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Abstract. We discuss the asymptotic behavior of the largest amount of winnings in the generalized St. Pe-
tersburg games and show that the results on the random variables associated with the amount of winnings can be
applied to the random variables associated with the degree of the polynomial digits of the continued fraction and the
Oppenheim expansions of formal Laurent series.

1. Introduction

The Generalized St. Petersburg game is described as follows: consider tossing a coin,
which needs not be fair; suppose that ‘heads’ occur with probabilityp, 0 < p < 1 so that the
probability that ‘tails’ occur isq1 = 1 − p, see [3]. For a single game, a coin is repeatedly
tossed until a head appears. If the head occurs for the first time on thek-th toss, the player

wins q−k
1 dollars. LetXn be the amount of winning in then-th game. Then the winnings

{Xn}n≥1 become a sequence of independent and identically distributed random variables with

P{Xn = q1
−k} = pq1

k−1 , k ≥ 1 .

In this paper, we are interested in the asymptotic behavior of the sequence of random
variables{Xn}. Suppose that the player pays the entrance feemn for the opportunity to play
in then-th game. For the firstn games, the sumSn = ∑n

i=1 Xi represents the total amount

of winning andMn = ∑n
i=1 mi represents the total or accumulated entrance fees,n ≥ 1. In

order that the game will be fair, it is necessary thatSn ∼ Mn. For several results concerning
Sn andMn, we refer to [2], [3], [6] and [12]. The main result of this paper concerns with the
largest value ofXi—which corresponds to the largest win of the player.

We note that the classical St. Petersburg game is obtained whenp = 1/2. In other
words, if X represents the amount of winning in a single classical St. Petersburg game,

P(X = 2k) = 2−k, for each integerk ≥ 1. The expectation ofX is infinite and since there
is no ‘fair’ entry fee exists, this was considered a paradox—a self contradictory statement.
However, ifn independent games are considered, Feller showed that the weak law of large
numbers holds:Sn/(n log2 n) converges to 1 in probability. In other words,n log2 n seems
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to be a fair entry fee for the firstn games. In [19], Vardi emphasized that the partial sums
of the continued fraction digits of a random real number also satisfy the same law, thus one
might consider then-th term of continued fraction digit of a real number as the entry fees for
n games in the classical St. Petersburg game. Furthermore, Vardi showed that known results
for continued fraction can be obtained for the classical St. Petersburg game by using the same
proofs. His results focused on how the player is favored even with a fair entry fee. More
precisely, he showed that for the firstn games,n log2 n should be the accumulated fair entry
fee even if the largest amount of winnings is neglected.

Our main result (Theorem 1) is the following: Let{Xn} represent the amount of winnings
in the generalized St. Petersburg game. Then

lim inf
N→∞

max1≤i≤N Xi

N/ log logN
= 1 , a.s.

This explains how the player is favored in the generalized St. Petersburg game even with a
fair entry fee. We formally state Theorem 1 in Section 2 together with its proof. It is based
on the proof of Vardi [19] for the classical St. Petersburg game and the proof of Philipp [18]
for the continued fraction expansion of real numbers. The first and second Borel-Cantelli
lemmas play a very significant role in the proof. We note that in the first part of the proof,
we don’t use the result of Barndorff-Nielsen [5] on the generalization of the convergence part
of Borel-Cantelli lemma because it is hard to find a sequence of real numbers{αn} satisfying
P({Xn ≤ αn})n in our case. Furthermore, we can not apply the similar theorem of Nakada-
Natsui [16] since there exists no constantH > 0 such thatP{Xn ≥ j } = H/j + o(1/j) as
j → ∞. However, the conditions of the results on the theory of trimmed sums of Aaronson-
Nakada [1] are satisfied by{Xn} as a special case, in which the result for the generalized
St. Petersburg game is stated in Remark 1 (iii). Other known results for this game are also
mentioned in Remark 1 at the end of Section 2. We apply these results to continued fraction
and Oppenheim expansions for formal Laurent series over a finite base field in Section 3. It
begins with the basic definition and concepts of the formal Laurent series, then the application
of the results to the continued fraction and Oppenheim expansions of Laurent series. We refer
to [5] and [8] for the general theory of these expansions.

