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Abstract. In this paper we present a set T +
f of rational numbers s ∈ Q such that the minimal splitting fields

Ls of X3 − 3sX2 − (3s + 3)X − 1 are cyclic cubic fields with a given conductor f . The set T +
f

has exactly one

s for each field L of conductor f . The Weil’s height of every number s ∈ T +
f is minimal among all of the rational

numbers s ∈ Q such that Ls = L. If a cyclic cubic field L of conductor f is given, then we can choose the number

s ∈ T +
f corresponding to L by sequencing the explicit Artin symbols.

0. Introduction

Recently many mathematicians construct generic polynomials and expect to apply the
polynomials to the case of algebraic number fields. In this paper we make use of a generic

cyclic cubic polynomial F(t,X) = X3 − 3tX2 − (3t + 3)X − 1, which is well-known as the
simplest cubic polynomial of Shanks type (cf. Shanks [14], Serre [13]). Hashimoto-Miyake
[4] and Rikuna [12] have generalized the polynomial F(t,X) to the cases of general degree,
and the author [6] studied the arithmetic properties of the general degree cases. For a rational
number s ∈ Q let Ls be the minimal splitting field of F(s,X) over Q. We give a method for
making a rational number s ∈ Q such that Ls is equal to a given cyclic cubic field L. Let
f = fL be the conductor of L and Pf the set of prime divisors of f . For a prime number
p with p ≡ 1 (mod 3) we denote a rational number ap/bp ∈ Q by cp where (ap, bp) is a

unique pair in the set {(a, b) ∈ Z × Z|a2 + ab + b2 = p, b ≡ 0 (mod 3), b > 0 and a/b ≥
−1/2}. Put c3 = 0. In a previous paper [6] we defined an algebraic torus T (Q) = Q ∪ {∞}
of dimension 1 with composition +T such that s1+T s2 = (s1s2 − 1)/(s1 + s2 + 1). Note that
the identity 0T on T is ∞, and the inverse −T s of s is equal to −s − 1. Let Tf be the subset
of T (Q) consisting of elements of the form ΣT [mp]cp where p runs through all of the prime
divisors of f and mp ∈ {±1} (see [6] or § 1 for the definition of [±1]). Now define a subset

T +
f of Tf such that T +

f = {s ∈ Tf |s ≥ −1/2}. Let Lf be the family of cyclic cubic fields

with conductor f .
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THEOREM 0.1 (Proposition 2.3 in § 2). There exists a one-to-one correspondence

RF,Q : T +
f → Lf , s �→ Ls.

Let cL denote the rational number s ∈ T +
f such that RF,Q(s) = L.

PROPOSITION 0.2 (Corollary 2.8 in § 2). The Weil’s height of the numbercL is mini-
mal among all of the rational numberss ∈ Q satisfyingLs = L.

REMARK 0.3. The composition +T is essentially given by Morton [9] and Chapman
[1] for the cubic case. The author [6] extends the composition for the cases of general degree
by using the Rikuna’s cyclic polynomial.

Theorem 0.1 implies that there exists exactly one s ∈ Q in T +
f for the given cyclic

cubic field L. To determine the number s in T +
f corresponding to L we calculate the Artin

symbols. Now assume that Ls/Q is cubic for a rational number s ∈ Q. Let σ be a generator
of Gal(Ls/Q) such that σ(x) = (−x − 1)/x for x ∈ Ls with F(s, x) = 0. Let (Ls/p) be the
Artin symbol of a prime number p in Ls/Q. We define µp(s) = vp(s2 + s + 1) where vp is
the normalized p-adic additive valuation. One can define an algebraic torus T (k) for a field k

with positive characteristic p �= 3 in the same way as the case of Q (cf. §3 or [6]).

THEOREM 0.4 (Proposition 3.1 in § 3). Assume thatp �= 3. If µp(s) < 0, then
(Ls/p) = id, that is, p splits completely inLs/Q. For the caseµp(s) = 0, we have

(Ls/p) = σ i where i ∈ Z is an integer such that[i](−1) = [(±p − 1)/3]s in T (Fp)

providedp ≡ ±1 (mod 3), respectively. Whenµp(s) > 0 andµp(s) �≡ 0 (mod 3), Ls/Q
is totally ramified atp.

