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Abstract. Inthis paper we study the exponents of 2-multiarrangements. More precisely, we compose a basis

for D(A, k) in the case where A consists of three lines using Q-polynomials (){) Here (f) is the generalized
binomial coefficient of the partition A.

1. Introduction

Let V be an ¢-dimensional vector space (¢ > 0) over a field of characteristic zero K.
Let A be acentral hyperplane arrangement in V, that is, A is afinite set of codimension one
subspaces of V. For simplicity, we call A an ¢-arrangement. A pair (A, k) consisting of an
¢-arrangement A and a multiplicity k: A — N = Z>¢ iscalled an ¢-multiarrangement in
V. This term was introduced by G. Ziegler in [6]. We can regard any arrangement .4 as a
multiarrangement with the constant multiplicity k(H) = 1 for al H € A. The restriction of
an arrangement .4 to one of its hyperplanes is atypical example: Fix H € A and define a
multiarrangement (A" k) in H by A" .= {(H' NH | H € A\ {H}} and k(X) := #{H' €
A\{H}|H NH = X}.

Let V* bethedual spaceof V and § = K[V] be the algebra of all polynomial functions
on V which is equd to K[x1, ..., x¢] for any basis (x1, ..., x¢) for V*. The algebra S is
naturally graded by S = €B,.o S where S, is the K-vector space consisting of zero and all
homogeneous polynomials of degree g. It is convenient to define S, = 0 for ¢ < 0. For each
hyperplane H, we choose alinear form oy € V* suchthat H = ker(ay). Let (A, k) bean
£-multiarrangement. Define a homogeneous polynomia Q(A, k) € S by

QA k) =[] en*™.

HeA

We call Q(A, k) the defining polynomial of the multiarrangement (A, k).
A K-derivation of S isaK-linear map6: S — S such that

0(fg)=0(fg+ f0(g) (figeSl).
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Let Derk (S) bethe S-module of all K-derivations of S. A non-zero K-derivation 6 iscalled a
homogeneous derivation of degree g if 6(V*) C S,. Let Derk (S), denote the K -vector space
consisting of zero and all homogeneous derivations of degree ¢. For each £-multiarrangement
(A, k), definean S-submodule D (A, k) of Derk (S) by

D(A, k) := {0 € Derc (S) | O(ay) € ag™ S forany H € A}.

An element of D(A, k) is called an (A, k)-derivation. For eachg € Z, put D(A, k), =
D(A, k) N Derg (S),. Then D(A, k) = @qez D(A, k)4. The S-module D(A, k) is graded
by the direct sum decomposition. An ¢-multiarrangement (A, k) issaid to befreeif D(A, k)
isafree S-module. Then the degrees exp(A, k) := [d1, ..., d¢] of ahomogeneous basis for
D(A, k) are called the exponents of (A, k). For a given (multi)arrangement, it is important
to examine its freeness. The following theorem is fundamental:

THEOREM 1.1 (G. Ziegler [6, Corollary 7]). Every 2-multiarrangement is free.
Asfor 3-arrangements, M. Yoshinaga [5, Theorem 3.2] showed the following:

THEOREM 1.2 (M. Yoshinaga[5, Theorem 3.2]). Let A be a 3-arrangement which
containsa hyperplane H. Put xo(A, 1) := (r—1)"1x (A, 1), where x (A, t) isthe characteris-
tic polynomial of A. Let [d1, d>] bethe exponents of the restricted multiarrangement (A%, k).
Then the dimension of the cokernel of the restriction mapping resl, : 21(A) — 21(A7, k)
isfinite and is given by

x0(A,0) —d1-da.

By this theorem, we can characterize the freeness of 3-arrangements. Moreover, we
can explicitly write the characteristic polynomial x (A,1) = Y y.; w(X)tdmX of g 3-
arrangement A with H € A as

X (A, 1) = (t — D{(t — d1)(r — do) + dimg coker(res},)},

where exp(AY | k) = [d1, d2).

Because of this theorem, the exponents [d1, d2] of 2-multiarrangements are important
in order to study the freeness of a 3-arrangement. We give some known examples of 2-
multiarrangements and their exponents:

ExAmMPLE 1.3. Let (A, k) bea2-multiarrangement.
(1) If A= {H}, thenexp(A, k) = [k(H),O0].
(2) If A= {H1, H2} (H1 # Hy), then exp(A, k) = [k(Hy), k(H2)].

