroups of G such that $\mu_0 = \omega_{K_1}$ and $v_0 = \omega_{K_2}$. Then $C(\tau_1) \cap G(\mu) = C(\tau_2) \cap G(\mu) = U$ is a closed nilpotent normal subgroup of $G(\mu)$, $U = \tilde{U}(\mathbf{Q}_p)$, where \tilde{U} is a unipotent p-adic algebraic group, $G(\mu) = K_i \cdot U$, a semidirect product and, $\tau_i(K_i) = K_i$ and $\tau_i(U) = U$ for each i. Moreover, there exists a (τ_1, c_1) -semistable (resp. (τ_2, c_2) -semistable) one-parameter semigroup $\{\mu_t^{(0)}\}_{t\geq 0}$, (resp. $\{v_t^{(0)}\}_{t\geq 0}$) such that $\mu_0^{(0)} = v_0^{(0)} = \delta_e$, each $\mu_t^{(0)}$ (resp. $v_t^{(0)}$) is supported on $U, \mu_t = \omega_{K_1} * \mu_t^{(0)} = \mu_t^{(0)} * \omega_{K_1}, v_t = \omega_{K_2} * v_t^{(0)} = v_t^{(0)} * \omega_{K_2}, t \geq 0$, and K_1 and K_2 are isomorphic. Also, if $\pi : G(\mu) \to G(\mu)/[U, U]$ is the natural projection then $\pi(K_1) = \pi(K_2) = \pi(\mathcal{I}(\mu))$ and $\pi(\mu_1^{(0)}) = \pi(v_1^{(0)})$.

PROOF. Let $i \in \{1, 2\}$. As earlier, we have that $G(\mu_t) = G(\mu) = G(\nu_t)$, t > 0, and $\tau_i(G(\mu)) = G(\mu)$ and $\tau_i(K_i) = K_i \subset G(\mu)$ for K_i as above. Hence, we assume that $G = G(\mu)$. Let $U_i = C(\tau_i)$. Then $\tau_i(U_i) = U_i$ and $U_i = \tilde{U}_i(\mathbf{Q}_p)$, where \tilde{U}_i is a unipotent *p*-adic algebraic group (cf. [W], Theorem 3.5). Also, $G = K_i \cdot U_i$, a semidirect product (cf. [DSh1], Theorem 3.1), each U_i is closed and normal in *G*. We first show that $U_1 = U_2$. This will also imply that K_1 and K_2 are isomorphic as each quotient group G/U_i is isomorphic to K_i . Since each U_i is unipotent, it is a divisible nilpotent group. Let $\pi_1 : G \mapsto G/U_1$ be the natural projection. Then $\pi_1(U_2)$ is a divisible nilpotent group and its closure *L*, being compact, is also divisible. It is well-known that any compact divisible nilpotent group is $U_2 \subset U_1$. Similarly, we get that $U_1 \subset U_2$, i.e. $U_1 = U_2 = U$.

From Theorem 4.1 of [DSh1], we have $\mu_t = \omega_{K_1} * \mu_t^{(0)} = \mu_t^{(0)} * \omega_{K_1}$ (resp. $v_t = \omega_{K_2} * v_t^{(0)} = v_t^{(0)} * \omega_{K_2}$), where $\{\mu_t^{(0)}\}_{t\geq 0}$ (resp. $\{v_t^{(0)}\}_{t\geq 0}$) is a (τ_1, c_1) -semistable (resp. (τ_2, c_2) -semistable) continuous one-parameter semigroup on U with $\mu_0^{(0)} = v_0^{(0)} = \delta_e$ and $\mu = \omega_{K_1} * \mu_1^{(0)} = \omega_{K_2} * v_1^{(0)}$. Let π be as in the hypothesis. Suppose that U is abelian and π is an identity homomor-

Let π be as in the hypothesis. Suppose that U is abelian and π is an identity homomorphism. Then using Fourier transforms, one can show that $\mathcal{I}(\mu_1^{(0)}) = \mathcal{I}(\nu_1^{(0)}) = \{e\}$. Hence $\mathcal{I}(\mu) = K_1 = K_2 = K$ (say). That is, $G = K \cdot U$, a semidirect product and hence $\mu_1^{(0)} = \nu_1^{(0)}$. Now suppose that U is not abelian. We have that [U, U] is closed and characteristic and U/[U, U] is abelian. Also, $\{\pi(\mu_t)\}_{t\geq 0}$ (resp. $\{\pi(\nu_t)\}_{t\geq 0}$) is (τ_1', c_1) -semistable (resp. (τ_2', c_2) -semistable) one-parameter semigroup on $\pi(G(\mu))$, where $\tau_i'(\pi(x)) = \pi(\tau_i(x)), x \in G(\mu)$, both τ_1' and τ_2' are automorphisms of $\pi(G(\mu))$. Now the last assertion in the theorem follows from above.