2. The Theorem and Its Proof

Takeq = 1/q1, for 0 < q1 < 1. We consider an independent and identically distributed
sequence of random variables{Xn, n ≥ 1} on the probability space(Ω,B, P) with

P{ω ∈ Ω : Xn(ω) = qk} = q − 1

qk
, k ≥ 1 ,

for anyn ≥ 1.
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THEOREM 1. We have

lim inf
N→∞

max1≤i≤N Xi

N/ log logN
= 1 , a.s.

First note that since

| log(1 − x) − (−x)| ≤ x2 if |x| ≤ 1

2
,

which follows easily from the Taylor expansion of logx, we have

(1 − z)k = exp{k log(1 − z)} ≥ exp{−kz − kz2} if |z| ≤ 1

2
. (1)

Clearly, we also have

(1 − z)k ≤ exp(−kz) if z ≥ 0 .

PROOF. For eachk, let jk be the positive integer for which

qjk ≤ k2k < qjk+1

and letd(k) be the real number satisfying

d(k)

log logd(k)
= qjk .

Thend(k) is strictly increasing ink, and furthermore both

1

q
k2k < d(k) < k4k (2)

and

d(k − 1)

d(k)
<

q

k2 (3)

hold for all sufficiently largek.

Let

Bk =
{

max
d(k−1)≤n<d(k)

Xn ≤ d(k)

log logd(k)

}
.

Then{Bk} is an independent sequence of events. Since for eachk, Bk ⊃ Ck, where

Ck =
{

max
1≤n<[d(k)]+1

Xn ≤ d(k)

log logd(k)

}
,

we have

P(Bk) ≥ P(Ck) ≥
(

1 − log logd(k)

d(k)

)d(k)
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≥ exp

[
− d(k).

{
log logd(k)

d(k)
+

(
log logd(k)

d(k)

)2}]
(by(1))

= αk ,

whereαk = (logd(k))−1 · exp
[
−{log logd(k)}2

d(k)

]
.

Since limk→∞ exp
[
−{log logd(k)}2

d(k)

]
= 1, convergence and divergence of the infinite se-

ries
∑

k αk is the same as that of the series
∑

k(logd(k))−1, but from (2) it follows that
∑

k

(logd(k))−1 ≥
∑

k

(4k logk)−1 = ∞ .

Thus, we obtain that
∑

k P(Bk) = ∞, and therefore, we conclude from the Borel-Cantelli
Lemma thatP(Bk occurs for infinitely manyk) = 1. On the other hand, if we define

Fk :=
{

max
1≤n≤d(k−1)

Xn >
d(k)

log logd(k)

}
.

then
∑

k

P(Fk) ≤
∑

k

d(k − 1)P
(

X >
d(k)

log logd(k)

)

=
∑

k

d(k − 1)
log logd(k)

d(k)

≤ q
∑

k

log{4k logk} 1

k2
< ∞ by (2) and (3).

Therefore, by the convergence part of the Borel-Cantelli Lemma, the eventFk occurs for at
most finitely manyk with probability 1. Putting together with the result we established above,

we conclude that with probability 1, the eventBk − Fk =
{
max1≤n≤d(k) Xn ≤ d(k)

log logd(k)

}
occurs for finitely manyk, from which it follows that

P
(

lim inf
N→∞

max1≤i≤N Xi(ω)

N/ log logN
≤ 1

)
= 1 .

On the other hand, to show the reverse inequality, choose a real numberr > 1. Put

Gk :=
{
Xn(ω) ≤ rk+1

r2 log logrk+1 , 1 ≤ n ≤ [rk]
}

.

Then fort (k) the greatest integer satisfyingqt(k) ≤ rk+1

r2 log logrk+1 , we have

P(Gk) =
(

1 − 1

qt(k)

)[rk]
<

(
1 − 1

qt(k)

)rk−1
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< e · exp{−r log logrk+1} <
e

(logr)r
· 1

(k + 1)r
.

