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Abstract. We shall give some criteria for the validity of Gragerg’s generalized conjecture (GGC) for imag-
inary quadratic fields and the prime 2. Using this, we Ishige examples of imaginary quadratic fields satisfying
GGC for the prime 2.

1. Introduction

Letk be an algebraic number field ahd prime number. We denote byhe compositum
of all Z;-extensions ok. Thenk/k forms aZf—extension with a positive integef, that is,
G := Gal(k/k) is topologically isomorphic to thé-copies of the additive group &;. Let
L(k) be the maximal unramified abelian pt@xtension field ok. Then the Galois group
X (k) := Gal(L(k)/k) can be considered as a module over the completed groupiiiag :=

Z,[[G]]. Greenberg showed that(k) is a finitely generated torsion (G)-module ([12]).
Moreover, the following is conjectured ([15]):

GREENBERG S GENERALIZED CONJECTURE(GGC). X (k) isa pseudo-null A(G)-
module. That is, the annihilator ideal Anny (M) has height at least 2.

This is a generalization of (usual) Greenberg’s conjecture for totally real number fields
(see [13], [15]). As same as Greenberg’s conjecture, no counterexample for GGC is known
yet. However, not so many cases are known to be true whemot totally real. Hence it is
important to find new examples for which GGC is valid.

In the following, we shall restrict our attention to the case thatan imaginary quadratic
field. We will state some of known results. Minardi showed that if the class numbeisof
not divisible byl, then GGC holds fok and! ([23], [24]). Recently, Fukuda and Komatsu
gave many examples of imaginary quadratic fields satisfying GGC for the prime 3 by using
computer calculations ([8]).
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In the present paper, we shall consider the casd tha?. We will state some criteria for
the validity of GGC in Section 2 (Theorems 1, 2, 3). In Section 3, we shall give some families
of imaginary quadratic fields satisfying GGC for the prime 2.

2. Criteria

Let F be an algebraic number field. We denotedyF) the Sylow 2-subgroup of the
ideal class group of’. We write A2(F) for the lwasawak-invariant of thecyclotomic Z,-
extension ofF. For aZ;’-extensionF//F with a positive integet/, we denote by.(F’) the
maximal unramified abelian pro-2 extension field o¥r and by X (F’) the Galois group
Gal(L(F")/F"). We callX (F’) the lwasawa module. For a finite s&twe denote bysS| the
number of elements if. For a finitely generated>-moduleN, we denote by rarnk (N) the
dimension of theQ,-vector spaceV ®z, Q> (whereQ: is the field of 2-adic numbers). For
a groupg which is topologically isomorphic to the direct sum of finite copies of the additive
group ofZ,, we putA(G) = Z5[[G]]. We denote b)(e) the quadratic residue symbol.

Let k1 be the maximal elementary abelian 2-extension fielkwhich is contained k.
Our main theorems of the present paper are the following:

THEOREM 1. Weput k = Q(+v/—d) with a positive square-free integer 4 which satis-
fiesd = 3 (mod 8. Assume that k satisfies one of the following two conditions:
() k(v=1,v2) = k1, and 22(Q(v/d)) = 0,
(i) k(V/=p,V2) = k1 with a rational prime divisor p of d satisfying p = 5 (mod 8,

and 12(Q(vd/p)) = 0.
Then GGC holds for £ and the prime 2.

THEOREM 2. Weput k = Q(+/—d) with a positive square-free integer d which sat-
isfiesd = 7 (mod 8. Assume that k(,/—p, v/2) = k1 with a rational prime divisor p of d
satisfying p = 3 (mod 8, and 12(Q(/d/p)) = 0, then GGC holds for k and the prime 2.

THEOREM 3. Weput k = Q(+/—d) with a positive square-free integer d satisfying
d > 4. If k satisfies one of the following (a)—(f), then GGC holds for k£ and the prime 2. (In
the following list, p isan odd prime divisor of d.)

(@ d=5 (mod 8, and

k(v=1,v2) =k, 22(Q(d)) = 0, or
k(y=p.~?2) =kwith p=3 (mod 8, 12(Q(:/d/p)) =0.
(b) d =1 (mod 8, k(v/=p, V2) = ky with p = £5 (mod 8, and A1>(Q(/d/p)) =
0.
(c) d = 2d' withd’ =3 (mod 8, and
k(vV=1,V2) =k, 22(Q(Wd)) =0, or
k(v=p, V2 =kiwithp=5 (mod 8, 12(Q(/d/p)) =0
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(d) d =2d'withd’ =5 (mod 8, and

k(v/=1,v/2) = k1, 12(Q(v/d)) =0, 0r
k(v/=p.~2) =kiwithp=3 (mod 8, 12(Q(/d/p)) =0.