REMARK 2.6. Theorem 2.4 is valid even without the condition that $\mu_0 = \delta_e$. For $\{\mu_t\}_{t\geq 0}, \{v_t\}_{t\geq 0}, \tau, \psi, c \text{ and } d \text{ as in the hypothesis of the theorem, suppose } \mu_0 = \omega_{K_1} \text{ and } v_0 = \omega_{K_2} \text{ for some compact subgroups } K_1, K_2 \text{ in } G \text{ and } \mu_1 = v_1 = \mu \neq \omega_{K_1}.$ Then $G(\mu) = K_i \cdot U$, where $U = C(\tau) = C(\psi)$ as shown above. Here, $U \neq \{e\}$ as $\mu \neq \omega_{K_1}$. Let $\pi : G(\mu) \mapsto G(\mu)/[U, U]$ be as above. Then if $\log c$ and $\log d$ are incommensurable, we can replace $\{\mu_t\}_{t\geq 0}$ (resp. $\{v_t\}_{t\geq 0}$) in the proof with $\{\pi(\mu_t^{(0)})\}_{t\geq 0}$ (resp. $\{\pi(v_t^{(0)})\}_{t\geq 0}$) which is (τ', c) -semistable (resp. (ψ', d) -semistable) on $\pi(U)$ with $\pi(\mu_0^{(0)}) = \pi(v_0^{(0)}) = \delta_{\pi(e)}$, for τ' (resp. ψ') defined on $\pi(G(\mu))$ as $\tau'(\pi(x)) = \pi(\tau(x))$ (resp. $\psi'(\pi(x)) = \pi(\psi(x))$) for all $x \in G(\mu)$, and arrive at a contradiction. For the second assertion, if τ and ψ commute then it is easy to show that $\tau(K_2) = K_2, \psi(K_1) = K_1$ and $K_1 = K_2$ and hence $\mu_1^{(0)} = v_1^{(0)}$ and again we can work with $\{\mu_t^{(0)}\}_{t\geq 0}$ and $\{v_t\}_{t\geq 0}^{(0)}$ in place of $\{\mu_t\}_{t\geq 0}$ and $\{v_t\}_{t\geq 0}$ and show for all $t, \mu_t^{(0)} = v_t^{(0)}$ and hence $\mu_t = v_t$.

LEMMA 2.7. Let G be a unipotent p-adic algebraic group and let $\mu \in M^1(G)$ be a full semistable measure which is embeddable in a (τ, c) -semistable $\{\mu_t\}_{t\geq 0} \subset M^1(G)$ as $\mu = \mu_1$ for some $\tau \in \operatorname{Aut}(G)$ and some $c \in]0, 1[$. Let $T : \operatorname{Aut}(G) \to \operatorname{Aut}(G)$ be an automorphism defined as $T(\rho) = \tau \rho \tau^{-1}, \rho \in \operatorname{Aut}(G)$. Then

- (i) $\mathcal{K} = \bigcap_{t \ge 0} \operatorname{Inv}(\mu_t)$ is a compact subgroup of $\operatorname{Aut}(G)$ and $T(\mathcal{K}) = \mathcal{K}$,
- (ii) $\bigcap_{n \in \mathbb{N}} \tau^n (\operatorname{Inv}(\mu)) \tau^{-n} = \bigcap_{t>0} \operatorname{Inv}(\mu_t)$ and
- (iii) $\operatorname{Inv}(\mu) \subset C_{\mathcal{K}}(T).$

PROOF. Here, \mathcal{K} is obviously a group. Let t > 0. Since $\mu_1 = \mu$ is full so is each μ_t , and hence $\operatorname{Inv}(\mu_t)$ is compact. (cf. Theorem 2.3). Therefore \mathcal{K} is compact. Since $\tau(\mu_t) = \mu_{ct}$, $\tau(\operatorname{Inv}(\mu_t))\tau^{-1} = \operatorname{Inv}(\mu_{ct})$. Therefore, $T(\mathcal{K}) = \mathcal{K}$. Thus (i) holds. Here, $\tau^n(\mu) = \tau^n(\mu_1) = \mu_{c^n}$ and hence $\tau^n \operatorname{Inv}(\mu)\tau^{-n} = \operatorname{Inv}(\mu_{c^n}) \subset \operatorname{Inv}(\mu_{kc^n})$ for all $n, k \in \mathbb{N}$. In particular, the inclusion ' \supset ' is obvious in (ii). Also, since each μ_t is full and since $\{kc^n \mid k, n \in \mathbb{N}\}$ is dense

in \mathbf{R}_+ , we can easily show, by using the convergence-of-types theorem (cf. Theorem 2.3), that $\bigcap_{n \in \mathbf{N}} \tau^n \operatorname{Inv}(\mu) \tau^{-n} \subset \operatorname{Inv}(\mu_t)$ for each t > 0. This proves (ii).

Let $\rho \in \text{Inv}(\mu)$. From above, $T^n(\rho) \in \text{Inv}(\mu_{kc^n})$ for all $n, k \in \mathbb{N}$. For a fixed t > 0, let $r_n = [tc^{-n}], n \in \mathbb{N}$. Since $T^n(\rho) \in \text{Inv}(\mu_{r_nc^n})$ and since $\mu_{r_nc^n} \to \mu_t$, by the convergence-of-types theorem, we get that $\{T^n(\rho)\}$ is relatively compact and all its limit points belong to $\text{Inv}(\mu_t)$, since this is true for all t > 0, we get that $\rho \in C_{\mathcal{K}}(T)$. Thus the assertion (iii) is proved.

PROPOSITION 2.8. Let G be a locally compact group and let $\mu \in M^1(G)$. Suppose μ is embeddable in a (τ, c) -semistable one-parameter semigroup $\{\mu_t\}_{t\geq 0} \subset M^1(G)$ as $\mu = \mu_1 \neq \mu_0$ for some $\tau \in Aut(G)$ and some $c \in]0, 1[$. Consider the following statements:

- (i) $\operatorname{Inv}(\mu) = \operatorname{Inv}(\mu_c^n)$ for all $n \in \mathbb{N}$.
- (ii) τ normalises Inv(μ).
- (iii) μ has a unique semistable embedding.

Then (iii) \Rightarrow (i) \Leftrightarrow (ii). They are all equivalent if $G = \tilde{G}(\mathbf{Q}_p)$, \tilde{G} is a unipotent *p*-adic algebraic group and $\mu \in M^1(G)$ is full.

