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Abstract. We consider the Schrödinger and Schrödinger type operatorsH1 = −∆+V andH2 = (−∆)2+V 2

with non-negative potentialsV on Rn. We assume that the potentialV belongs to the reverse Hölder class which
includes non-negative polynomials. We establish estimates of the fundamental solution forH2 and show someLp

estimates for Schrödinger type operators. Moreover, we show that the operator∇4H−1
2 is a Calderón-Zygmund

operator.

1. Introduction and Theorems

Let V (x) be a non-negative potential and consider the Schrödinger and Schrödinger type

operatorsH1 = −∆ + V andH2 = (−∆)2 + V 2 on Rn. WhenV is a non-negative poly-
nomial, Zhong ([Zh]) proved the estimates of the fundamental solution forH1 andH2 and
showed some estimates forH1 andH2. He showed theLp boundedness of the operators

V 2−j/2∇jH−1
2 , wherej = 0, 1, 2, 3, 4, andV kH−k

1 , V k−1/2∇H−k
1 , wherek ∈ N. He also

proved that the operators∇2H−1
1 and∇4H−1

2 are Calderón-Zygmund operators.
For the potentialV which belongs to the reverse Hölder class, which includes non-

negative polynomials, Shen ([Sh1]) generalized Zhong’s results onH1. Actually, he estab-
lished estimates of the fundamental solution forH1 and showed theLp estimates of the

operatorsV H−1
1 , V 1/2∇H−1

1 , ∇2H−1
1 , etc. On the operatorH1 these Shen’s results were

generalized to other directions. See [KS1], [Su]. Moreover, in [KS2] the authors studied the
magnetic Schrödinger operator with potentialsV which belong to a certain reverse Hölder

class and showed some estimates. In particular they showed that the operator∇2H−1
1 is a

Calderón-Zygmund operator.
In this paper we studyH2 with reverse Hölder class potentials. We establish esti-

mates of the fundamental solution forH2 and show theLp boundedness of the operators

Received August 29, 2005
2000Mathematics Subject Classification: Primary 42B20, Secondly 35J10, 35B45.
Key Words: Schrödinger operator, fundamental solution, reverse Hölder class.



180 SATOKO SUGANO

V 2−j/2∇jH−1
2 , wherej = 0, 1, 2, 3, 4. Moreover, we show that the operator∇4H−1

2 is a
Calderón-Zygmund operator.

To be precise, we recall the definitions of the reverse Hölder class (e.g. [Sh1]). Through-
out this paper we denote byBr(x) the ball centered atx with radiusr, and the letterC stands
for a constant not necessarily the same at each occurrence.

DEFINITION 1 (Reverse Hölder class). LetV ≥ 0.
(1) For 1< p < ∞ we sayV ∈ (RH)p, if V ∈ L

p

loc(R
n) and there exists a constant

C such that
(

1

|Br(x)|
∫

Br (x)

V (y)pdy

)1/p

≤ C

|Br(x)|
∫

Br(x)

V (y)dy (1)

holds for everyx ∈ Rn and 0< r < ∞.
(2) We sayV ∈ (RH)∞, if V ∈ L∞

loc(R
n) and there exists a constantC such that

‖V ‖L∞(Br (x)) ≤ C

|Br(x)|
∫

Br(x)

V (y)dy (2)

holds for everyx ∈ Rn and 0< r < ∞.

REMARK 1. If P(x) is a polynomial andα > 0, thenV (x) = |P(x)|α belongs to
(RH)∞ ([Fe]). For 1< p < ∞, it is easy to see(RH)∞ ⊂ (RH)p.

In [Sh1], Shen defined the auxiliary functionm(x, V ) and established the estimates of the
fundamental solution ofH1. For the operatorH2, we show the estimates of the fundamental
solution with Shen’s auxiliary functionm(x, V ). We recall the definition of the function
m(x, V ).

DEFINITION 2 ([Sh1, Definition 1.3]). LetV ∈ (RH)n/2 andV �≡ 0. Then it is well-
known that there existsε > 0 such thatV ∈ (RH)n/2+ε ([Ge]). Then the functionm(x, V ) is
well-defined by

1

m(x, V )
= sup

{
r > 0 : r2

|Br(x)|
∫

Br (x)

V (y)dy ≤ 1

}

and satisfies 0< m(x, V ) < ∞ for everyx ∈ Rn.

REMARK 2. If V ∈ (RH)∞ then there exists a constantC such thatV (x) ≤
Cm(x, V )2 ([Sh1, Remark 2.9]). We also remark that, ifV ∈ (RH)p, p ≥ n/2, then there
exists a constantC such that

(
1

|Br(x)|
∫

Br (x)

V (y)pdy

)1/p

≤ Cm(x, V )2

(cf. [Sh1, Lemma 1.8] and [KS1, Lemma 2.2(a)]).
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Now we state our theorems. In this paper we studyH1 andH2 only for n ≥ 3 andn ≥ 5
respectively. We denote byΓHj (x, y) the fundamental solution forHj , j = 1, 2. The operator

H−1
j is the integral operator withΓHj (x, y) as its kernel.

THEOREM 1. (1) Let j = 0, 1, 2, 3. Suppose V ∈ (RH)n/2 and there exists a

constant C such that V (x) ≤ Cm(x, V )2. Then there exist constants Cj such that

‖V 2−j/2∇jH−1
2 f ‖Lp(Rn) ≤ Cj‖f ‖Lp(Rn) , (3)

where 1 < p ≤ ∞ and ∇j = ∇j
x = ∂ |α|/∂x

α1
1 ∂x

α2
2 · · · ∂x

αn
n , j = |α| = α1 + α2 + · · · + αn.