(e) d = 2d' withd" = 1 (mod 8, k(/—p. ~/2) = k1 with p = +5 (mod 8, and
22(Q(Vd/p)) = 0.

() d = 2d’ withd' = 7 (mod 8, k(/=p.+2) = ki1 with p = 5 (mod 8, and
22(Q(V/d/p)) = 0.

Note that our method works only when all quadratic subextensidry bfare abelian

overQ. In this case, there is a quadratic subextensiory bfsuch that every prime ideal lying
above an odd prime number which does not split splits completely (see Theorem (11) of
[4]). Moreover, if the prime 2 splits i, thenk must has an unramified quadratic extension
contained ink (see Remark 3).

From now on, we shall prove the above theorems. Sincentains the cyclotomiz -
extension fielt of k, we putd = Gal(k/k~). We note that/ k is aZZ-extension (see, e.g.,
Theorem 13.4 of [31]). The® is isomorphic to the additive group @b. We can consider
X (k) as aA(H)-module. It is well known thaf (k) is a finitely generatedi (H)-module
becauseX (ko) is finitely generated over, (see Theorem 2 of Bloom [2], and lwasawa
[19]).

In this situation, we know the following result:

PROPOSITION A. If X (k) is a finitely generated torsion A(H)-module, then X (k) is
pseudo-null asa A(G)-module.

PROOF. This proposition is a special case of Lemma 4.10 of Venjakob [30]. O

REMARK 1. Venjakob’s resultincludes the case of non-commutataeic Lie exten-
sions. See also Hachimori-Sharifi [16]. We also note that a similar assertion is mentioned in
pp. 352—-353 of Greenberg [15].

We shall fix a topological generatprof H. We putw, = yz" —landvy,, = on/w,
for non-negative integers > n as usual.

LEMMA 1. Assumethat thereisa A(H)-submodule Y of X (k) such that X (k)/v1.0Y
isfinitely generated as a Z,-module. If

rankz, (X (k)/Y) = rankz, (X (k) /v1,0Y)

then X (k) is A(H)-torsion.

PrRoOOF. We shall consider the following exact sequence:

0— Y/vioY — X(k)/vioY — X(k)/Y — 0.
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From the assumption, the order Bfv1 oY is finite. Hence we can see thgtis a finitely
generated torsior (H)-module (see, e.g., [1]). Then our assertion follows becal@e/ Y
is alsoA(H)-torsion. O

Next, we will state a preliminary result which plays a central role in the proof of our
main theorems.

PrROPOSITION 1. Letk = Q(+/—d) with a positive square-free integer d which satis-

fiesd > 2.
() 1f22Q(d)) = 0, then A2(k(v=1)) = r2(k).
(i) If d hasaprimedivisor p satisfying p = £5 (mod 8, and A2(Q(y/d/p)) = O,
then 2(k(/=p)) = r2(k).

REMARK 2. For every quadratic extension of an imaginary quadratic field, its Ivasawa
u-invariant of the cyclotomi@;-extension is always zero (lwasawa [19]).

PROOF oFPROPOSITIONL. Let m be a positive divisor ofd which satisfies
k(v/=m) # k(x/2). Then the following formula is known:

r2(k(v/—m)) = r2(k) + 22(Q(v —m)) + 22(Q(v/d/m)).

(This follows from Lemma 3 of [21].)
First, we putn = 1. If k(+/—1) = k(~/2), then the assertion trivially follows. Otherwise,
we see thata(k(v/—1)) = x2(k) + A2(Q(v/d)). The part (i) follows.

We note that if p is an odd prime number satisfying = 45 (mod 8, then
12(Q(/—p)) = 0 (See Ferrero[5] and Kida [20]). Hence, the part (ii) can be shown similarly.
O

We will finish to prove our main theorems. Lk}, be the unique quadratic extension of

ks Which is contained irk. Note thatx (kgo) is also finitely generated asZz-module (see
Remark 2).