EXAMPLE 1.4 (L. Solomon-H. Terao [4, 85. Examples 1], S. Yuzvinsky). Let (A, k)
be a2-multiarrangement with#4 > 2and 1 < k(H) < 2forany H € A. Then

[n—1,e+1] if e<n,
[n, n] if e=n

exp(A, k) = {

wheren =#Aande =#H € A | k(H) = 2}.



ON THE EXPONENTS OF 2-MULTIARRANGEMENTS 101

In this paper we give explicitly a homogeneous basis for D(A) using the generalized
binomial coefficients (}) e Q[X] for any 2-multiarrangement A consisting of three lines. We

give the definition of (£) in Definition 2.1, in Section two. We will essentially use the fact
that aspecial value of the well-known Schur function can be written as a generalized binomial
coefficient (Lemma 2.5). From this observation, we can describe the generalized binomial
coefficient as the determinant of a matrix whose entries are the usual binomial coefficients
(Theorem 2.8).

Let ¢ = dimg V = 2. To state our main theorem, we prepare some notations. For each
triple of natural numbersk = (k1, k2, k3) € N3, define |k| := k1 + k2 + k3 and

k| -1
2

Zktz{qez‘ Sqfkl—i-kz—l}.

Putre, :=ki+kx—q—Llandsg, =k +ks—q— L1foreachk e N¥andg € Z. In
addition, define Ng = {k = (k1, ko, k3) € N3 | max{ky, k2} < k3}. Let ¥ = (x,y) bea
K-basisfor V* and (k, ¢) € Ng x Z with g € Z;. Define ahomogeneous derivation 05 (k, q)
of degree g by

q—k1+1 k3 3
9 k’ = . q+17j jil
sk, q) < E ()»,(({;)x y Y

j=1
lkl—q
, k3 . 0
(B ()
Jj=ko+1 k,q
where A,(j; are the following partitions:

tka—j+Lskg+1 ...+ j=1...,9—k+1,

0 ._ g
)”k,q T Tkq

(sk,q7"'ask,q’|k|_q_j) ]=k2+17"5|k|_q
For each K-basis ¥ = (x, y) for V*, define a 2-arrangement Ax by
As = {ker(x), ker(y), ker(x + y)}.

Moreover for any k € N3, we assume that Ags i is the 2-multiarrangement on Az with the
multiplicity defined by ker(x) — k1, ker(y) — ko, ker(x + y) — k3. Note that we can
express every 2-multiarrangement consisting of three lines as A ; for some K-basis X for

V*andk e N§.
The main result of this paper is the following:

THEOREM 1.5. Let A be a 2-multiarrangement consisting of three lines, and write
A = Az for somebasis £ = (x, y) for V*andk € N3.
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Ifk1+ ko — 1 < k3, then

. 0 (0?9
(f8x+g8y’x Y dy ox
is a homogeneous basisfor D(A), where f = 35 ‘ (*o)xiyks=i, g = Zfial (*2)xi yka=i,
If k3 < k1 + k2 — 1, then

k| , k| . )
<9);<k, 5 ) 92(/(, 5 )) if |k|iseven,
K —1 K+ 1
<9);(k, %) Gg(k, | '2+ )) it || isodd

is a homogeneous basisfor D(A), wherek’ = k + (0,0, 1) € N3.

Throughout this paper, we use the following notation:

e #X or |X|: Thecardina number of afiniteset X.

e P(g):=1{1,....q},whereqeZ.(g <0 = P(g)=10.)

e [A];; : The(i, j)-entry of amatrix A.

e 'A: Thetranspose matrix of amatrix A: ['Al;j = [Al}i.

o K'":={'(a1,...,a,)|a; € K}.(Then-dimensional “column” vector space.)

o kerA:={ueK"|Au=0}foranm x n K-matrix A.

e For each (m, n)-type matrix A = (a;;), « = {iyx < --- < ip} € P(m)and g =
{j1 <+ < jq} € Pn), wedefine

Airjp 0 iy,
Ala, Bl :=

aipjl T aiqu

2. Preéiminariesfor Generalized Binomial Coefficients

In this section we define the generalized binomial coefficientsfollowing I. G. Macdonald
[1]. Furthermore, we describe some properties of them. In particular, the relation between
the Schur functions and the generalized binomial coefficientsisimportant (Lemma 2.5). This
relation leads us to the expression for each generalized binomial coefficient as the determinant
of amatrix consisting of the (usual) binomial coefficients (Theorem 2.8). The theorem plays
acentra rolein this paper.