REMARK 0.5. The Artin symbol of p = 3 is also calculated (see Proposition 3.3). By
using Theorem 0.4 we can calculate (Ls/p) for s ∈ Tf and p �= 3. One can show Theorem
0.4 for the general degree cases in the same way as the proof of Proposition 3.1.

In §1 we recall the descent Kummer theory described in [6]. In §2 we construct a set
of rational numbers which correspond to cyclic cubic fields with a given conductor. In §3
we present a method for calculating the explicit Artin symbols. In §4 we give a remark on
generators for the ring of integers of the cyclic cubic field Ls as Z-module. In §5 we exhibit
some numerical examples.
Acknowledgement. The author expresses his thanks to the editor Professor Kaori Ota for many
valuable advice on the manuscript. He is grateful to the referee for many helpful comments
and careful reading of the manuscript. He is supported by the 21st Century COE Program
“Development of Dynamic Mathematics with High Functionality”.

1. Preparation

We recall some results in the paper [6]. Let T (Q) = Q ∪ {∞} be an algebraic torus of
dimension 1 with composition +T such that s1+T s2 = (s1s2 − 1)/(s1 + s2 + 1). In fact, there
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exists a group isomorphism ϕ : T → Gm, t �→ (t − ζ )/(t − ζ−1) over Q(ζ ) where ζ is a

primitive 3rd root of unity. The composition +T is defined as s1+T s2 = ϕ−1(ϕ(s1)ϕ(s2)).

The identity 0T on T is equal to ∞ = ϕ−1(1). For a positive integer m ∈ Z let [m] be the
multiplication map by m with respect to +T , that is, [m]t = t+T · · · +T t with m terms. We

denote [m]T (Q) = {[m]s|s ∈ T (Q)} and T [m] = T (Q̄)[m] = {x ∈ T (Q̄)|[m]x = ∞}. Note
that T [3] = 〈−1〉T = {∞,−1, 0} ⊂ T (Q). Let ΓQ be the absolute Galois group Gal(Q̄/Q)

of Q. Then we have a descent Kummer theory (see [6] and [11] for general cases).

PROPOSITION 1.1 (Morton [9], Chapman [1], Ogawa [11], Komatsu [6]). There ex-
ists a group isomorphism

δ : T (Q)/[3]T (Q) → Homcont(ΓQ, Z/3Z) .

In particular, for s ∈ Q the fieldLs is equal toQ̄
Kerδ(s)

.

COROLLARY 1.2. For rational numberss1 ands2 ∈ Q, Ls1 = Ls2 holds if and only if
〈s1〉T = 〈s2〉T in T (Q)/[3]T (Q).

COROLLARY 1.3. Assume thatLs1 andLs2 are distinct cyclic cubic fields for rational
numberss1 ands2 ∈ Q. Then two fieldsLs1+T s2 andLs1−T s2 are all of the cyclic cubic fields
contained in the composite fieldLs1Ls2 other thanLs1 andLs2 .

By using a result in [6] one can calculate the ramifications in Ls/Q. For a prime number
p �= 3, we define Up by

Up = {s ∈ Q|vp(s2 + s + 1) ≤ 0 or vp(s2 + s + 1) ≡ 0 (mod 3)} .

The set U3 is defined to be

U3 = {s ∈ Q|v3(s + 1/2) ≤ −1 or v3(s + 1/2) ≥ 2} .

LEMMA 1.4 (Komatsu [6]). For s ∈ Q the conductorfLs of the extensionLs/Q is

equal to
∏

p pλp where

λp =



1 if p �= 3 ands �∈ Up ,

2 if p = 3 ands �∈ U3 ,

0 otherwise.