PROOF. Step 1: Let G be any locally compact group. Since $\{\mu_t\}_{t\geq 0}$ is (τ, c) -semistable and $\mu_1 = \mu$, $\tau^n(\mu) = \mu_{c^n}$ and hence $\tau^n \operatorname{Inv}(\mu)\tau^{-n} = \operatorname{Inv}(\mu_{c^n})$, $n \in \mathbb{N}$. Thus, it is clear that (i) and (ii) are equivalent.

Step 2: Suppose (iii) holds. It is enough to show that (ii) holds. If possible, suppose $\tau \operatorname{Inv}(\mu)\tau^{-1} \neq \operatorname{Inv}(\mu)$. Suppose that there exists $\rho \in \operatorname{Inv}(\mu)$ such that $\rho \notin \tau \operatorname{Inv}(\mu)\tau^{-1}$. Since $\rho(\mu) = \mu$, we get that μ is embeddable in $\{\rho(\mu_t)\}_{t\geq 0}$ which is $(\rho\tau\rho^{-1}, c)$ -semistable. But $\mu_c \neq \rho(\mu_c)$ as $\rho \notin \tau \operatorname{Inv}(\mu)\tau^{-1} = \operatorname{Inv}(\mu_c)$.

Now suppose there exists $\rho' \in \tau \operatorname{Inv}(\mu)\tau^{-1}$ such that $\rho' \notin \operatorname{Inv}(\mu)$. Let $\rho = \tau^{-1}\rho'\tau \in \operatorname{Inv}(\mu)$. Then $\rho(\mu) = \mu$ and $\rho \notin \tau^{-1}\operatorname{Inv}(\mu)\tau$. Now arguing as above, we get that μ is embeddable in $\{\rho(\mu_t)\}_{t\geq 0}$ which is $(\rho\tau\rho^{-1}, c)$ -semistable. But $\rho(\mu_{c^{-1}}) \neq \mu_{c^{-1}}$ as $\rho \notin \tau^{-1}\operatorname{Inv}(\mu)\tau = \operatorname{Inv}(\mu_{c^{-1}})$. Thus, in both cases we get that μ is embeddable in two different semistable one-parameter semigroups, a contradiction. Therefore, $\operatorname{Inv}(\mu) = \tau \operatorname{Inv}(\mu)\tau^{-1}$.

Step 3: Let $G = \tilde{G}(\mathbf{Q}_p)$, where \tilde{G} is a *p*-adic algebraic group and let $\mu \in M^1(G)$ be full, then each μ_t is also full, t > 0. Suppose (i) holds. Then $\operatorname{Inv}(\mu) = \operatorname{Inv}(\mu_{c^n}) = \tau^n \operatorname{Inv}(\mu)\tau^{-n}$ for all $n \in \mathbb{N}$. Now from Lemma 2.7(ii), $\operatorname{Inv}(\mu) = \bigcap_{t \ge 0} \operatorname{Inv}(\mu_t)$. We show that μ has a unique semistable embedding. If possible, suppose there exists a (ψ, d) -semistable one-parameter semigroup $\{v_t\}_{t \ge 0}$ such that $\mu = v_1$. Then by Theorem 2.4 and Remark 2.6 we get that $\log c$ and $\log d$ are commensurable. Also, if τ normalises $\operatorname{Inv}(\mu)$, so does its power. Replacing τ and ψ by its suitable powers if necessary, we may assume that μ is (τ, c) -semistable and (ψ, c) -semistable. Then as in Step 2 of proof of Theorem 2.4, we get that for $k_n = [c^{-n}], n \in \mathbb{N}$,

$$\tau^n(\mu)^{[k_n t]} \to \mu_t$$
 and $\psi^n(\mu)^{[k_n t]} \to \nu_t$, $t > 0$.

Since $\mu_1 = \nu_1 = \mu$, by the convergence-of-types theorem, $\{\psi^n \tau^{-n}\}$ is relatively compact and all its limit points belong to $\text{Inv}(\mu) = \bigcap_{t \ge 0} \text{Inv}(\mu_t)$. Therefore, from the above equation, we get that $\mu_t = \nu_t$ for each t > 0 and hence for t = 0. This completes the proof.

REMARK 2.9. It follows from the proposition that if μ is a full semistable measure on a unipotent *p*-adic algebraic group *G* such that $Inv(\mu)$ is trivial then μ has a unique semistable embedding. This also holds for non-full semistable measures on *G* if $A = \{\alpha \in Aut(G(\mu)) \mid \alpha(\mu) = \mu\}$ is trivial. More generally, if μ is a semistable measure on any *p*-adic Lie group *G* with $\mathcal{I}(\mu) = \{e\}$ and *A* as above is trivial then μ has a unique semistable embedding. In view of the above, it will be interesting to find conditions under which $Inv(\mu)$ is trivial.

PROOF OF THEOREM 2.1. Let μ be a normal semistable measure on a *p*-adic Lie group *G*. As in the proof of Lemma 2.5, we may assume that $G = G(\mu)$. Suppose there exist $\tau, \psi \in \text{Aut}(G)$ and $c, d \in]0, 1[$ such that μ is both (τ, c) -semistable and (ψ, d) -semistable. That is, there exist continuous one-parameter semigroups $\{\mu_t\}_{t\geq 0}$ and $\{v_t\}_{t\geq 0}$ in $M^1(G)$ such that $\mu_1 = \mu = v_1$ and $\tau(\mu_t) = \mu_{ct}$ and $\psi(v_t) = v_{dt}$ for all $t \in \mathbf{R}_+$. We have to show that $\mu_t = v_t$ for all t.