(2) Suppose V ∈ (RH)n/2 and there exists a constant C such that V (x) ≤ Cm(x, V )2.
Then there exists a constant C′ such that

‖∇4H−1
2 f ‖Lp(Rn) ≤ C′‖f ‖Lp(Rn) , (4)

where 1 < p < ∞.

For the operator∇4H−1, we prove that the operator∇4H−1 is a Calderón-Zygmund
operator under a little stronger assumption (see Theorem 4).

To prove Theorem 1 estimates of the fundamental solution are needed. The following
Theorems 2 and 3 generalize the results in[Zh, Theorem 5.1 and Proposition 5.7] to the
operatorH2 with potentialsV which belong to the reverse Hölder class.

THEOREM 2. Suppose V ∈ (RH)n/2. Then for any positive integer N there exists a
constant CN such that

(0 ≤)ΓH2(x, y) ≤ CN

{1 + m(x, V )|x − y|}N · 1

|x − y|n−4 . (5)

THEOREM 3. Let j = 1, 2, 3. Suppose V ∈ (RH)n/2 and there exists a constant C

such that V (x) ≤ Cm(x, V )2. Then for any positive integer N there exists a constant CN

such that

|∇j
x ΓH2(x, y)| ≤ CN

{1 + m(x, V )|x − y|}N · 1

|x − y|n−4+j
. (6)

REMARK 3. Estimate (6) can be proved under the assumptionV ∈ (RH)2n/(4−j),
j = 1, 2, 3 (see Theorem 6). When we assumeV ∈ (RH)q for someq ≥ n/2 and use
Theorem 6 (also Theorem 2) and the same method as in [Sh1, Theorem 4.13] (also [Sh1,

Theorem 3.1]), we can prove the operatorsV 2−j/2∇jH−1
2 , j = 0, 1, 2, 3, are bounded on

Lp(Rn), 1 ≤ p ≤ q. We note that, if we take the limitq → +∞, then the class(RH)q

becomes(RH)∞ andV ∈ (RH)∞ implies “V ∈ (RH)n/2 andV (x) ≤ Cm(x, V )2”.

REMARK 4. For ΓH1(x, y), some exponential decay estimates are known ([Ku],
[Sh3]). ForΓH2(x, y), we only prove polynomial decay estimates, since it suffices to show
them to obtain ourLp estimates.
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We prove Theorems 2 and 3 in Sections 3 and 4 respectively. In Section 2, we show an
estimate forH1 (Corollary 1) needed to prove Theorem 2. In Section 5, we prove Theorem 1
by using Theorems 2 and 3.

We now recall the definition of the Calderón-Zygmund operator. LetD′ denote the space
of distributions dual toC∞

0 (Rn). An operatorT takingC∞
0 (Rn) intoD′ is called a Calderón-

Zygmund operator if

(i) T extends to a bounded linear opeator onL2(Rn),
(ii) there exists a kernelK such that for everyf ∈ C∞

0 (Rn),

Tf (x) =
∫

Rn
K(x, y)f (y)dy a.e. on {suppf }c ,

(iii) there exist positive constantsδ andC such that for all distinctx, y ∈ Rn and allz
such that|x − z| < |x − y|/2,

|K(x, y)| ≤ C

|x − y|n , (7)

|K(x, y) − K(z, y)| ≤ C|x − z|δ
|x − y|n+δ

, (8)

|K(y, x) − K(y, z)| ≤ C|x − z|δ
|x − y|n+δ

. (9)

See e.g. [Ch, page 12].

THEOREM 4. Suppose V ∈ C5(Rn). Assume also that V ∈ (RH)n/2 and there exists
a constant C such that

|∇jV (x)| ≤ Cm(x, V )2+j , j = 1, 2, 3, 4, 5 . (10)

Then ∇4H−1
2 is a Calderón-Zygmund operator.

Once we obtain Theorem 4, we can obtain the result that the operator∇4H−1 is of
weak-type (1,1) under the same assumption as in Theorem 4.

REMARK 5. It is known that|∇V (x)| ≤ Cm(x, V )3 implies V (x) ≤ Cm(x, V )2

([Sh2, Remark 1.8]). We note that the condition (10) holds ifV is a non-negative poly-
nomial and there exist potentialsV which satisfy our assumptions but are not non-negative
polynomials (see [KS2, Remark 5]). We also note that, in [KS2, Theorem 2], the authors

showed that∇2H−1
1 is a Calderón-Zygmund operator under the assmuptionV ∈ (RH)n/2

and|∇jV (x)| ≤ Cm(x, V )2+j , j = 1, 2, 3.

We note that the estimates (8) and (9) are implied by a condition

|∇K(x, y)| ≤ C

|x − y|n+1



Lp ESTIMATES FOR SOME SCHRÖDINGER TYPE OPERATORS 183

([Ch, page 12]). Hence, to prove Theorem 3, it suffices to show that the estimates

|∇4ΓH2(x, y)| ≤ C

|x − y|n , |∇5ΓH2(x, y)| ≤ C

|x − y|n+1

hold. In fact, stronger and higher order derivative estimates hold as the following theorem
states.

THEOREM 5. Let j be a positive integer and j ≥ 4. Suppose V ∈ Cj(Rn). Assume

also that V ∈ (RH)n/2 and there exists a constant C such that |∇ iV (x)| ≤ Cm(x, V )2+i ,
i = 1, 2, 3,· · · , j . Then for any positive integer N there exists a constant CN such that

|∇j
x ΓH2(x, y)| ≤ CN

{1 + m(x, V )|x − y|}N · 1

|x − y|n−4+j
. (11)

We prove Theorem 5 in Section 6. Section 7, which is an appendix, is devoted toLp

boundedness of the operatorV 2kH−k
2 , k ∈ N.