2. Minimal element realizing a cyclic cubic field

Let us note that the ring of integers OQ(ζ ) = Z[ζ ] is a principal ideal domain and

O×
Q(ζ ) = 〈−ζ 〉Gm  Z/6Z. Then it is easy to see

LEMMA 2.1. For a prime numberp with p ≡ 1 (mod 3) there exists a unique pair

(a, b) of rational integersa, b ∈ Z such thata2 + ab + b2 = p, b ≡ 0 (mod 3), b > 0 and
a/b ≥ −1/2.
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For a prime number p ≡ 1 (mod 3) let ap and bp be the integers a and b satisfying all
of the conditions in Lemma 2.1, respectively. For p = 3 we define a3 = 0 and b3 = 1. Now
put cp = ap/bp ∈ Q.

LEMMA 2.2. The cyclic cubic field of prime conductorp ≡ 1 (mod 3) is equal to
Lcp . The cyclic cubic field of conductor9 is equal toLc3 .

PROOF. For a prime number p ≡ 1 (mod 3) we have c2
p + cp + 1 = p/b2

p. Then

vp(c2
p + cp + 1) = 1 and vl(c

2
p + cp + 1) ≤ 0 for a prime number l with l �= p. It follows

from v3(bp) ≥ 1 that v3(cp + 1/2) = −v3(bp) ≤ −1. Thus Lemma 1.4 implies that Lcp is a
cyclic cubic field of conductor p. By class field theory there exists only one cyclic cubic field
of conductor p. Thus the cyclic cubic field of conductor p is equal to Lcp . In the same way
we see that there exists only one cyclic cubic field of conductor 9, which is equal to Lc3 . �

Let N3 be the set of all conductors of cyclic cubic fields. Then N3 is equal to the set of
positive integers f ∈ Z, f ≥ 1 such that

vp(f ) =



0 or 2 if p = 3 ,

0 or 1 if p ≡ 1 (mod 3) ,

0 otherwise ,

for every prime number p. Now fix an integer f ∈ N3. Let Tf be the subset of T (Q)

consisting of elements of the form ΣT [mp]cp where p runs through all of the prime divisors
of f and mp ∈ {±1}. Let Lf be the family of cyclic cubic fields with conductor f .

PROPOSITION 2.3. There exists a surjective mapRF,Q : Tf → Lf , s �→ Ls.

Moreover, Ls1 = Ls2 for s1, s2 ∈ Tf if and only ifs1 = s2 or s1 = −T s2.

By using Corollary 1.3 we see

LEMMA 2.4. Let s1, s2 ∈ Q with s1+T s2 �= ∞. Assume thatLs1/Q is unramified at a
prime numberp. Thenp ramifies inLs1+T s2/Q if and only if so does inLs2/Q.

PROOF OF PROPOSITION 2.3. Lemma 2.4 implies that for every s ∈ Tf the field Ls is
cyclic cubic of conductor f . Thus the map RF,Q is well-defined. Corollary 1.2 and Lemma
2.2 show that cp are linearly independent in T (Q)/[3]T (Q). Thus �Tf = 2r where �S denotes
the number of elements in a set S and r is the number of prime divisors of f . From Corollary
1.2 and the linear independence of cp, it follows that Ls1 = Ls2 for s1, s2 ∈ Tf if and only if

s1 = s2 or s1 = −T s2. By class field theory we have �Lf = 2r−1. Hence the map RF,Q is
surjective. �

Let us define two subsets T +
f and T −

f of Tf such that T +
f = {s ∈ Tf |s ≥ −1/2}

and T −
f = {s ∈ Tf |s ≤ −1/2}. Then s ∈ T ±

f holds if and only if so does −T s ∈ T ∓
f ,

respectively. Indeed, s + (−T s) = −1. Thus Proposition 2.3 verifies Theorem 0.1.
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Let L be a cyclic cubic field of conductor f = fL and cL be a unique rational number
s ∈ T +

f such that RF,Q(s) = L. Let aL and bL be rational integers such that aL/bL = cL,

gcd(aL, bL) = 1 and bL ≥ 1. Note that aL = ap, bL = bp and cL = cp if f is equal to a
prime number p. We define gL = fL/9 if 3 | fL, and gL = fL otherwise. One calls g = gL

the tame conductor of L.

LEMMA 2.5. We havegL = a2
L + aLbL + b2

L.

By the direct calculation one sees the following equation.