For $k_n = [c^{-n}]$, $\tau(\mu^{[k_n t]}) \rightarrow \mu_t$, $t \in \mathbf{R}^*_+$. Hence since μ is normal, each μ_t is also normal. Similarly, each ν_t is normal. This implies that $\mu * \tilde{\mu}$ is embeddable in $\{\mu_t * \tilde{\mu}_t\}_{t\geq 0}$ and $\{\nu_t * \tilde{\nu}_t\}_{t\geq 0}$. But since both the one-parameter semigroups consist of symmetric measures and $\mu * \tilde{\mu} = \mu_1 * \tilde{\mu}_1 = \nu_1 * \tilde{\nu}_1$, we have by the uniqueness of symmetric embedding, $\mu_t * \tilde{\mu}_t = \nu_t * \tilde{\nu}_t$ for all t. In particular, $\mu_0 = \nu_0 = \omega_K$, (where $K = \mathcal{I}(\mu)$). If $\mu = \omega_K$, then $\mu_t = \nu_t = \omega_K$ for all t. Suppose, $\mu \neq \omega_K$. By Lemma 2.5, we have $G = K \cdot U$, a semidirect product, where $U = C(\tau) = C(\psi)$, $U = \tilde{U}(\mathbf{Q}_p)$, \tilde{U} is a unipotent p-adic algebraic group, $\tau^0 = \tau|_U$ and $\psi^0 = \psi|_U$ are \mathbf{Q}_p -rational morphisms and $\mu_t = \omega_K * \mu_t^{(0)}$ and $\nu_t = \omega_K * \nu_t^{(0)}$, where $\mu_1^{(0)} = \nu_1^{(0)}$ and $\{\mu_t^{(0)}\}_{t\geq 0}$ is (τ^0, c) -semistable and $\{\nu_t^{(0)}\}_{t\geq 0}$ is (ψ^0, d) -semistable with $\mu_0^{(0)} = \nu_0^{(0)} = \delta_e$. Also, $\mu_1^{(0)} = \nu_1^{(0)} \neq \delta_e$ is a normal measure. Now it is enough to prove that $\mu_t^{(0)} = \nu_t^{(0)}$ for all t. Therefore, replacing μ by $\mu_1^{(0)} = \nu_1^{(0)}$ we may assume that $\mu \neq \delta_e$, $G = \tilde{G}(\mathbf{Q}_p)$ is a unipotent p-adic algebraic group and $\tau, \psi \in \text{Aut}(G)$ are contracting automorphisms which are also \mathbf{Q}_p -rational. Also, by Theorem 2.4, $\log c$ and $\log d$ are commensurable.

Here, since μ is full on G which is unipotent, $\operatorname{Inv}(\mu)$ is a compact subgroup of $\operatorname{Aut}(G)$ (cf. Theorem 2.3). Let $\mathcal{K} = \bigcap_t \operatorname{Inv}(\mu_t)$. Then \mathcal{K} is a compact subgroup of $\operatorname{Aut}(G)$. Let T: $\operatorname{Aut}(G) \to \operatorname{Aut}(G)$ be defined as follows: $T(\rho) = \tau \rho \tau^{-1}$ for all $\rho \in \operatorname{Aut}(G)$. Then T is a continuous automorphism of $\operatorname{Aut}(G)$ which is a p-adic Lie group. Now by Lemma 2.7, $T(\mathcal{K}) = \mathcal{K}$ and $\operatorname{Inv}(\mu) \subset C_{\mathcal{K}}(T)$. We also have $C_{\mathcal{K}}(T) = \mathcal{K} \cdot C(T)$ (cf. [DSh1]). Since μ is embeddable and G is totally disconnected, we have $G(\mu) = G(\mu * \tilde{\mu})$ and since μ is full so is $\mu * \tilde{\mu}$. Hence $\operatorname{Inv}(\mu * \tilde{\mu}) = \mathcal{H}$ (say) is compact. Since $\mu * \tilde{\mu}$ has a unique semistable embedding, we get by Proposition 2.8 that $T(\mathcal{H}) = \mathcal{H}$. Therefore, $\mathcal{H} \cap C(T) = \{I\}$, but $\operatorname{Inv}(\mu) \subset \mathcal{H}$, and hence $\mathcal{K} \subset \mathcal{H}$ and $\operatorname{Inv}(\mu) \subset \mathcal{H} \cap (\mathcal{K} \cdot C(T)) = \mathcal{K}$. This implies that

Inv(μ) = \mathcal{K} . Now by Proposition 2.8, μ is embeddable in a unique semistable one-parameter semigroup.

3. Domain of semistable attraction and semistable measures on unipotent *p*-adic groups

For a probability measure μ on a locally compact group G, we define DSSA(μ), the *domain of semistable attraction of* μ , as follows:

DSSA(
$$\mu$$
) = { $\nu \in M^1(G)$ | there exist $\tau_n \in \text{Aut}(G)$ and $k_n \in \mathbb{N}$
such that $\tau_n(\nu^{k_n}) \to \mu$ and $k_n/k_{n+1} \to c \in]0, 1[$ }.

Note that our definition is slightly different from an earlier definition in [T], as we do not assume that $\{\tau_n(\nu)\}$ is infinitesimal. It is easy to see that for any (τ, c) -semistable measure μ , DSSA(μ) is nonempty. For, μ itself belongs to DSSA(μ), since $\tau^n(\mu)^{k_n} \to \mu$, where $k_n = [c^{-n}], n \in \mathbb{N}$. Conversely, we have the following.

THEOREM 3.1. Let μ be an S-full probability measure on a unipotent p-adic algebraic group G such that $\mathcal{I}(\mu) = \{e\}$ and DSSA(μ) is nonempty. Then μ is semistable.

Before proving the theorem let us state and prove several results which will be useful.

LEMMA 3.2. Let G be a unipotent p-adic algebraic group and let $\mu_n, \mu \in M^1(G)$ be such that $\mu_n \to \mu$. If μ is full (resp. S-full) in $M^1(G)$, then so is μ_n for all large n.