2. An estimate for H1

In this section we show an estimate for the operatorH1 (Lemma 2). Before we state it,
we recall the estimates related to the functionm(x, V ) sometimes needed later.

LEMMA 1 ([Sh1, Lemma 1.4 (b), (c)]). Suppose V ∈ (RH)n/2. Then there exist con-
stants C1, C2, and k0 such that

m(y, V ) ≤ C1{1 + |x − y|m(x, V )}k0m(x, V ) , (12)

m(y, V ) ≥ C2m(x, V )

{1 + |x − y|m(x, V )}k0/(k0+1)
. (13)

LEMMA 2 (cf. [Sh1, Theorem 4.13]). Suppose V ∈ (RH)q0 for some n/2 ≤ q0 < n.
Then for 1 ≤ p ≤ p0 there exists a constant C such that

‖m(·, V )∇H−1
1 f ‖Lp(Rn) ≤ C‖f ‖Lp(Rn) , (14)

where 1/p0 = 1/q0 − 1/n.

REMARK 6. Using the same way as in the proof of [Sh1, Corollary 2.8], we can obtain

Lp boundedness of the operatorm(·, V )∇H−1
1 with potentialsV which belong to(RH)q0 for

someq0 ≥ n.

The following Corollary 1 is needed to prove Theorem 2.

COROLLARY 1. Suppose V ∈ (RH)n/2. Then there exists a constant C such that

‖m(·, V )∇H−1
1 f ‖L2(Rn) ≤ C‖f ‖L2(Rn) . (15)
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PROOF OFLEMMA 2. We show Lemma 2 by a method similar to the one used in the
proof of [Sh1, Theorem 4.13]. SupposeV ∈ (RH)q0 for someq0 ≥ n/2. ThenV ∈ (RH)q1

for someq1, satisfyingn > q1 > q0. We denote byΓH1(x, y) the fundamental solution and
let

Tf (x) = m(x, V )

∫
Rn

∇xΓH1(x, y)f (y)dy .

The adjoint ofT is given by

T ∗f (x) =
∫

Rn
∇yΓH1(y, x)m(y, V )f (y)dy .

By duality, it suffices to show that

‖T ∗f ‖Lp(Rn) ≤ C‖f ‖Lp(Rn) for p′
0 ≤ p ≤ ∞ , (16)

where 1/p0+1/p′
0 = 1. Letr = 1/m(x, V ). We chooset andp1 such that 1/t = 1/q1−1/n,

1/p1 = 1 − 1/q1 + 1/n. Thus 1/t + 1/p1 = 1. Hence, by Hölder’s inequality,

|T ∗f (x)| ≤
+∞∑

j=−∞

∫
2j−1r<|y−x|≤2j r

|∇yΓH1(y, x)|m(y, V )|f (y)|dy

≤
+∞∑

j=−∞

( ∫
2j−1r<|y−x|≤2j r

{|∇yΓH1(y, x)|m(y, V )}t dy

)1/t

·
( ∫

|y−x|≤2j r

|f (y)|p1dy

)1/p1

.

It follows from (12) and [Sh1, Lemma 4.6 and Theorem 2.7] that
( ∫

2j−1r<|y−x|≤2j r

{|∇yΓH1(y, x)|m(y, V )}t dy

)1/t

≤
K∑

k=1

( ∫
|yk−x|=3·2j−2r

|z−yk |≤2j−1r

{|∇zΓH1(z, x)|m(z, V )}t dz

)1/t

≤ C(2j−1r)n/q1−2{1 + 2j rm(x, V )}2k0m(x, V ) sup
z∈B5·2j−3r

(yk)

|ΓH1(z, x)|

≤ C(2j−1r)n/q1−2(1 + 2j )2k0
1

r
· CN

{1 + m(x, V )|z − x|}N · 1

|z − x|n−2

≤ CN(2j−1r)n/q1−2(1 + 2j )2k0
1

r
· 1

(1 + 2j−3)N
· 1

(2j−3r)n−2

≤ CN
(2j r)n/q1−n

(1 + 2j−3)Nr
(1 + 2j )2k0 ,
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whereK is a finite integer not depending onj andr. Thus

|T ∗f (x)| ≤ CN

+∞∑
j=−∞

2(1+2k0)j

(1 + 2j−3)N

{
1

(2j r)n

∫
B2j r

(x)

|f (y)|p1dy

}1/p1

≤ C{M(|f |p1)(x)}1/p1 ,

where we chooseN ≥ 2 + 2k0 andM is the Hardy-Littlewood maximal operator. It follows
that

‖T ∗f ‖Lp(Rn) ≤ C‖f ‖Lp(Rn) for p1 < p ≤ ∞ . (17)

Then (16) follows sincep′
0 > p1. �

3. Proof of Theorem 2

In this section we prove Theorem 2. It follows easily from the following Lemma 3.

LEMMA 3. Suppose V ∈ (RH)n/2 and (−∆)2u + V 2u = 0 in BR(x0) for some
x0 ∈ Rn. Then for any positive integer N there exists a constant CN such that

sup
y∈BR/2(x0)

|u(y)| ≤ CN

{1 + Rm(x0, V )}N sup
y∈BR(x0)

|u(y)| . (18)

Assuming Lemma 3 for the moment, we give

PROOF OF THEOREM 2. Fix x0, y0 ∈ Rn and putR = |x0 − y0|. Thenu(x) =
ΓH2(x, y0) is a solution of(−∆)2u + V 2u = 0 on BR/4(x0). Using the estimate 0≤
ΓH2(x, y) ≤ C/|x − y|n−4 and (18), we arrive at the desired estimate. �

To prove Lemma 3 we need some lemmas.