Since we chooser > 1,
∑∞

k=1 k−r < ∞, again by the convergence part of the Borel-Cantelli
Lemma, the events{Gk} occur for at most finitely manyk. Hence, for almost everyω ∈ Ω,

there exists integerk0 = k0(ω) such that for allk ≥ k0

max
1≤i≤[rk]

Xi >
rk+1

r2 log logrk+1
.

For rk ≤ N < rk+1 andk ≥ k0, since

max
1≤i≤N

Xi ≥ max
1≤i≤[rk]

Xi and
rk+1

r2 log logrk+1
>

N

r2 log logN
,

consequently, we have

max
1≤i≤N

Xi >
N

r2 log logN
.

By letting r ↓ 1, we obtain

lim inf
N→∞

max1≤i≤N Xi

N/ log logN
≥ 1 , a.s.

This completes the proof of the theorem. �

We state in the following remark some of the results connected with the generalized St.
Petersburg game. We apply these results in the next section.

REMARK 1. We have
(i) ([3], Theorem 4) For allε > 0,

lim
N→∞ P

{∣∣∣∣
∑N

i=1 Xi

N logq N
− (q − 1)

∣∣∣∣ > ε

}
= 0 .

(ii) ([2], Example 4)

lim inf
N→∞

∑N
i=1 Xi

N logq N
= (q − 1) , a.s.

and

lim sup
N→∞

∑N
i=1 Xi

N logq N
= ∞ , a.s.

(iii) ([1], Theorem 1.1 (ii))

lim
N→∞

∑N
i=1 Xi − max1≤i≤N Xi

N logq N
= q − 1 , a.s.
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PROOF OF(iii). From [1], it is sufficient to show that

E (min(X1, T )) ∼ (q − 1) logq T ,

as T → ∞. For qk ≤ T < qk+1, for some integerk, then it is easy to see that
E(min(X1, T )) = (q − 1)k + O(1/qk) which implies the desired result. �

3. Application to Formal Laurent Series

Consider the field of formal Laurent seriesFq((X−1)) over a finite base fieldFq of q

elements,q ≥ 1, that is,

Fq((X−1)) = {f : f = anX
n + · · · + a0 + a−1X

−1 + · · · : ai ∈ Fq} .

Let f be inFq((X−1)) of the form

f = anX
n + an−1X

n−1 + · · · + a0 + a−1X
−1 + a−2X

−2 + · · · .

We define thedegree of f and thevaluation of f by deg(f ) = n and|f | = qdegf = qn

if an 	= 0. If f = 0, we put deg(0) = −∞ and|0| = 0. Then we can define a metricd on
Fq((X−1)) by d(f, g) = |f − g| for f, g ∈ Fq((X−1)).

Denote byFq[X] the ring ofFq -coefficients polynomials and letL = {f ∈ Fq((X−1)) :
deg(f ) < 0}. L is a compact abelian group with addition and the metricd. We denote bym
the unique normalized Haar measure onL.

3.1. Continued Fraction. For f ∈ L, one has the following continued fraction ex-
pansion:

f = 1

a1 + 1

a2 + . . . + 1

an + . . .

:= [a1, a2, . . . , an−1, an, . . . ] , n ≥ 1 .

We call the sequence{ai} = {ai(f )} ∈ Fq[X] the polynomial digits of the continued fraction
expansion of a Laurent seriesf . We put

Xi(f ) = |ai(f )| = qdegai(f ) .

It is well-known that(Xi)i≥1 is an independent and identically distributed sequence of random
variables on the probability space(L, m) with

m(Xi = qk) = q − 1

qk
.

We refer to [5] for the general theory of the continued fraction expansion forf ∈ L. We
apply the results in Section 2 for continued fraction of Laurent series in the next theorem with
Theorem 1 for (i) and Remarks for (ii)–(iv).
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THEOREM 2. For the sequence of polynomial digits {ai(f )} of the continued fraction
expansion of Laurent series f, we have the following:

(i)

lim inf
N→∞

max1≤i≤N qdegaj (f )

N/ log logN
= 1 , m-a.e.