We need following notations for the proof of the lemma. For a *p*-adic vector space *V* isomorphic to \mathbf{Q}_p^m ($m \in \mathbf{N}$), let $\{e_1, \ldots, e_m\}$ be a basis of *V*. For any $x, y \in V$, we have $x = \sum_{i=1}^m x_i e_i$ and $y = \sum_{i=1}^m y_i e_i$ and we define $\langle x, y \rangle = \sum_{i=1}^m x_i y_i$. It is a continuous bilinear map from V^2 to \mathbf{Q}_p . Any one-dimensional projection of *V* is of the form $y \mapsto \langle x, y \rangle$ for some $x \in V$. Also, $x \mapsto ||x||_p = |\langle x, x \rangle|_p^{1/2}$ on *V* defines a norm on *V*. For $x \in V \setminus \{0\}$, let $V_x = \text{Ker}(y \mapsto \langle x, y \rangle)$; it is a subspace of co-dimension 1 in *V*. Also, any subspace *W* of co-dimension 1 in *V* is of this form, i.e. $W = V_x$ for some $x \in V \setminus \{0\}$. For $\mu \in M^1(V)$ and $x \in V$, let (x, μ) denote the image of μ under the map $y \mapsto \langle x, y \rangle$.

PROOF OF LEMMA 3.2. Let G, μ_n and μ be as in the hypothesis. Since $\mu_n \to \mu$, $\mu_n * \tilde{\mu}_n \to \mu * \tilde{\mu}$. Also, μ is S-full if and only if $\mu * \tilde{\mu}$ is full. Hence it is enough to prove that fullness of μ implies that of μ_n for all large n. Let $\pi : G \to G/[G, G]$ be the natural projection. Then G/[G, G] is an abelian unipotent p-adic algebraic group. It is easy to see that any probability measure ν is full on G if and only if $\pi(\nu)$ is full on G/[G, G], which is isomorphic to a p-adic vector space. Now since $\pi(\mu_n) \to \pi(\mu)$, it is enough to prove the assertion in case G is a p-adic vector space.

Now we may assume G = V, an *m*-dimensional *p*-adic vector space and supp μ generates *V* as a vector space. We fix a basis $\{e_1, \ldots, e_m\}$ for *V*. If possible, suppose μ_n is not full on *V* for infinitely many *n*. Passing to a subsequence if necessary, we get that supp $\mu_n \subset V_n$,

where V_n is a proper subspace of co-dimension 1 in V for all n. Let $x_n \in V \setminus \{0\}$ be such that $V_n = V_{x_n} = \{y \in V \mid \langle x_n, y \rangle = 0\}$. Replacing x_n by $x_n/||x_n||_p$, we may assume that $||x_n||_p = 1$ for all n. Then $(x_n, \mu_n) = \delta_0$ on \mathbf{Q}_p for all n. Here, $\{x_n\}$ is relatively compact, it has a limit point x (say), then $||x||_p = 1$. Since $\mu_n \to \mu$, $(x, \mu) = \delta_0$ on \mathbf{Q}_p . In particular, supp $\mu \subset V_x$, which is a subspace of co-dimension 1 in V as $x \neq 0$. This leads to a contradiction as μ is full. Hence μ_n is full for all large n.

PROPOSITION 3.3. Let $G = GL_m(\mathbf{Q}_p)$ and let U be the subgroup of G consisting of all upper triangular matrices. Let $\{a_n\}$ be a sequence in G and ψ_n be an inner automorphism defined by $\psi_n(x) = a_n x a_n^{-1}$ for all $x \in G$, $n \in \mathbb{N}$. Let $H = \{x \in G \mid \psi_n(x) \to e\}$ and let $C = \{v \in M^1(G) \mid \psi_n(v) \to \delta_e\}$, where the identity e = I, the identity matrix in $GL_m(\mathbf{Q}_p)$. Then

- (i) *H* is a (closed) algebraic subgroup of *G* and there exists $a \in G$ such that $H \subset aUa^{-1}$ and
- (ii) for any $v \in C$, supp v is contained in H.

The above proposition can be deduced along the same lines as Theorem 2.1 of [DSh2]; this theorem uses Lemma 2.2 of [DSh2], which is also valid for any locally compact first countable group. Also, instead of the polar decomposition of a_n , one has to use the decomposition $a_n = c_n d_n k_n$, where $c_n, k_n \in GL_m(\mathbb{Z}_p)$, which is compact, where \mathbb{Z}_p is the ring of *p*-adic integers, and d_n are diagonal matrices which can be chosen to have entries whose *p*-adic absolute values are in the ascending order (cf. [Ma]), subsequently also, one has to use the *p*-adic absolute value instead of the real absolute value. We will not repeat the proof here.

THEOREM 3.4. Let $G = \tilde{G}(\mathbf{Q}_p)$ be a unipotent *p*-adic algebraic group and let $\{\tau_n\} \subset$ Aut(*G*). Let $H = \{x \in G \mid \tau_n(x) \to e\}$ and let $C = \{v \in M^1(G) \mid \tau_n(v) \to \delta_e\}$. Then *H* is a (closed) algebraic subgroup of *G* such that for any $v \in C$, supp *v* is contained in *H*. In particular, if there exists a $v \in C$ which is full on *G*, then H = G and $\tau_n(\mu) \to \delta_e$ for all $\mu \in M^1(G)$. That is, if *C* contains a full measure, then $C = M^1(G)$.

REMARK 3.5. The above theorem is also valid for any Zariski connected semisimple p-adic algebraic group with trivial center. It can also be shown to hold for any Zariski connected p-adic algebraic group $G = \tilde{G}(\mathbf{Q}_p)$ such that the maximal central torus of \tilde{G} is trivial and $\{\tau_n\} \subset \operatorname{Aut}(G)$ are \mathbf{Q}_p -rational automorphisms. In both these cases, a similar proof (as given below) works and H will be a unipotent algebraic subgroup of G.