LEMMA 4. Let V ∈ (RH)n/2. Then there exists a constant C such that
∫

Rn
m(x, V )4|u(x)|2dx +

∫
Rn

m(x, V )2|∇u(x)|2dx

≤ C

∫
Rn

|∆u(x)|2dx + C

∫
Rn

V (x)2|u(x)|2dx ,

where u ∈ C∞
0 (Rn).

PROOF. By Corollary 1 and [Sh1, Corollary 2.8] we have∫
Rn

m(x, V )4|u(x)|2dx +
∫

Rn
m(x, V )2|∇u(x)|2dx

≤ C

∫
Rn

|(−∆ + V )u(x)|2dx
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≤ C

∫
Rn

|∆u(x)|2dx + C

∫
Rn

V (x)2|u(x)|2dx . �

LEMMA 5 ([Zh, Lemma 5.5])(Caccioppoli type inequality).Assume (−∆)2u +
V 2u = 0 in BR(x0). Then there exists a constant C such that

∫
BR/2(x0)

|∆u(x)|2dx +
∫

BR/2(x0)

V (x)2|u(x)|2dx

≤ C

R4

∫
BR(x0)

|u(x)|2dx + C

R2

∫
BR(x0)

|∇u(x)|2dx . (19)

LEMMA 6 ([Zh, Corollary 5.6]). Assume (−∆)2u+V 2u = 0,u ≥ 0, in BR(x0). Then

|u(x0)| ≤ C

(
1

|BR(x0)|
∫

BR(x0)

|u(x)|2dx

)1/2

+ CR

(
1

|BR(x0)|
∫

BR(x0)

|∇u(x)|2dx

)1/2

. (20)

REMARK 7. From (20) we have for ally ∈ BR/2(x0),

|u(y)| ≤ C

(
1

|BR/4(y)|
∫

BR/4(y)

|u(x)|2dx

)1/2

+ CR

(
1

|BR/4(y)|
∫

BR/4(y)

|∇u(x)|2dx

)1/2

. (21)

Then we have

sup
y∈BR/2(x0)

|u(y)| ≤ C

(
1

|BR(x0)|
∫

BR(x0)

|u(x)|2dx

)1/2

+ CR

(
1

|BR(x0)|
∫

BR(x0)

|∇u(x)|2dx

)1/2

. (22)

LEMMA 7. Let j = 1, 2, 3. Suppose V ∈ (RH)q0 for some n/2 ≤ q0 < 2n/(4 − j).

Assume also that (−∆)2u + V 2u = 0 in BR(x0) for some x0 ∈ Rn. Then there exists a
constant C such that( ∫

BR/2(x0)

|∇ju(x)|tdx

)1/t

≤ CR(2n/q0)−4{1 + Rm(x0, V )}4 sup
y∈BR(x0)

|u(y)| , (23)

where 1/t = 2/q0 − (4 − j)/n.
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PROOF. We show Lemma 7 by a method similar to the one used in the proof of [Sh1,

Lemma 4.6]. Letη ∈ C∞
0 (BR(x0)) such thatη ≡ 1 onB3R/4(x0) and|∇η| ≤ C/R, |∇2η| ≤

C/R2, |∇(∆η)| ≤ C/R3, and|∆2η| ≤ C/R4. We denote byΓH2,0(x, y) the fundamental

solution for(−∆)2. Note that

u(x)η(x) =
∫

Rn
ΓH2,0(x, y)(−∆)2(uη)(y)dy

=
∫

Rn
ΓH2,0(x, y){−V (y)2u(y)η(y) + 4∆(∇u(y) · ∇η(y))

+2∆(u(y)∆η(y)) − 4∇2u(y) · ∇2η(y) − 4∇u(y) · ∇(∆η(y))

−u(y)(∆2η(y))}dy , (24)

where∇2u(y) · ∇2η(y) = ∑n
j,k=1 ∂2u(y)/∂yj ∂yk · ∂2η(y)/∂yj∂yk. Then by integration by

parts, forx ∈ BR/2(x0) we have

|∇ju(x)| ≤ C

∫
BR(x0)

V (y)2|u(y)||η(y)|
|x − y|n−4+j

dy + C

Rn+j

∫
BR(x0)

|u(y)|dy

≤ C sup
y∈BR(x0)

|u(y)| ·
∫

BR(x0)

V (y)2|η(y)|
|x − y|n−4+j

dy + C

Rn+j

∫
BR(x0)

|u(y)|dy .

It then follows from the well known theorem on fractional integrals that
( ∫

BR/2(x0)

|∇ju(x)|tdx

)1/t

≤ C sup
y∈BR(x0)

|u(y)|
(∫

BR(x0)

V (x)q0dx

)2/q0

+ CR(2n/q0)−4 sup
y∈BR(x0)

|u(y)|

≤ CR(2n/q0)−4{1 + Rm(x0, V )}4 sup
y∈BR(x0)

|u(y)| ,

where 1/t = 2/q0 − (4 − j)/n and we have used Remark 2. �

Sincen ≥ 5, we have

COROLLARY 2. Let j = 1, 2. Suppose V ∈ (RH)n/2 and (−∆)2u + V 2u = 0 in
BR(x0) for some x0 ∈ Rn. Then there exists a constant C such that(

1

|BR/2(x0)|
∫

BR/2(x0)

|∇ju(x)|2dx

)1/2

≤ C{1 + Rm(x0, V )}4

Rj
sup

y∈BR(x0)

|u(y)| . (25)

Now we are ready to give

PROOF OFLEMMA 3. Let η ∈ C∞
0 (BR/2(x0)) such thatη ≡ 1 onBR/4(x0), |∇η| ≤

C/R, and|∇2η| ≤ C/R2. Applying Lemma 4 touη and using Lemma 5 we have
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∫
BR/4(x0)

m(x, V )4|u(x)|2dx +
∫

BR/4(x0)

m(x, V )2|∇u(x)|2dx

≤ C

R4

∫
BR(x0)

|u(x)|2dx + C

R2

∫
BR(x0)

|∇u(x)|2dx .