2.1. Proof of Theorem 1. We only give a proof of the part (i). (The part (ii) can be
shown quite similarly.)

By the assumption, there is only one primekdfing above 2, and it is totally ramified
ink/k. In this case, we can obtain the following:

X (k) /woX (k) = X (keo), X (k)1 X (k) = X (kL) @)

(cf. p. 248, Corollary of Bloom [2]).

Note thatkgo is the cyclotomicZ,-extension field ok (./—1). Hence by Proposition 1,
we see that the Iwasawainvariant ofkgo /k(/—1) coincides with the lwasawa-invariant
of koo/ k. This implies that rank, (X (ko)) = rankzz(X(kgo)). Then by using (1), Lemma 1
(takingY = woX (k)), and Proposition A, we can show the theorem in this case. |
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2.2. Proof of Theorem 2. In this case, the prime 2 splits completelykinHence, we
know thatk/ k. is an unramified extension (see, e.g., Ozaki [27]) and we can see that

X (k) JwoX (k) ® Zp = X (koo), X (k) /anX (k) ® Z2 = X (kL) )

asZy-modules (cf. Theorem 4 of Bloom [2]).
By Proposition 1, we have the equality ragkX (k«)) = rankzz(X(kgo)). Then by
repeating the same argument given in the proof of Theorem 1, we can prove Theorem 2.

REMARK 3. Under the assumption of Theorem®2= 7 (mod 8), we can show that
GGC holds ifk satisfies one of the following conditions:

o k(v=1) ckandr(Q(d) =0,
e k(/=p) C k with a rational prime divisop of d satisfyingp = 5 (mod 8, and
12(Q(vd/p)) = 0.

However, these do not occur. Since the prime 2 splits ithere is aZ,-extension such that
only one prime divisor of 2 ramifies. K satisfies one of the above conditions, both primes

lying above 2 are ramified in every quadratic subextensicty bf It is a contradiction.

2.3. Proof of Theorem 3. In all cases expect for (f), we can see that there is only one

prime ofk lying above 2. We note theiclgo/kc>o is an unramified extension in some cases.
However, we can show that

rankz, (X (k) /woX (k)) = rankz, (X (kx)) ,
rankz, (X (k) /o1 X (k) = rankz, (X (k3,))
for (a)—(e) (see the proof of Lemma 1 of [27]).
The case (f) is slightly complicated. Lebe the unique prime df which is lying above
2. Note thatk(+/2)/k is an unramified extension, af@plits exactly two distinct primes in
koo. We claim that the inertia field df/ k for the primel is k(+/2). (Itis sufficient to show that

L(k) Nk = k(+~/2). Assume that it does not hold, then there is an unramified cyclic quartic

extensionL’/ k containedk because (,/—p)/k is not an unramified extension. Lgbe the
unique prime of which is lying abovep. By class field theory, the order of the Frobenius

automorphisn{%) is exactly 2. Note thak’ containsk(+/2), andp does not decomposed

in k(+~/2) because = 5 (mod 8. Itis a contradiction. The claim follows.) This implies that
all primes ofk,, lying above 2 are totally ramified ik. Hence by Theorem 3 of [2], there is
a A(H)-submodule? of X (k) which satisfies

X(k))Y = X(koo),  X(k)/vioY = X (k).
The rest of the proof is similar to that of Theorem 1. O

REMARK 4. Letk = Q(+/—d) with a positive square-free integér By using a dif-
ferent method, Fujii recently showed in [6] thatif£ 1, 2,7, 9, 15 (mod 16, k(+/—1) C k,
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andr2(Q(+/d)) = 0, then GGC holds fat and the prime 2. Fujii’'s result contains the follow-

ing result that it/ = 24’ withd’ = 7 (mod 8, k(v/—1, v/2) = k1, andr2(Q(+/d)) = 0, then

GGC holds. Note that this is not contained in our main theorems. The author did not know it
when he submitted the present paper. However, we can show this result by using our method.
The proof is similar to that of Theorem 3 (f). It is sufficient to show th&t) Nk = k(+/2).
Assume that it does not hold, then there is an unramified cyclic quartic extehsidrcon-

tained ink becausé (+/—1)/k is not an unramified extension. Sinfécontainsk(v/2) and

any quadratic subextensionbfk(+/2) is abelian over, we see thaL’ is an abelian exten-

sion of Q. It is a contradiction.