PROOF OF THEOREM 3.4. Since *G* is unipotent, any continuous automorphism of *G* is \mathbf{Q}_p -rational and the group $\operatorname{Aut}(G)$ is also a group of rational points of a *p*-adic algebraic group and the action of $\operatorname{Aut}(G)$ on *G* is \mathbf{Q}_p -rational (cf. [Sh2], Theorems 2.1, 3.1). As in the proof of Main Theorem in [Sh2], we can form a semidirect product $L = \operatorname{Aut}(G) \cdot G$, $L = \tilde{L}(\mathbf{Q}_p)$ is a *p*-adic algebraic group, with the group operation $(\tau, g)(\tau', g') = (\tau \tau', g\tau(g'))$, for $\tau, \tau' \in \operatorname{Aut}(G)$ and $g, g' \in G$. That is, the action of $\operatorname{Aut}(G)$ on *G* is given by $\tau g\tau^{-1} = \tau(g)$ for all $\tau \in \operatorname{Aut}(G)$ and $g \in G$. Also, $L \subset GL_m(\mathbf{Q}_p)$ for some $m \in \mathbf{N}$.

We have $H = \{x \in G \mid \tau_n(x) \to e\} = \{x \in G \mid \tau_n x \tau_n^{-1} \to e \text{ in } L\}$. This implies $H = H' \cap G$, where $H' = \{x \in GL_m(\mathbf{Q}_p) \mid \tau_n x \tau_n^{-1} \to e\}$, here e = I, the identity matrix. By Proposition 3.3 (i), H' is an algebraic subgroup of $GL_m(\mathbf{Q}_p)$ and hence H is an algebraic subgroup of G. In particular, it is a closed subgroup of G. Since G is closed in $GL_m(\mathbf{Q}_p)$, $C = M^1(G) \cap C'$, where $C' = \{v \in M^1(GL_m(\mathbf{Q}_p)) \mid \tau_n(v) \to \delta_e\}$. Let $v \in C$. Using Proposition 3.3 (ii), we get that $\operatorname{supp} v \subset H' \cap G = H$. Now, assume that v is full on G. Then since H is an algebraic subgroup of G, we get that $G = \tilde{G}(v) \subset H$ and hence G = H. Moreover, from the definition of H, it is clear that for any $\mu \in M^1(G)$, $\tau_n(\mu) \to \delta_e$, i.e. $C = M^1(G)$.

For any $\alpha \in M^1(G)$, let $F(\alpha)$ be the set of (two-sided) factors of α , i.e. $F(\alpha) = \{\beta \in M^1(G) \mid \beta * \gamma = \gamma * \beta = \alpha \text{ for some } \gamma \in M^1(G)\}.$

LEMMA 3.6. Let G be a p-adic algebraic group. Let $\{v_n\} \subset M^1(G)$ and $\mu \in M^1(G)$ be such that μ is full and $v_n^{k_n} \to \mu$ for some $\{k_n\} \subset \mathbb{N}$. Then we have the following:

- (i) Let Z be the center of G and let $\pi : G \to G/Z$ be the natural projection. For $\mathcal{A} = \{v_n^m \mid m \leq k_n, n \in \mathbf{N}\}, \pi(\mathcal{A})$ is relatively compact.
- (ii) $\{v_n * \tilde{v}_n\}$ is relatively compact and all its limit points are supported on $\mathcal{I}(\mu)$.

PROOF. As μ is full, Theorem 4.1 of [Sh3] implies (i), and it also implies that $\{v_n * \delta_{z_n}\}$ is relatively compact for some sequence $\{z_n\} \subset Z$. For every $m \in \mathbb{N}$, $\{v_n^m * \delta_{z_n^m}\}_{n \in \mathbb{N}}$, and hence $\{v_n^m * \tilde{v}_n^m\}_{n \in \mathbb{N}}$ is relatively compact. Let λ be a limit point of $\{v_n * \delta_{z_n}\}$. Then the above implies that $\lambda^m \in F(\mu)$, $m \in \mathbb{N}$. Again by Theorem 4.1 of [Sh3], we get that $\{\lambda^m * \delta_{z'_m}\}_{i \in \mathbb{N}}$ is relatively compact for some sequence $\{z'_m\} \subset Z$; let β be any limit point of it. It is clear that $\beta \in F(\mu)$ and $\beta^2 \in F(\beta)$. This implies that $\beta = \omega_H * \delta_x = \delta_x * \omega_H$ for some compact subgroup $H \subset \mathcal{I}(\mu)$. We also have $\lambda \in F(\beta)$. Therefore, $\supp\lambda \subset Hy = yH$ for some $y \in \supp\lambda$ and hence $\supp(\lambda * \tilde{\lambda}) \subset \mathcal{I}(\mu)$. Since any limit point of $\{v_n * \tilde{v}_n\}$ is of the form $\lambda * \tilde{\lambda}$ for some λ as above, we get that all limit points of $\{v_n * \tilde{v}_n\}$ are supported on $\mathcal{I}(\mu)$. This proves (ii).

PROOF OF THEOREM 3.1. Let μ be an S-full probability measure on a unipotent *p*-adic algebraic group *G* such that $\mathcal{I}(\mu) = \{e\}$ and $DSSA(\mu) \neq \emptyset$. Then there exist sequences $\{\tau_n\} \subset Aut(G), \{k_n\} \subset \mathbb{N}$ and a measure $\nu \in M^1(G)$ such that $\tau_n(\nu)^{k_n} \to \mu$ and $k_n/k_{n+1} \to c \in]0, 1[$.