LEMMA 2.6. For s1 = α1/β1 ands2 = α2/β2 we have

(s1+T s2)
2 + (s1+T s2) + 1 = (α2

1 + α1β1 + β2
1 )(α2

2 + α2β2 + β2
2 )

(α1β2 + α2β1 + β1β2)2 .

PROOF OF LEMMA 2.5. It follows from the definition that c2
L +cL +1 = (a2

L +aLbL +
b2
L)/b2

L. Note that gcd(a2
L +aLbL +b2

L, bL) = 1. Lemma 2.6 implies that (a2
L +aLbL +b2

L) |
gL. Indeed, gL = ∏

p|f (a2
p + apbp + b2

p). Let p be a prime divisor of gL. Then p �= 3 and

L/Q is ramified at p. Lemma 1.4 means that vp(a2
L+aLbL+b2

L) ≥ 1. Since gL is square-free,

one has vp(a2
L + aLbL + b2

L) = vp(gL) = 1. Thus we have a2
L + aLbL + b2

L = gL.

Let H(s) be the Weil height of a rational number s ∈ Q, that is, H(s) = max{|α|, |β|}
where s = α/β and α, β ∈ Z with gcd(α, β) = 1. We note that 3H(s)2/4 ≤ α2 +αβ +β2 ≤
3H(s)2. Let us define HL = min{H(s)|s ∈ T (Q), Ls = L}. The genericity of F(s,X)

guarantees that {s ∈ T (Q)|Ls = L} �= ∅, and thus HL ∈ Z, HL ≥ 1. Let us denote
{s ∈ T (Q)|Ls = L,H(s) = HL} by SL.

PROPOSITION 2.7. If cL > 0, thenSL = {cL}. If cL < 0, thenSL = {cL,−T cL}.
WhencL = 0, we haveL = Lc3 andSL = {0, 1,−1}.

COROLLARY 2.8. We haveHL = H(cL), that is, cL has the minimal Weil height
among rational numberss ∈ Q such thatLs = L.

PROOF OF PROPOSITION 2.7. Let s = α/β ∈ Q be an element in SL where α and β

are rational integers with gcd(α, β) = 1. Lemma 1.4 means that gL | (α2 + αβ + β2). Let us

denote by η1 the ratio (α2 +αβ +β2)/gL ∈ Z. It follows from the assumption H(s) ≤ H(cL)

that η1gL ≤ 3H(s)2 ≤ 4(3H(cL)2/4) ≤ 4gL. Thus we have η1 ≤ 4. Since gcd(α, β) = 1, it
holds that v2(η1) = 0. In fact, 2 remains prime in Q(ζ )/Q. Thus η1 = 1 or 3. Corollary 1.2
shows that cL+T s ∈ [3]T (Q) or cL−T s ∈ [3]T (Q). We first assume t = cL+T s ∈ [3]T (Q)

with t �= ∞. Then Lemma 2.6 means that t2 + t + 1 = η1g2
L/(aLβ + bLα + bLβ)2. Since

t ∈ [3]T (Q), we have Lt = Q, that is, Lt is unramified at all primes. Thus one sees that

gL | (aLβ+bLα+bLβ). Now put η2 = (aLβ+bLα+bLβ)/gL ∈ Z. Then t2+t+1 = η1/η
2
2.

It follows from t ∈ Q that (t + 1/2)2 = η1/η
2
2 − 3/4 ≥ 0. Since η1 ∈ {1, 3} and η2 ∈ Z,

we have η1/η
2
2 = 1, 3 or 3/4. Then one sees that t ∈ Ttors(Q) = 〈−2〉T  Z/6Z. Here,
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Ttors(Q) ∩ [3]T (Q) = {−1/2,∞}. Thus we have t = −1/2 and η1/η
2
2 = 3/4. This implies

that s = (−1/2)−T cL = (−aL + bL)/(2aL + bL). Then one sees that H(s) = −aL + bL if
−1/2 ≤ cL ≤ 0, and 2aL + bL if cL ≥ 0. In fact, gcd(−aL + bL, 2aL + bL) = 1 for aL �≡ bL

(mod 3). Then H(s) ≤ H(cL) holds if and only if aL = 0. When aL = 0, we have cL = 0
and s = 1. For the case t = cL+T s = ∞, one sees that H(s) ≤ H(cL) implies cL ≤ 0.
Conversely, if cL ≤ 0, then H(−T cL) = H(cL). In the same way as above we can show the
assertion for the case cL−T s ∈ [3]T (Q).