3. Examples

When we use our criteria in practice, some problems arise, namely, the determination of
the first layer of non-cyclotomig»-extensions, and Greenberg’s conjecture for real quadratic
fields. However, these problems were well sattby many authors. Thanks to their results,
we can obtain examples of imaginary quadratic fields which satisfies GGC for the prime 2.

Let the notations be as in the previous sections. Recalkihiatthe maximal elementary
abelian 2-extension field d&f which is contained irk. The determination problem df is
considered in Carroll [3], Carroll-Kisilevsky [4], Gras [11],. . In particular, according to
Gras [11], one can determitig exactly for any given imaginary quadratic figld However,
we shall mainly use the following result due@arroll-Kisilevsky [4] because it is convenient
to construct a family of examples.

PrROPOSITION B (cf. [4], Corollary 8, Example 2). Let k = Q(+/—d) with a positive
square-free integer d. Assumethat d £ 1 (mod 8, d has a prime divisor p which satisfies
p = £3 (mod 8, and the exponent of A(k) is 2. Then there is a unique integer m #
1,2, —d, —2d dividing 2d (m is allowed to be negative) such that every odd prime divisor
of d splits completely in k(y/m)/k. Moreover, k(y/m, ~/2) = k1.

On the other hand, various families of real quadratic fields which satisfies Greenberg’s
conjecture for the prime 2 are given by many authors.

First, we shall consider the case thgt) is a cyclic group. We shall mention the cases
where GGC follows without using our main theorems. (Almost all cases seem well known.)

PrROPOSITION C. We put k = Q(+/—d) with a positive square-free integer d. If d
satisfies one of the following (1)—(6), then GGC holds for k£ and the prime 2 (in the following
table, p and ¢ are distinct prime numbers).
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d conditions
(1) 1or2
(2) por2p p=43 (mod 8§
Q@ p p=7 (mod§
(4) pq p=5¢=3(mod9
B) pqg p=54g=7 (mod 8, (g):—l
®) pq p=1g=7mod8, (2)=-1 2" #(-1’'s (modp)

PROOF. By Minardi’s result ([23], [24], see also Theorem B of [27]), it is sufficient to
find aZ,-extensionk / k such that there is only one prime fhwhich is ramified inK / k, and
the lwasawa modul& (K) is finite.

Let L(k) be the maximal unramified abelian 2-extension field dveFor the cases (1)
and (2), we can see thalt(k) is trivial or cyclic, L(k) is contained ink, and there is only
one prime lying above 2 it.(k) (cf. Carroll-Kisilevsky [4], Bloom [2], Gras [10]). Then for
anyZy-extensionk /k which containg. (k), the Iwasawa modul& (K) is finite (in fact, it is
trivial).

For the case (5), it follows that(,/—p) is contained irk (by Proposition B, or Example
(15) of [3]). Note thatk(,/—p)/k is totally ramified at the unique prime lying above 2.
We can sedA(k)| = 2 (by genus theory and the criterion of Rédei-Reichardt [29]) and
|A(k(/—p))| = 2 (by the analytic class number formula, e.g., Washington [31]). Then for
any Zy-extensionk /k which containsk(,/—p), the lwasawa modul& (K) is finite (see
Fukuda [7]).

For the cases (3), (4), and (6), we note that the prime 2 splits into two distinct primes in
k. Fix a primel of k dividing 2. Then there is a uniqu&-extensionV/k which is unramified
outsidel. For all cases| does not split inV/k. Moreover, it is known thak (N) is finite for
these cases (see Theorem 1 and Theorem 2 of [17]).

Hence in all cases, we can see that GGC holds fond the prime 2. O

We are also able to prove the above result by using our main theorems, except for the

cases (1), (3), and (6) (in these cagdesis not abelian ove®). We shall give an example
which is not contained in Proposition C.

ExaMPLE 1. Letk = Q(\/—pgq) with prime numberg, ¢ satisfying

p=1 (mod8, ¢g=3 (mod?§, <—>=—1.

Then by genus theory and the criterion of Rédei-Reichardt, wel§ee= Z/2Z. By Propo-
sition B or Example (15) of [3], we can see thiat/—1) is contained irk. Moreover, it is

known that if 27" # 1 (mod p), theni2(Q(/pg)) = 0 (Fukuda-Komatsu [9]). Then under
(all of) the above conditions, GGC farand the prime 2 holds by Theorem 1.
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Next, we shall consider the case th(k) is isomorphic to(Z /2Z)2. Such fields can be

TSUYOSHI ITOH

completely determined (see Kisilevsky [22]).