Since μ is S-full, μ is also full and by Lemma 3.6, $\tau_n(\nu * \tilde{\nu}) \to \delta_e$ as $\mathcal{I}(\mu) = \{e\}$. By Lemma 3.2, for all large n, $\tau_n(\nu)^{k_n}$ is S-full, and hence so is $\tau_n(\nu)$. This implies that $\tau_n(\nu * \tilde{\nu})$ is full. Also each τ_n is \mathbf{Q}_p -rational (cf. [Sh2], Theorem 2.1). Therefore, $\nu * \tilde{\nu}$ is also full. Since $\tau_n(\nu * \tilde{\nu}) \to \delta_e$, by Theorem 3.4, $\tau_n(x) \to e$ for all $x \in G$, and hence $\tau_n(\nu) \to \delta_e$.

Now we have that $\tau_n(\nu)^{k_n} \to \mu$, $\tau_n(\nu) \to \delta_e$, $k_n/k_{n+1} \to c \in]0, 1[$ (this condition has not been used so far), and μ is full on a unipotent *p*-adic algebraic group. Hence the assertion follows from Theorem 4.6 of [T].

REMARK 3.7. 1. The above theorem generalises Theorem 4.6 of [T] in the case of S-full probability measures μ with $\mathcal{I}(\mu) = \{e\}$, as we do not assume that $\{\tau_n(\nu)\}$ is infinitesimal in the hypothesis but derive it as a consequence.

2. In view of Theorem 4.6 of [T] stated for the semisimple group case, we would like to note that there does not exist any nontrivial (non-idempotent) full semistable measure on $G = \tilde{G}(\mathbf{Q}_p)$, where \tilde{G} is any semisimple *p*-adic algebraic group. That is, if μ is a full semistable measure, on such a group *G*, embeddable in (τ, c) -semistable $\{\mu_t\}_{t\geq 0} \subset M^1(G)$, with $\mu_0 = \omega_K$, then as mentioned earlier $\mu = \mu_1$ is supported on $C_K(\tau) = K \cdot C(\tau)$ (cf. [DSh1], Theorem 3.1), and hence $C_K(\tau)$ is Zariski dense in *G*. In particular, this implies that $C(\tau)$ is normal in *G*, but $C(\tau)$ is a unipotent algebraic subgroup of *G* (cf. [W], Theorem 3.5). Since *G* is semisimple, the above implies that $C(\tau) = \{e\}$, hence $G(\mu) = K$ and $\mu = \omega_K$, with $\tau(K) = K$.

We now give examples to show that in the hypothesis of Theorem 3.1, S-fullness of μ can not be replaced by fullness of μ , and also the condition that $\mathcal{I}(\mu) = \{e\}$ is necessary.

EXAMPLE 1. Let $G = \mathbf{Q}_p$. Let $v = \delta_x$ for some $x \in G$ such that $x \neq 0$, Take $\tau_n = I$, the identity in Aut(*G*), and $k_n = p^n + 1$ for all $n \in \mathbf{N}$. Then $k_n/k_{n+1} \to 1/p$, $\tau_n(v)^{k_n} \to \delta_x$, hence DSSA(δ_x) $\neq \emptyset$ but δ_x is not semistable. Here $\mathcal{I}(\delta_x) = \{0\}, \delta_x$ is full but not S-full. \Box

EXAMPLE 2. Let $G = \mathbf{Q}_p$ and $v = \omega_H * \delta_x$ for some compact open subgroup H of G and some $x \in G \setminus H$. So μ is S-full. Let $\{\tau_n\}$ and $\{k_n\}$ be as in Example 1. Then $k_n/k_{n+1} \rightarrow 1/p, \tau_n(v)^{k_n} = \omega_H * \delta_x$ for all large n, hence DSSA $(\omega_H * \delta_x) \neq \emptyset$ but $\omega_H * \delta_x$ is not semistable as it is not even embeddable. Note that $\mathcal{I}(\omega_H * \delta_x) = H \neq \{0\}$.

Now we state a result comparing semistable measures and measures with nonempty domain of semistable attraction on any totally disconnected locally compact group.

THEOREM 3.8. Let G be any totally disconnected locally compact group and $\mu \in M^1(G)$. Then the following are equivalent:

- (i) μ is (τ, c) -semistable.
- (ii) There exist $\{\tau_n\} \subset \operatorname{Aut}(G), v \in M^1(G), \{k_n\} \subset \mathbb{N}$ such that $\tau_n(v^{k_n}) \to \mu$, $k_n/k_{n+1} \to c \in]0, 1[$ (i.e. $\operatorname{DSSA}(\mu) \neq \emptyset$), with the additional properties that $\tau_{n+1}\tau_n^{-1} \to \tau$ and $\tau_n(v) \to \omega_H$ for some compact subgroup H of G.

PROOF. "(i) \Rightarrow (ii)" is obvious. Now we assume (ii) and show that (i) holds. By Theorem 2.1 of [Sh4], the set $\mathcal{A} = \{\tau_n(\nu)^m \mid m \leq k_n, n \in \mathbb{N}\}$ is relatively compact. Now from Theorem 3.6 of [T], μ is embeddable in a continuous one-parameter semigroup $\{\mu_t\}_{t\geq 0} \subset M^1(G)$ such that, for some sequence $\{n_i\} \subset \mathbb{N}$,

(1)
$$\lim_{j\to\infty}\tau_{n_j}(\nu)^{[k_{n_j}t]}\to\mu_t\,,$$

uniformly on compact subsets of $]0, \infty[$.