Letx = (A1, A2, ..., Ay, ...) beapartition. In other words, (1) A1 > A2 > --- arenon-
negativeintegers, (2) thereexistsapositiveinteger N € Z. g suchthat A, = Oforaln € Z.¢
whenever n > N. Regard a finite sequence (i1, t2, ..., iy) € N of non-negative integers
with g > po > --- > u, asapartition (u1, ..., 4, 0,0, ...). Definetheweight | 1| and the
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length £(0) by |A] := )", A and £(A) := #{i € Z.o | A; # 0}. Moreover, define the Young
diagram Y(1) of 2 by Y(A) := {(i, j) € Z-0% | j < A;}. Sometimes we express the Young
diagram of a partition A = (A1, A2, ...) by drawing the left-justified array of squareswith A;
squares in thei-th row. For eachi > 1, defined; :=#{j € Z-o|i < Aj} e N. Inparticular,
A1 =£(1). Then i = (A1, A2, ...) isaso apartition. We call this partition the conjugate of
A (eg. A= (54,41 = i = (43, 3,3,1).) By definition, Y(1) = {(j, i) | (i, j) € Y(L)}.
In other words, Y (1) is the diagram which is obtained by reflecting Y (1) with respect to the
main diagonal. In particular, itfollowsthati = A

A=05,441) A=(4,3,3,3,1)

the main diagonal the main diagonal

Define the hook-length function of A ;. : Z-0? — Z by hy (i, j) = hi — j+ A —i+1
(#£ 0). Foreach P = (ig, jo) € Y (L), hy (P) expressesthe number of points of theintersection
Y (A) and the hook Hp which hastheright angle at P:

Hp = {(io, j) € Z=0%| j = jo} U{(, jo) € Z-0° | i = io}.

(eg.IfA=(5,4,4,1)and P = (1, 2),thenh, (P) = 6. SeeFigure2.1)

A=(5,4,4,1)
(17 2) v / j
_ ha(1,2) = the number of ] (= 6).

FIGURE 2.1:  The hook-length function £,

Now we are ready to state the following.
DEFINITION 2.1. Let 2 beapartition. Define a Q-coefficient polynomial (f) by
<X) . 1—[ X —c(i,))
M aheva mED

where c(i, j) = j —i. We call the polynomial (’f) the generalized binomial coefficient
(corresponding to 1).
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EXAMPLE 2.2. (1) Leta = (5,4,4,1) andm = 7. Then h,(P) and c(P) are as
follows:

8l6]5[4]1] 716]5[4]3]
_|614]3]2 C18]7]6]5

ha(P) : =T3la11 m=e(P): Fotoote
1] 10

Each number in the square at P expresses i, (P) and m — c¢(P) respectively. Computing (’f)
we get

= 30870.

my 10x9x 8 x7Px63x5 x4x3
2] (8x6x5x4)x (Bx4x3x2) x(5x3x2)

() 1fA=®,0,0,...)(neN), then

(X)_X(X—l)~«~(X—n+l)_(X>
A n! “\n/)

whichisusually called the binomial coefficient. In other words, regarding anatural number as
aspecial partition, we can regard the generalized binomial coefficient as the usual one which
is extended to every partition. This is the reason why we call (%) the generalized binomial
coefficient.

LEMMA 2.3. Letr € Qandx = (A);=1 beapartition. If 1 < r, then (}) > 0.

PrROOF. Sinceh, (i, j) > 0and

ci,)=j—i<h—i<h—i<l

forany (i, j) € Y(1), it followsthat (}) > O. O
Fix a positive integer n. For each . = (A1,...,,) € N", wewrite X{*1 ... X,* =
X*, where X1, ..., X, are variables over Z. Define a polynomia a; (X1, ..., X,) €

Z[X1, ..., Xa] by
a, = ar(X1, ..., Xp) = det(X ;") 1< j<n -

If wesubstitute X ; for X; inthe polynomial a,,, thena; = Oforany (i, j) withl <i < j <n.
Thismeansthat a;, isdivisibleinZ[ X3, ..., X,] by each of thedifferences X; — X; (1 <i <
J < n) and hence by their productas = [;_; (X; — X ), where§ :=(n —1,...,2,1,0).

i<j
DEFINITION 2.4. Let A be apartition of length < n. (Then we can regard A € N".)
Define the Schur function corresponding to A by

ar+s
SA ZSA(X1’~-~,X/1) = .
as

Then S, isasymmetric function for any partition » with £(1) < n.
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A special value of thefunction S, can be expressed as ageneralized binomial coefficient.
The following lemma expresses this fact:

LEMMA 2.5 (cf. 1. G. Macdonald [p. 45 Example 4]). Let 1 be a partition such that

£()) < n. Then
S, 1= (Z)