LEMMA 2.9. We have1 < HL/
√

gL/3 < 2. The lower(resp. the upper) bounds are
the best possible, that is, for arbitrary positive real numberε ∈ R, ε > 0, there exist infinitely
many cyclic cubic fieldsL such thatHL/

√
gL/3 < 1 + ε (resp. HL/

√
gL/3 > 2 − ε).

PROOF. It follows from Lemma 2.5 and Corollary 2.7 that 3H 2
L/4 ≤ gL ≤ 3H 2

L, which
shows the inequalities in the first assertion. Let us consider a cyclic cubic field L = Ls1 where

s1 = (m + 1)/m for a positive integer m ∈ Z, m ≥ 1. Then s2
1 + s1 + 1 = γ (m)/m2 where

γ (Y ) = 3Y 2+3Y+1 ∈ Z[Y ]. Now assume that γ (m) is square-free. Then Lemma 1.4 implies

that gL = γ (m). Since 3H 2
L > gL = γ (m), we have HL > m. Thus HL = H(α/β) = m + 1

and cL = (m + 1)/m ∈ T +
f where f = γ (m) if 3 | m and f = 9γ (m) otherwise. Then we

have 3H 2
L/gL = 3(m + 1)2/γ (m), which converges to 1 if m goes to +∞. It follows from a

result [10] of Nagell (cf. [3]) that there exist infinitely many positive integers m ∈ Z such that
γ (m) are square-free. Thus the lower bound is the best possible. Let us next consider a cyclic
cubic field L′ = Ls2 where s2 = −m/(2m + 1) = s1+T 0 and γ (m) is square-free. Then one

can see that s2 ∈ T +
f ′ where f ′ = γ (m) if m ≡ 1 (mod 3) and f ′ = 9γ (m) otherwise. In fact,

c3 = 0 ∈ T [3]. Thus we have HL′ = H(s2) = 2m + 1 and 3H 2
L′/gL′ = 3(2m + 1)2/γ (m),

which converges to 4 if m goes to +∞. Hence the upper bound is also the best possible. �

3. Artin symbols of prime ideals for a cyclic polynomial

Let us assume that Ls is a cyclic cubic field for a rational number s ∈ Q. Let x be a
solution of F(s,X) = 0. Then Ls = Q(x) and Gal(Ls/Q) = 〈σ 〉 where σ(x) = x+T (−1) =
(−x − 1)/x. Let p be a prime number with p �= 3 and vp(s2 + s + 1) ≤ 0. Lemma 1.4
implies that p is unramified in Ls/Q. Let p be a prime ideal of Ls above p. The Artin
symbol (Ls/p) is defined to be an element τ ∈ Gal(Ls/Q) such that v�(α

p − τ (α)) ≥ 1
for every α ∈ OLs . Since Ls/Q is abelian, (Ls/p) depends not on the choice of the prime
ideal p but only on the prime number p. We can define an algebraic torus T (k) for a field
k with positive characteristic p �= 3 in the same way as the case of Q (cf. [6]). Note that

T (k) = k ∪ {∞} − {ζ, ζ−1} where ζ is a primitive 3rd root of unity in k̄.

PROPOSITION 3.1. If p ≡ 1 (mod 3), then(Ls/p) = σ i wherei ∈ Z is an integer
satisfying[i](−1) = [(p − 1)/3]s in T (Fp). Whenp ≡ 2 (mod 3), we have(Ls/p) = σ i

for an integeri ∈ Z such that[i](−1) = [(−p − 1)/3]s in T (Fp).
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LEMMA 3.2. If p ≡ ±1 (mod 3), then[p]x = ±T xp in T (F�), respectively.

PROOF. It follows from the definition that

[p]x = ζ−1(x − ζ )p − ζ(x − ζ−1)p

(x − ζ )p − (x − ζ−1)p
.