(ii) For all ε > 0,

lim
N→∞ m

{∣∣∣∣
∑N

i=1 qdegai(f )

N logq N
− (q − 1)

∣∣∣∣ > ε

}
= 0 .

(iii)

lim inf
N→∞

∑N
i=1 qdegai(f )

N logq N
= (q − 1) , m-a.e.

and

lim sup
N→∞

∑N
i=1 qdegai(f )

N logq N
= ∞ , m-a.e.

(iv)

lim
N→∞

∑N
i=1 qdegai(f ) − max1≤i≤N qdegai(f )

N logq N
= q − 1 , m-a.e.

3.2. Oppenheim Expansion. Let {rn}n≥1, {sn}n≥1 be sequences of nonzero polyno-
mials over the fieldFq satisfying

degsn − degrn ≤ 2 , ∀n ≥ 1 . (H)

In [13], Theorem 2.1, it was shown that everyf ∈ L has a finite or infinite convergent (relative
to d) expansion of the form

f = 1

b1(x)
+

∞∑
n+1

r1(b1) · · · rn(bn)

s1(b1) · · · sn(bn)

1

bn+1
,

wherebn ∈ Fq [X], degb1 ≥ 1 and for anyn ≥ 1

degbn+1 ≥ 2 degbn + 1 − degsn(bn) + degrn(bn) .

The expansion is unique under the preceding conditions on the polynomial digitsbn =
bn(f ) ∈ Fq [X] of the Laurent seriesf .

Special cases of the Oppenheim Expansion of Laurent Series include:
Lüroth-type expansion:sn(g) = g(g − 1), rn(g) = 1;
Engel-type expansion:sn(g) = g, rn(g) = 1;
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Sylvester-type expansion:sn(g) = 1, rn(g) = 1;
Cantor-type Infinite Product:sn(g) = g, rn(g) = g + 1;
DKB-type expansion:sn(g) = 1, rn(g) = g;
Consider the following random variables on the probability space for the polynomial

digits of the Oppenheim expansion ofg ∈ (L, m),

∆0(g) := degb1(g) ,

∆n(g) := degbn+1(g) − 2 degbn(g) − degrn(bn(g)) + degsn(bn(g)) , for n ≥ 1 .

Fan and Wu [8] showed that{∆n}n≥0 is an independent and identically distributed se-
quence of random variables. In particular, forn ≥ 0 andk ≥ 1, they computed

m{g ∈ L : ∆n(g) = k} = q − 1

qk
.

We put

Xn = |∆n−1(f )| = q∆n−1(f )

for n ≥ 1. It follows that {Xn}n≥1 is a sequence of independent and identically distributed
random variables with infinite expectations.

THEOREM 3. For a sequence of random variables {q∆n(f )}n≥0 associated with the
polynomial digits {bi(f )} of the Oppenheim expansion of a Laurent series f, the following
hold:

(i)

lim inf
N→∞

max0≤i≤N−1 q∆i(f )

N/ log logN
= 1 m-a.e.

(ii) For all ε > 0,

lim
N→∞ m

{∣∣∣∣
∑N−1

i=0 q∆i(f )

N logq N
− (q − 1)

∣∣∣∣ > ε

}
= 0 .

(iii)

lim inf
N→∞

∑N−1
i=0 q∆i(f )

N logq N
= (q − 1) , m-a.e.

and

lim sup
N→∞

∑N−1
i=0 q∆i(f )

N logq N
= ∞ , m-a.e.

(iv)

lim
N→∞

∑N−1
i=0 q∆i(f ) − max0≤i≤N−1 q∆i(f )

N logq N
= q − 1 , m-a.e.
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We note that in [8] Theorem 2.4, Fan and Wu proved Theorem 3 (ii) following the idea
in [14] for Lüroth case. However, this result follows easily from Remark (i) in §2.

REMARK 2. The same results also hold for p-adic Oppenheim expansions. We refer
to [20] for the definition of∆n and some properties ofq∆n for the p-adic case.
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