By (13) it follows that

∫
BR/4(x0)

|u(x)|2dx

≤ C{1 + Rm(x0, V )}4k0/(k0+1)

R4m(x0, V )4

( ∫
BR(x0)

|u(x)|2dx + R2
∫

BR(x0)

|∇u(x)|2dx

)

≤ C

{1 + Rm(x0, V )}4/(k0+1)

(∫
BR(x0)

|u(x)|2dx + R2
∫

BR(x0)

|∇u(x)|2dx

)
.

Then we have

(
1

|BR/4(x0)|
∫

BR/4(x0)

|u(x)|2dx

)1/2

≤ C

{1 + Rm(x0, V )}2/(k0+1)

·
{(

1

|BR(x0)|
∫

BR(x0)

|u(x)|2dx

)1/2

+ R

(
1

|BR(x0)|
∫

BR(x0)

|∇u(x)|2dx

)1/2}
.

Similarly

R

(
1

|BR/4(x0)|
∫

BR/4(x0)

|∇u(x)|2dx

)1/2

≤ C

{1 + Rm(x0, V )}1/(k0+1)

·
{(

1

|BR(x0)|
∫

BR(x0)

|u(x)|2dx

)1/2

+ R

(
1

|BR(x0)|
∫

BR(x0)

|∇u(x)|2dx

)1/2}
.

By repeating above argument, for anyN > 0 we have

(
1

|BR/4N (x0)|
∫

B
R/4N (x0)

|u(x)|2dx

)1/2

+ R

(
1

|BR/4N (x0)|
∫

B
R/4N (x0)

|∇u(x)|2dx

)1/2

≤ CN

{1 + Rm(x0, V )}N/(k0+1)

{(
1

|BR(x0)|
∫

BR(x0)

|u(x)|2dx

)1/2

+R

(
1

|BR(x0)|
∫

BR(x0)

|∇u(x)|2dx

)1/2}
. (26)

Then using Estimates (22), (25), and (26) we arrive at the desired estimate. �
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4. Proof of Theorem 3

In this section we prove Theorem 3 which states the first, second, and third order deriv-
ative estimates of the fundamental solution forH2. We arrive at Theorem 3 combining the
following Lemma 8 with Lemma 3.

LEMMA 8. Let j = 1, 2, 3. Suppose V ∈ (RH)n/2 and there exists a constant C such

that V (x) ≤ Cm(x, V )2. Assume also that (−∆)2u + V 2u = 0 in BR(x0) for some x0 ∈ Rn.
Then there exist constants Cj and C′

j such that

sup
y∈BR/2(x0)

|∇ju(y)| ≤ Cj {1 + Rm(x0, V )}C ′
j

Rj
sup

y∈BR(x0)

|u(y)| . (27)

PROOF. Let η ∈ C∞
0 (BR/2(x0)) such thatη ≡ 1 on BR/4(x0) and |∇η| ≤ C/R,

|∇2η| ≤ C/R2, |∇(∆η)| ≤ C/R3, and|∆2η| ≤ C/R4. From (24) and (12) we have

|∇ju(x0)| ≤ C

∫
BR(x0)

V (y)2|u(y)|
|x0 − y|n−4+j

dy + C

Rn+j

∫
BR(x0)

|u(y)|dy

≤ C{1 + Rm(x0, V )}4k0m(x0, V )4R4−j sup
y∈BR(x0)

|u(y)|

+ C

Rj

(
1

Rn

∫
BR(x0)

|u(x)|2dx

)1/2

≤ C{1 + Rm(x0, V )}4(k0+1)

Rj
sup

y∈BR(x0)

|u(y)| , (28)

From (28) we have for ally ∈ BR/2(x0),

|∇ju(y)| ≤ C{1 + Rm(y, V )}4(k0+1)

Rj
sup

x∈BR/4(y)

|u(x)| .

Using (12) we have

sup
y∈BR/2(x0)

|∇ju(y)| ≤ C{1 + Rm(x0, V )}4(k0+1)2

Rj
sup

y∈BR(x0)

|u(y)| .

Then the proof is complete. �

As we mentioned in Section 1, we can prove derivative estimates of the fundamental
solution under another assumption as the following theorem states.

THEOREM 6. Let j = 1, 2, 3,and suppose V ∈ (RH)2n/(4−j). Then for any positive
integer N there exists a constant CN such that

|∇j
x ΓH2(x, y)| ≤ CN

{1 + m(x, V )|x − y|}N · 1

|x − y|n−4+j
. (29)
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We arrive at Theorem 6 combining the following Lemma 9 with Lemma 3.

LEMMA 9. Let j = 1, 2, 3, and suppose V ∈ (RH)2n/(4−j). Assume also that

(−∆)2u + V 2u = 0 in BR(x0) for some x0 ∈ Rn. Then there exist constants Cj and C′
j

such that

sup
y∈BR/2(x0)

|∇ju(y)| ≤ Cj {1 + Rm(x0, V )}C ′
j

Rj
sup

y∈BR(x0)

|u(y)| . (30)

PROOF. As in the proof of Lemma 7, we have

|∇ju(x0)| ≤ C

∫
BR(x0)

V (y)2|u(y)|
|x0 − y|n−4+j

dy + C

Rn+j

∫
BR(x0)

|u(y)|dy .