If v�(x) < 0, then v�([p]x) < v�(x) < 0. Thus [p]x = ±T xp = ∞ in T (F�). Now assume
v�(x) ≥ 0. Then we have [p]x ≡ Bp(x) (mod p) where

Bp(X) = (ζ−1 − ζ )Xp + (ζ−p+1 − ζ p−1)

ζ−p − ζ p
∈ Q[X] .

It is easy to see that Bp(X) = ±T Xp for p ≡ ±1 (mod 3), respectively. �

PROOF OF PROPOSITION 3.1. Let i ∈ Z be an integer such that (Ls/p) = σ i . Then we
have xp = σ i(x) in T (F�) since v�(x

p −σ i(x)) ≥ 1. Lemma 3.2 means that σ i(x) = [±p]x
in T (F�) for p ≡ ±1 (mod 3), respectively. Note that σ i(x) = x+T [i](−1) and [3]x = s.
Thus we have [i](−1) = [±p]x−T x = [±p − 1]x = [(±p − 1)/3]s in T (F�). Here
i, (±p − 1)/3 ∈ Z and −1, s ∈ T (Fp). Thus we have an equation [i](−1) = [(±p − 1)/3]s
in T (Fp), which uniquely determines σ i in Gal(Ls/Q). In fact, the order of −1 in T (Fp) and
that of σ in Gal(Ls/Q) are both equal to 3. �

PROPOSITION 3.3. For anys ∈ Q the decomposition of3 in the extensionLs/Q is as
follows:

(i) 3 ramifies inLs/Q if and only if0 ≤ v3(s + 1/2) ≤ 1.

(ii) 3 splits completely inLs/Q if and only ifv3(s) ≤ −2 or v3(s + 1/2) ≥ 3.

(iii) 3 remains prime inLs/Q if and only if v3(s) = −1 or v3(s + 1/2) = 2. When
v3(s) = −1 and 3s ≡ ∓1 (mod 3), we have(Ls/3) = σ±1, respectively. For the case

v3(s + 1/2) = 2 and(s + 1/2)/9 ≡ ±1 (mod 3), it satisfies(Ls/3) = σ±1, respectively.

PROOF. Lemma 1.4 implies the assertion (i). If v3(s) = −(ν + 1) ≤ −2 for a positive
integer ν ∈ Z with ν ≥ 1, then Fν(u, Y ) = F(u/3ν+1, Y/3ν)33ν ≡ Y 3 −uY 2 (mod 3) where

u = 3ν+1s ∈ Q and v3(u) = 0. Note that Fν(u, u) ≡ 0 (mod 3) and ∂Fν(u, Y )/∂Y |Y=u ≡
u2 �≡ 0 (mod 3). Hensel’s lemma implies that there exists a solution Y = ũ ∈ Zp of
Fν(u, Y ) = 0. Then x1 = 3ν ũ ∈ Qp is a solution of F(s,X) = 0. Let us put x2 = x1+T (−1)

and x3 = x1+T 0. Then x2, x3 ∈ Qp are solutions of F(s,X) = 0 such that v3(x2) = −ν

and v3(x3) = 0. This means that F(s,X) = (X − x1)(X − x2)(X − x3) in Qp, that is,
p splits completely in Ls/Q. Now assume v3(s) = −1. Then F(s,X) is defined over Z3,

and F(s,X) ≡ X3 ∓ (X2 + X) − 1 (mod 3) if 3s ≡ ±1 (mod 3), respectively. Here

X3 ∓ (X2 + X) − 1 are irreducible over F3. Thus 3 remains prime in Ls/Q. By the direct

calculation one sees that X3 − (−X− 1)/X ≡ (X − 1)(X3 +X2 +X − 1)/X (mod 3). For a

solution x ∈ Q̄p of F(s,X) = 0 with 3s ≡ −1 (mod 3), we have v�(x
3 − σ(x)) ≥ 1 where

p = (3) is the prime ideal of Ls above 3. Indeed, v�(x) = 0. In the same way as above, one