Let $m \in \mathbf{N}$ be fixed. Clearly, $\tau_n \tau_{n-m}^{-1} \to \tau^m$ and $k_n/k_{n+m} \to c^m$. Let $a_j = k_{n_j-m}/k_{n_j}$, then $a_j \to c^m$. For any fixed $r \in \mathbf{N}$,

(2)
$$\lim_{j \to \infty} \tau_{n_j}(\nu)^{rk_{n_j-m}} = \lim_{n \to \infty} \tau_{n_j}(\nu)^{[rk_{n_j}a_j]} = \mu_{rc^m},$$

from the uniform convergence on compact sets of $]0, \infty[$ in (1) above (see the proof of Theorem 4.6 of [T]). Also,

(3)
$$\lim_{n \to \infty} \tau_{n_j}(\nu)^{rk_{n_j}-m} = \lim_{n \to \infty} \tau_{n_j} \tau_{n_j}^{-1}(\tau_{n_j}-m(\nu)^{rk_{n_j}-m}) = \tau^m(\mu)^r.$$

From (2) and (3), for all $m, r \in \mathbf{N}$, we have that $\tau^m(\mu)^r = \mu_{rc^m}$, and hence $\tau(\mu_{rc^m}) = \mu_{rc^{m+1}}$. Let $M = \{rc^m \mid r, m \in \mathbf{N}\}$. Then $\tau(\mu_t) = \mu_{ct}$ for all $t \in M$. Since M is dense in \mathbf{R}_+ and τ is continuous we get that $\tau(\mu_t) = \mu_{ct}$ for all $t \in \mathbf{R}_+$, i.e. $\{\mu_t\}_{t\geq 0}$ is (τ, c) -semistable with $\mu_1 = \mu$.

ACKNOWLEDGEMENTS. I would like to thank Keio University, in particular, Makoto Maejima, for hospitality while a large part of work was done. I would also like to thank the Japan Society for the Promotion of Science (JSPS) for a Long-Term Invitation Fellowship which supported the visit to Keio University.

References

- [B] A. BOREL, *Linear algebraic groups* (2nd edition), Graduate Texts in Mathematics, 126, Springer-Verlag, New York, 1991.
- [C] J. W. S. CASSELS, *Local Fields*, London Math. Soc. Students Texts 3, Cambridge Univ. Press, Cambridge-London-New York, 1986.
- [DSh1] S. G. DANI and RIDDHI SHAH, Contraction subgroups and semistable measures on *p*-adic Lie groups, Math. Proc. Camb. Phil. Soc. 110 (1991), 299–306.
- [DSh2] S. G. DANI and RIDDHI SHAH, Contractible measures and Levy's measures on Lie groups, Probability on Algebraic Structures, Ed. G. Budzban et al. Cont. Math. 261, 3–14 (2000).
- [H] W. HAZOD, On some convolution semi- and hemigroups appearing as limit distributions of products of group-valued random variables, Proc. Marseille conference on "Analysis on infinite-dimensional Lie groups", 1997 (Ed. H. HEYER and J. MARION, 1998, World Scientific, 104–121.
- [HSi1] W. HAZOD and E. SIEBERT, Automorphisms on a Lie group contracting modulo a compact subgroup and applications to semistable convolution semigroups, J. Theor. Prob. 1 (1988), 211–225.
- [HSi2] W. HAZOD and E. SIEBERT, Stable Probability Measures on Euclidean spaces and on locally compact groups: Structural properties and limit theorems, Kluwer Academic Publishers, Dordrecht-Boston-London, 2001.
- [Ho] G. P. HOCHSCHILD, Basic theory of algebraic groups and Lie algebras, Springer-Verlag, Berlin-Heidelberg, 1981.
- [Hu] J. E. HUMPHREYS, *Linear Algebraic groups*, Springer-Verlag, Berlin–Heidelberg, 1975.
- [Ma] I. G. MACDONALD, Spherical Functions on a Group of p-adic Type Publ 2, Ramanujan Institute Madras (1971).
- [MSh1] M. MAEJIMA and RIDDHI SHAH, Moments and Projections of Semistable Probability Measures on p-adic Vector Spaces, J. Theor. Prob. 19 (2006), 447–459.
- [MSh2] M. MAEJIMA and RIDDHI SHAH, Operator-semistable, Operator Semi-selfdecomposable Probability Measures and Related Nested Classes on *p*-adic Vector Spaces, Monat. Math. 151 (2007), 293–318.

- [S] J.-P. SERRE, Lie Algebras and Lie Groups, W. A. Benjamin, 1964.
- [Sh1] RIDDHI SHAH, Semistable measures and limit theorems on real and *p*-adic groups. Monat. Math. **115** (1993), 191–213.
- [Sh2] RIDDHI SHAH, Convergence-of-types theorems on p-adic algebraic groups, Proc. Oberwolfach conference on "Probability Measures on Groups and Related Structures", 1994 (ed. H. HEYER, 1995), 357–363.
- [Sh3] RIDDHI SHAH, Limits of commutative triangular system on real and *p*-adic groups, Math. Proc. Camb.Soc. 120 (1996), 181–192.
- [Sh4] RIDDHI SHAH, Limits of commutative triangular systems on locally compact groups, Ind. Acad. Sci. Proc. (Math. Sci.) 111 (2001), 49–63.
- [Si] E. SIEBERT, Contractive automorphisms on locally compact groups, Math. Zeit. 191, 73–90.
- [T] K. TELÖKEN, Limit Theorems for probability measures on totally disconnected groups, Semigroup Forum 58 (1999), 69–84.
- [V] V. S. VARADHARAJAN, Lie Groups, Lie Algebras and their Representations, Graduate Texts in Math. no. 102, Springer-Verlag, 1984.
- [W] J. S. P. WANG. The Mautner phenomenon on *p*-adic Lie groups, Math. Zeit. **185** (1984), 403–412.

Present Address: SCHOOL OF PHYSICAL SCIENCES, JAWHARLAL NEHRU UNIVERSITY, NEW DELHI 110067, INDIA. *e-mail*: rshah@mail.jnu.ac.in