SinceV ∈ (RH)2n/(4−j), it follows thatV ∈ (RH)q for someq > 2n/(4 − j). We chooser
such that 2/q + 1/r = 1 andr > 1. By Hölder’s inequality, it follows that

|∇ju(x0)| ≤ CRn

(
1

Rn

∫
BR(x0)

V (y)qdy

)2/q(
1

Rn

∫
BR(x0)

dy

|x0 − y|(n−4+j)r

)1/r

· sup
y∈BR(x0)

|u(y)| + C

Rn+j

∫
BR(x0)

|u(y)|dy

≤ C{1 + Rm(x0, V )}4

Rj
sup

y∈BR(x0)

|u(y)| , (31)

where we have used Remark 2. Then as in the proof of Lemma 8, we arrive at the desired
estimate. �

5. Proof of Theorem 1

Theorem 1(1) immediately follows from the following Lemma 10.

LEMMA 10. (1) Suppose V ∈ (RH)n/2. Then there exists a constant C such that

|m(x, V )4H−1
2 f (x)| ≤ CM(|f |)(x) for f ∈ C∞

0 (Rn) , (32)

where M is the Hardy-Littlewood maximal operator.
(2) Let j = 1, 2, 3. Suppose V ∈ (RH)n/2 and there exists a constant C such that

V (x) ≤ Cm(x, V )2. Then there exists a constant C′ such that

|m(x, V )4−j∇jH−1
2 f (x)| ≤ C′M(|f |)(x) for f ∈ C∞

0 (Rn) , (33)

where M is the Hardy-Littlewood maximal operator.
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PROOF OFLEMMA 10. Estimate (32) can be proved as follows. Letr = 1/m(x, V ).
Then it follows from Theorem 2 that

|m(x, V )4H−1
2 f (x)| ≤ CN

∫
Rn

m(x, V )4|f (y)|
{1 + m(x, V )|x − y|}N |x − y|n−4dy

≤ CN

+∞∑
j=−∞

∫
2j−1r<|x−y|≤2j r

|f (y)|
r4(1 + r−1|x − y|)N |x − y|n−4

dy

≤ CN

+∞∑
j=−∞

24(j−1)+n

(1 + 2j−1)N
· 1

(2j r)n

∫
|x−y|≤2j r

|f (y)|dy

≤ CCN

+∞∑
j=−∞

24j

(1 + 2j )N
M(|f |)(x) .

Therefore we obtain the desired estimate, if we takeN = 5 for example.
The proof of (33) can be done in the same way as above by using Theorem 3. �

PROOF OFTHEOREM 1(1). SinceV (x) ≤ Cm(x, V )2, Estimate (3) immediately fol-
lows from (32), (33), and the fact that the Hardy-Littlewood maximal operator is bounded on
Lp(Rn), 1 < p ≤ ∞. �

PROOF OF THEOREM 1(2). Since∇4(∆2)−1 is bounded onLp, 1 < p < ∞, we
obtain

‖∇4H−1
2 f ‖Lp(Rn) ≤ C‖(∆2 − V 2 + V 2)H−1

2 f ‖Lp(Rn)

≤ C‖f ‖Lp(Rn) . �

6. Proof of Theorem 5

In this section we prove Theorem 5. First we show some lemmas needed to prove it.

LEMMA 11 (Caccioppoli type inequality).Assume (−∆)2u + V 2u = f in BR(x0).
Then there exists a constant C such that∫

BR/2(x0)

|∇(∆u(x))|2dx +
∫

BR/2(x0)

V (x)2|u(x)||∆u(x)|dx

≤
∫

BR(x0)

|f (x)||∆u(x)|dx + C

R2

∫
BR(x0)

|∆u(x)|2dx .

LEMMA 12 (cf. [Sh2, Lemma 1.3]). Assume (−∆)2u + V 2u = f in BR(x0). Then
there exists a constant C such that(

1

|BR/16(x0)|
∫

BR/16(x0)

|u(x)|qdx

)1/q
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≤ C

(
1

|BR(x0)|
∫

BR(x0)

|u(x)|2dx

)1/2

+ CR

(
1

|BR(x0)|
∫

BR(x0)

|∇u(x)|2dx

)1/2

+CR2
(

1

|BR(x0)|
∫

BR(x0)

|∇2u(x)|2dx

)1/2

+CR4
(

1

|BR(x0)|
∫

BR(x0)

|f (x)|pdx

)1/p

,

(34)

where 2 ≤ p ≤ q ≤ ∞ and 1/q > 1/p − 4/n.

PROOF. Let η ∈ C∞
0 (BR/8(x0)) such thatη ≡ 1 on BR/12(x0) and |∇η| ≤ C/R,

|∇2η| ≤ C/R2, |∇(∆η)| ≤ C/R3, and|∆2η| ≤ C/R4. Note that

{(−∆)2 + V 2}(uη) = η{(−∆)2 + V 2}u + 4∇(∆u) · ∇η + 2(∆u)(∆η)

+4∇2u · ∇2η + 4∇u · ∇(∆η) + u(∆2η) .

It follows that

|u(x)η(x)|

≤ C

∫
Rn

1

|x − y|n−4 {|f (y)η(y)| + |∇(∆u(y))||∇η(y)| + |∆u(y)||∆η(y)|

+ |∇2u(y)||∇2η(y)| + |∇u(y)||∇(∆η(y))| + |u(y)||∆2η(y)|}dy .