176 TORU KOMATSU

has (Ls/3) = σ 2 when 3s ≡ 1 (mod 3). Now put s1 = s+T (−1/2) = (−s − 2)/(2s + 1).
It follows from Proposition 1.1 that Ls = Ls1 since −1/2 is a 2-torsion element in T (Q).
If v3(s + 1/2) ≥ 3, then v3(s1) ≤ −2. Thus 3 splits completely in Ls = Ls1 . When

v3(s + 1/2) = 2, we have v3(s1) = −1. Now set ε = (s + 1/2)/9 ∈ Z×
3 . Then 3s1 + ε =

(4ε2 − 6ε − 1)/(4ε) ≡ 0 (mod 3). By using the assertion of the case v3(s) = −1 one can

have that ε ≡ ±1 (mod 3) implies (Ls/3) = σ±1, respectively. �

4. Ring of integers of a cyclic cubic field

Let L be a cyclic cubic field of conductor fL, and OL the ring of integers of L. Let x be
a solution of F(cL,X) = 0.

LEMMA 4.1. If 3 � fL, thenOL is generated by1, bLx/3 andbLσ(x)/3 asZ-module.
When3 | fL, we haveOL = Z + ZbLx + ZbLσ(x).

PROOF. Let us assume 3 � fL. We first show that bLx/3 and bLσ(x)/3 are algebraic

integers in L. The minimal polynomial of y = bLx/3 over Q is equal to Y 3 − aLY 2 −
(aL + bL)(bL/3)Y − (bL/3)3. It follows from the construction of Tf that v3(bL) ≥ 1 and
bL/3 ∈ Z. Thus y ∈ OL holds and so does σ(y) = bLσ(x)/3 ∈ OL. Let R be a submodule
of OL generated by {1, bLx/3, bLσ(x)/3} as Z-module. Since bLσ(x)/3 = −bLx2/3 +
aLx + aL + 2bL/3, the module R is generated by {1, bLx/3, bLx2/3 − aLx} as Z-module.

Here the discriminant of the element x is equal to 34(c2
L + cL + 1)2 = g2

L(bL/3)−4. Thus

the discriminant of R is equal to g2
L. It follows from 3 � fL that the discriminant of OL is

equal to g2
L. This shows that R = OL. In the same way as above one can see that OL =

Z + ZbLx + Z(bLx2 − 3aLx) for the case 3 | fL. �

COROLLARY 4.2. If 3 � fL andbL = 3, thenOL = Z[x], that is, OL has a power
basis. When3 | fL andbL = 1, we haveOL = Z[x].

By the direct calculation we have

F(cL, (X + aL)/bL)b3
L = X3 − 3gLX − (2aL + bL)gL ,

which is the same polynomial described in [2]. In §6.4.2 of [2] one can see the same statement
as that of Lemma 4.1.

5. Numerical examples for cyclic cubic fields

For prime numbers p = 3 and p ≡ 1 (mod 3) with p ≤ 1000 we calculate the numbers
cp = ap/bp where ap and bp satisfy all of the conditions in Lemma 2.1. The data is contained

in Table 5.1 below. For an integer f = 482391 = 32 × 7 × 13 × 19 × 31 we compute the set

Tf . There exist 25−1 = 16 cyclic cubic fields of conductor f . For all such fields L we denote
the numbers cL in the cL-column of Table 5.2. At the coordinates (cL, p) of the left part in
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Table 5.2 we denote the signs ± of the numbers mp ∈ {±1} such that cL = ∑
T p|f [mp]cp,

respectively. The numbers 0, 1, 2, 3 at (cL, p) of the right part in Table 5.2 represent



0 if p splits completely in L/Q,

1 and 2 if p remains prime in L/Q with (Ls/p) = σ and σ 2, respectively,

3 if p ramifies in L/Q.