EXAMPLE 2. The followingimaginary quadratic fieldssatisfy A (k) = (Z/2Z)2. We
can show the validity of GGC for these fields and the prime 2 by using our main theorems,
Proposition B, and known results on Greenberg’s conjecture for real quadratic fields. In the

following, p, ¢, andr denote distinct prime numbers.

1)

(2)

3)

(4)

()

(6)

k=Q(/—pgr),p=q=5r=3 (mod 8§, (g) = (%) =—1, (%) -1
k(=4 v2) = k1.
22(Q(/pr)) = 0 by Ozaki-Taya [28]
We can apply Theorem 1 (ii).

k=Q(W),pEl,q55,rE7(mod&,(g):l,(é):( ):—l.

b
k(y=q,V2) = k1.
“p=9 (mod 16" or“p =1,r =7 (mod 16,25 = —1 (mod p)”
= 12(Q(/pr)) = 0 by Nishino [26].
We can apply Theorem 1 (ii).
k=QW/—pqr),p=q=3,r=7 (mod 9, (5) 2(%)2 (%) =1

k(V=p.N2) =ki.
12(Q(/gr)) = 0 by lwasawa’s theorem ([18], see also [28])

We can apply Theorem 2.
k=Q(/=pq),p=149=5 (mod 8, (5) - 1.

k(V=1,V2) = k.

2" % (~1)"5" (mod p) = 22(Q(/P) = 0 by Yamamoto [32]
We can apply Theorem 3 (a).
k=Q(/=pq),p=3,49=7(mod8, (r)=-1

k(V/=p.V2) =ki.
22(Q(/9)) = 0 by lwasawa’s theorem

We can apply Theorem 3 (a).
k=Q(~=2pg),p=14=3 mod8, (F)=-1.
k(vV=1,2) = k1.
e # —1 (mod p) = 12(Q(v/2pq)) = 0 by Fukuda-Komatsu [9]
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We can apply Theorem 3 (c).
(7) k=Q(W~-2pq),p=54¢=7 (mod 8, (L)=-1
k(J/=p:N2) = k1.
22(Q(v/29)) = 0 by lwasawa’s theorem

We can apply Theorem 3 (c).
(8) k=Q(/—2pq), p=5.q=1 (mod 8, (5) =—1.
k(V=1,2) = k1.
2”7_1 =3 (—1)"5_1 (mod p) = 12(Q(+/2pq)) = 0 by Yamamoto [32]
We can apply Theorem 3 (d).
9) k=Q(W=2pg),p=3,4=7 (mod 8, (£)=-1.
k(v=p.V2) =k1.
22(Q(v/29)) = 0 by lwasawa’s theorem

We can apply Theorem 3 (d).
(10) k =Q(/=2pg), p=5.4=3 (mod 8, () =1.
: k(V=P.V2) = k1.
22(Q(+v/29)) = 0 by lwasawa’s theorem
We can apply Theorem 3 (f).

It seems that one can show the validity of G&Csome of cases in Example 2 by using
the same argument given in the proof of the case (5) of Proposition C.

Moreover, assume that= Q(,/— pgqr) with distinct primesp, ¢, andr satisfying one
of the following conditions (A) — (C):

(A) p=g=r=3(mod 98, (%):(2):(%),
B) p=g=1 r=3(mod8y, (%) =1, (2) = (%) = -1,
C) p=g=1 r=3(mod?y, (%) -1, (%) =-1

Then, we can see thaty/—1) is contained irk. Hence ifx2(Q(/pgr)) = 0 is shown, GGC
holds fork and the prime 2.

It seems that many other examples can be found by using our main theorems. However,
we will end the present paper by giving only one more example.

ExamMpPLE 3. We putk = Q(/—pgrs) with distinct prime numberp, ¢, r, ands
satisfying:

p=q=3, r=7, s=5 (mod?9,
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()-()+ ()= ()-()-()
p q r p q r
In this case, we can see thatk) is isomorphic ta(Z/22)3. Sincek(y/—s) is contained ink

(by Proposition B) and.2(Q(./pgr)) = 0 (Yamamoto [32], see also Mizusawa [25]), GGC
for k and the prime 2 holds by Theorem 1.

and
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