Thus, forx ∈ BR/16(x0),

|u(x)| ≤ C

∫
BR/4(x0)

|f (y)|
|x − y|n−4

dy + C

Rn−3

∫
BR/4(x0)

|∇(∆u(y))|dy

+ C

Rn−2

∫
BR/4(x0)

|∆u(y)|dy + C

Rn−2

∫
BR/4(x0)

|∇2u(y)|dy

+ C

Rn−1

∫
BR/4(x0)

|∇u(y)|dy + C

Rn

∫
BR/4(x0)

|u(y)|dy

≤ C

∫
BR/4(x0)

|f (y)|
|x − y|n−4dy + R4

(
1

|BR(x0)|
∫

BR(x0)

|f (y)|2dy

)1/2

+C

(
1

|BR(x0)|
∫

BR(x0)

|u(y)|2dy

)1/2

+ CR

(
1

|BR(x0)|
∫

BR(x0)

|∇u(y)|2dy

)1/2

+CR2
(

1

|BR(x0)|
∫

BR(x0)

|∇2u(y)|2dy

)1/2

,

where we have used Lemmas 5 and 11 in the second inequality. Now by Young’s inequality,
if 2 ≤ p ≤ q ≤ ∞, 1/q = 1/r + 1/p − 1, and(n − 4)r < n,

‖u‖Lq(BR/16(x0))

≤ CR−n(1−(1/r))+4‖f ‖Lp(BR(x0)) + CRn/q+4
(

1

|BR(x0)|
∫

BR(x0)

|f (y)|2dy

)1/2
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+ CRn/q

(
1

|BR(x0)|
∫

BR(x0)

|u(y)|2dy

)1/2

+ CRn/q+1
(

1

|BR(x0)|
∫

BR(x0)

|∇u(y)|2dy

)1/2

+ CRn/q+2
(

1

|BR(x0)|
∫

BR(x0)

|∇2u(y)|2dy

)1/2

.

The lemma then follows sincep ≥ 2. �

LEMMA 13. Let j be a positive integer and j ≥ 2. Suppose V ∈ Cj−2(Rn) and

(−∆)2u + V 2u = 0 in BR(x0) for some x0 ∈ Rn. Assume also that V ∈ (RH)n/2 and there

exists a constant C such that |∇ iV (x)| ≤ Cm(x, V )2+i , where i = 1, 2, 3,. . . , j − 2.Then
there exist constants Cj and C′

j such that

(
1

|BR/2j (x0)|
∫

B
R/2j (x0)

|∇ju(x)|2dx

)1/2

≤ Cj {1 + Rm(x0, V )}C ′
j

Rj
sup

y∈BR(x0)

|u(y)| . (35)

PROOF. We prove (35) by induction onj . If j = 2, 3, Estimate (35) holds under weaker
assumption than that of Lemma 13 (see Corollary 2 and Lemma 8). Forj ≥ 4 we assume it
is true for 2, 3, 4,. . . , j − 1, and show the casej . Note that

{(−∆)2 + V 2}∇j−2u = ∇j−2{(−∆)2u} + V 2∇j−2u

= ∇j−2(−V 2u) + V 2∇j−2u =
j−2∑
k=1

k∑
l=0

c(l, k)(∇ lV )(∇k−lV )∇j−2−ku , (36)

wherec(l, k) is a constant depending onl andk. Let η ∈ C∞
0 (BR/2j−1(x0)) such thatη ≡ 1

on BR/2j (x0) and|∇η| ≤ C/R, |∇2η| ≤ C/R2. Multiplying the equation (36) byη4∇j−2u

and integrating overRn by integration by parts, we have

∫
Rn

n∑
s,t=1

(∂t∂
2
s ∇j−2u(x))∂t (η

4∇j−2u(x))dx

≤ C

∫
Rn

j−2∑
k=1

m(x, V )4+k∇j−2−ku(x)η(x)4∇j−2u(x)dx , (37)

where∂t = ∂/∂xt , ∂2
s = ∂2/∂x2

s , 1 ≤ t ≤ n, 1 ≤ s ≤ n. The left hand side of (37) is equal to

∫
Rn

n∑
s,t=1

(∂t∂s∇j−2u(x))2η(x)4 + (∂t∂s∇j−2u(x)){4η(x)3∂tη(x)(∂s∇j−2u(x))

+4η(x)3(∂sη(x))(∂t∇j−2u(x)) + 12η(x)2(∂sη(x))(∂tη(x))∇j−2u(x)
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+4η(x)3(∂s∂t η(x))(∇j−2u(x))}dx .

Then we have∫
Rn

|∇ju(x)|2η(x)4dx

≤ C

∫
Rn

{|∇η(x)|2|∇j−1u(x)|2 + η(x)2(|∇η(x)|2 + |∇2η(x)|)2|∇j−2u(x)|2

+
j−2∑
k=1

m(x, V )4+k|∇j−2−ku(x)|η(x)4|∇j−2u(x)|}dx .

By (12) we obtain∫
B

R/2j (x0)

|∇ju(x)|2dx

≤ C

R2

∫
B

R/2j−1(x0)

|∇j−1u(x)|2dx + C

R4

∫
B

R/2j−1(x0)

|∇j−2u(x)|2dx

+ C

j−2∑
k=1

{1 + Rm(x0, V )}(4+k)k0m(x0, V )4+k

∫
B

R/2j−1(x0)

|∇j−2−ku(x)||∇j−2u(x)|dx

≤ C

R2 · Cj−1{1 + Rm(x0, V )}C ′
j−1

R2(j−1)
· Rn

(
sup

y∈BR(x0)

|u(y)|
)2

+ C

R4 · Cj−2{1 + Rm(x0, V )}C ′
j−2

R2(j−2)
· Rn

(
sup

y∈BR(x0)

|u(y)|
)2

+ C

j−2∑
k=1

{1 + Rm(x0, V )}(4+k)k0m(x0, V )4+kRk

·
( ∫

B
R/2j−1(x0)

|∇j−2u(x)| · 1

Rk
|∇j−2−ku(x)|dx

)

≤ C{1 + Rm(x0, V )}C ′
j−1

R2j
· Rn

(
sup

y∈BR(x0)

|u(y)|
)2

+ C

j−2∑
k=1

{1 + Rm(x0, V )}(4+k)k0

· {Rm(x0, V )}4+k 1

R4

( ∫
B

R/2j−1(x0)

|∇j−2u(x)|2dx

+ 1

R2k

∫
B

R/2j−1(x0)

|∇j−2−ku(x)|2dx

)

≤ Cj {1 + Rm(x0, V )}C ′
j

R2j
· Rn

(
sup

y∈BR(x0)

|u(y)|
)2

,
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whereC′
j = C′

j−2 + (j + 2)(k0 + 1). �

Theorem 5 immediately follows from the following Lemma 14 and Lemma 3.