TABLE 5.1 (cp for p ≤ 1000)

p cp
3 0
7 −1 /3

13 1 /3
19 2 /3
31 −1 /6
37 4 /3
43 1 /6
61 −4 /9
67 −2 /9
73 −1 /9
79 7 /3
97 8 /3
103 2 /9
109 −5 /12
127 7 /6
139 10 /3
151 5 /9
157 1 /12
163 11 /3
181 −4 /15
193 7 /9

p cp
199 −2 /15
211 −1 /15
223 11 /6
229 5 /12
241 1 /15
271 10 /9
277 7 /12
283 13 /6
307 −1 /18
313 16 /3
331 −10 /21
337 −8 /21
349 17 /3
367 13 /9
373 −4 /21
379 7 /15
397 11 /12
409 8 /15
421 −1 /21
433 −11 /24

p cp
439 5 /18
457 −7 /24
463 1 /21
487 2 /21
499 7 /18
523 17 /9
541 4 /21
547 −13 /27
571 5 /21
577 −8 /27
601 1 /24
607 23 /3
613 19 /9
619 −5 /27
631 14 /15
643 11 /18
661 20 /9
673 8 /21
691 −11 /30
709 25 /3

p cp
727 13 /18
733 19 /12
739 −7 /30
751 10 /21
757 1 /27
769 17 /15
787 2 /27
811 25 /6
823 −14 /33
829 −13 /33
853 4 /27
859 −10 /33
877 28 /3
883 13 /21
907 −7 /33
919 17 /18
937 29 /3
967 7 /27
991 26 /9
997 −13 /36

TABLE 5.2 (16 cyclic cubic fields of conductor 482391)

3 7 13 19 31 cL 2 3 5 7 11 13 17 19 23 29
+ − + − + 3 /230 0 3 0 3 0 3 1 3 0 1
− − − − − −43 /250 0 3 0 3 1 3 1 3 1 1
− − + + + 197 /58 0 3 1 3 1 3 0 3 0 0
− − − − + 145 /122 0 3 2 3 0 3 2 3 1 1
− + − + + −85 /262 0 3 2 3 2 3 0 3 0 2
− − + + − 25 /218 0 3 2 3 2 3 2 3 0 0
+ − − + − −102 /265 1 3 0 3 0 3 0 3 0 1
− + + + − 122 /145 1 3 0 3 1 3 1 3 1 0
− + − − + 218 /25 1 3 0 3 2 3 1 3 2 1
− + − − − 58 /197 1 3 1 3 0 3 0 3 2 1
+ + + − + 102 /163 1 3 1 3 2 3 0 3 1 1
+ + + − − −90 /263 1 3 2 3 0 3 2 3 1 1
+ − − + + 90 /173 1 3 2 3 2 3 1 3 0 1
+ + − + + 177 /85 2 3 0 3 1 3 0 3 1 1
+ − − − − 207 /43 2 3 1 3 0 3 1 3 2 0
+ + − + − −3 /233 2 3 1 3 2 3 2 3 1 1
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For example, there exists a number 1 at (cL, p) = (3/230, 17). This means that 17 re-
mains prime in L = L3/230 and (L/17) = σ where σ(x) = (−x − 1)/x for x ∈ L with
F(3/230, x) = 0. From the data of the numbers mp we have already known that all of the
16 fields in Table 5.2 are distinct from each other. The data of the Artin symbols is use-
ful to find s ∈ Q corresponding to a field L whose definition polynomial is not of the type
F(t,X). The data at the right part of Table 5.2 itself enables us to distinguish the 16 fields
completely. Let M be the minimal splitting field of A(Z) = Z3 − 160797Z − 24709139 over
Q. Since the discriminant of the polynomial A(Z) is equal to a square 145438173050625 =
345472132192312, the field M is cyclic cubic over Q or is equal to Q. It follows from
some method (cf. [8]) that the set of prime numbers ramifying in M/Q are {3, 7, 13, 19, 31}.
Thus M is a cyclic cubic field of conductor f = 482391. One can calculate a generator
τ ∈ Gal(M/Q) such that τ (z) = (−218z − 53599)/(z + 243) for z ∈ M with A(z) = 0.
One can check that (M/2) = τ 2, (M/5) = id, (M/11) = τ, (M/17) = τ 2, (M/23) =
τ, (M/29) = τ 2 .

By comparing the data in Table 5.2 and above at the primes p = 2, 5, 11 and 17, we have
M = L218/25. Note that the Artin symbols are determined uniquely up to the choice of the

generator of Gal(M/Q). In fact, A(Z) is equal to F(cL, (Z + aL)/bL)b3
L for cL = 218/25.
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