LEMMA 14. Let j be a positive integer. Suppose V ∈ Cj (Rn) and (−∆)2u+V 2u = 0
in BR(x0) for some x0 ∈ Rn. Assume also that V ∈ (RH)n/2 and there exists a constant C

such that |∇ iV (x)| ≤ Cm(x, V )2+i , where i = 1, 2, 3,. . . , j . Then there exist constants Cj

and C′′
j such that

sup
y∈BR/2(x0)

|∇ju(y)| ≤ Cj {1 + Rm(x0, V )}C ′′
j

Rj
sup

y∈BR(x0)

|u(y)| . (38)

PROOF. We prove (38) by induction onj . If j = 1, 2, 3, Estimate (38) holds under
weaker assumption than that of Lemma 14 (see Lemma 8). Forj ≥ 4, we assume it is true
for 1, 2, 3,. . . , j − 1, and show the casej . Note that

{(−∆)2 + V 2}∇ju =
j∑

k=1

k∑
l=0

c(l, k)(∇ lV )(∇k−lV )∇j−ku . (39)

Let p ≥ 2 andp > n/4. Then it follows from (39) and Lemma 12 that

|∇ju(x0)|

≤ C

(
1

|BR/2j (x0)|
∫

B
R/2j (x0)

|∇ju(x)|2dx

)1/2

+CR

(
1

|BR/2j (x0)|
∫

B
R/2j (x0)

|∇j+1u(x)|2dx

)1/2

+CR2
(

1

|BR/2j (x0)|
∫

B
R/2j (x0)

|∇j+2u(x)|2dx

)1/2

+CR4
{

1

|BR/2j (x0)|
∫

B
R/2j (x0)

( j∑
k=1

k∑
l=1

|∇ lV (x)||∇k−lV (x)||∇j−ku(x)|
)p

dx

}1/p

≤ CCj+2{1 + Rm(x0, V )}C ′
j+2

Rj
sup

y∈BR(x0)

|u(y)| + CR4
j∑

k=1

{1 + Rm(x0, V )}(4+k)k0

·m(x0, V )4+k

(
1

|BR/2j (x0)|
∫

B
R/2j (x0)

|∇j−ku(x)|pdx

)1/p

≤ C{1 + Rm(x0, V )}C ′
j+2

Rj
sup

y∈BR(x0)

|u(y)| + C

j∑
k=1

{1 + Rm(x0, V )}(4+k)k0
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·R4+km(x0, V )4+k · 1

Rk
· Cj−k{1 + Rm(x0, V )}C ′

j−k

Rj−k
sup

y∈BR(x0)

|u(y)|

≤ Cj {1 + Rm(x0, V )}C ′′
j

Rj
sup

y∈BR(x0)

|u(y)| ,

where we have used (12) and Lemma 13 in the second inequality and the assumption of
induction in the third. �

7. Appendix

In this section we show theLp boundedness of the operatorV 2kH−k
2 , k ∈ N. Let

f ∈ C∞
0 (Rn) and assume thatV ∈ (RH)n/2 and there exists a constantC such thatV (x) ≤

Cm(x, V )2. Then for any integerk ≥ 2, we defineH−k
2 as follows.

H−k
2 f (x) =

∫
Rn

ΓH2(x, y)H
−(k−1)
2 f (y)dy .

THEOREM 7. Suppose V ∈ (RH)n/2 and there exists a constant C such that V (x) ≤
Cm(x, V )2. Then there exists a constant C′ such that

‖V 2kH−k
2 f ‖Lp(Rn) ≤ C′‖f ‖Lp(Rn) , (40)

where 1 < p ≤ ∞ and k ∈ N.

Theorem 7 is easily proved by the following pointwise estimate.

LEMMA 15. Let k be a positeve integer. The opeator Mk stands for the k times com-
position of the Hardy-Littlewood maximal operator M . Suppose V ∈ (RH)n/2. Then there
exists a constant C such that

|m(x, V )4kH−k
2 f (x)| ≤ CMk(|f |)(x) for f ∈ C∞

0 (Rn) . (41)

PROOF OFLEMMA 15. Letf ∈ C∞
0 (Rn). We prove Estimate (41) by induction onk.

Fork ≥ 2, we assume it is true fork − 1 and show the casek. It follows from Theorem 2 and
(13) that

|m(x, V )4kH−k
2 f (x)|

≤
∣∣∣∣Cm(x, V )4

∫
Rn

ΓH2(x, y)m(x, V )4(k−1)H
−(k−1)
2 f (y)dy

∣∣∣∣
≤ CCNm(x, V )4

∫
Rn

{1 + m(x, V )|x − y|}4(k−1)k0/(k0+1)|m(y, V )4(k−1)H
−(k−1)
2 f (y)|

{1 + m(x, V )|x − y|}N |x − y|n−4
dy .
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Therefore we obtain the desired estimate in the same way as the casek = 1. �
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