For each integer r > 0, the r-th elementary symmetric function ¢, (X1, ..., X,) €
Z[X1, ..., X,]isthesum of al products of r distinct variables X; so that

o=e¢Xi... X)= ) Xp--Xi.
1<iy<-<ir<n

Definee, = 0for any r < 0. The following lemma s the basic proposition to connect the
Schur function with the elementary symmetric functions:

LEMMA 2.6 (cf.l.G. Macdonald [p. 41 (3.5)]). Let A be a partition of length < n.
Then

Sy = det(es, _;, )izij<m
for any positive integer m with A1 < m.
From Lemmas 2.5 and 2.6, we get the following:

LEMMA 2.7. Let X bea partition of length < n. Then

n n
(1) =5, " 1)
A Ai +c(i, j) 1<i,j<m

for any positive integer m with A1 < m.
Thislemma holdsfor arbitrary n. Therefore, we have the following theorem:

THEOREM 2.8 (cf. 1. G. Macdonald [p. 45 Examples4]). Let A = (;);>1 bea parti-
tion and m be a positive integer. If £(1) < m, then

() =e((;, +20.)
= det .. .
A A e, ) 1<i,j<m

3. Proof of Theorem 1.5

In this section we will prove Theorem 1.5. First we prepare two criteria for the freeness
of multiarrangements. We recall that Derk (S) is the S-module of al K-derivations of the
symmetric algebra S = K[V]. For simplicity, write Ders := Dergk (S). Let (x1,...,x¢)
be a K-basis for V*. For given derivations 01, . .., 6, € Derg, define the coefficient matrix
(with respect to the basis (x1, ..., x¢) for V¥) M = M (01, ..., 6¢) by [M];; = 6;(x;). By
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definition, we can write8; = >",[M1;;9;, where 9; is the usual derivation % Then we have
the following criterion:

THEOREM 3.1 (Ziegler'scriterion[6]). Let 61,...,60; be (A, k)-derivations. Then
they formabasisfor D(A, k) ifand only if det M (01, ..., 0¢) = Q(A, k).

Here and elsewhere = stands for equality up to a nonzero constant multiple: f = g <
f =cgforsomec € K* (f, g € S). Thiscriterion is the “multi-version” of Saito’s criterion
[2, Theorem 4.19], [3, p. 270]. The following theorem can easily be derived from Ziegler's
criterion:

THEOREM 3.2. Letfi,...,0;, € D(A, k) be homogeneous and linearly independent
over S. Then (61, ..., 6;) isabasisfor D(A, k) if and only if

14
ijldegej = ZHEAk(H)-
Next we list some basic properties of 2-multiarrangements.

LEMMA 3.3. Let (A, k) bea2-multiarrangement and put k| = ) ;. 4 k(H).

(1) Ifgo=min{g € Z | D(A, k), # O}, then exp(A, k) = [qo, |k| — qol-

(2) LetH e Aandg € Z.1f g < min{k(H), |k| — k(H)}, then D(A, k), = 0.

(3 If(kl|-1)/2<qeZ then D(A k), #0.

(4) LetH € A. If (|k| — 1)/2 < k(H), then exp(A, k) = [k(H), |k| — k(H)].

PROOF. (1) Write exp(A, k) = [d1,d2] (d1 < d2 ). Thenit follows that d; = qo,
since the Poincaré series Poin(D(A, k), t) = quz(dimK D(A, k)y)t is equal to (r +
192) /(1 — 1)2. Moreover by Theorem 3.2, d> = |k| — go. Thus we have exp(A, k) =
[0, [k] — gol.

(2) We choose coordinates (x,y) so that x = ay. Then6(x) € S, N xKHs =
XM S, . Since ¢ < k(H), 6(x) = 0. Next we show that 6(y) = 0. Let
0 = QA k)/ay*  Since H(x) = 0, it follows that e(y)a‘;—;?’ € agkH)S for any

aO[H/

H' € A\ {H}. Since the polynomials /¥ are relatively prime and 72~ # 0, we have
0(y) € @S. Ontheother hand, 6(y) € S,. By the assumption, we obtain 6 (y) = 0.

(3) Suppose that there is an integer ¢ > (k| — 1)/2 such that D(A, k), = 0. Write
exp(A, k) = [d1,d2]. Thensinceq + 1 < d1,dp, wehave |k| +1 < 2g +2 < d1 +dp. It
follows from Theorem 3.2 that |k| + 1 < |k|. Thisisacontradiction.

(4 Putm:=min{g € Z | D(A, k), # 0} and Q := Q(A, k)/ay* ™). Let (x, y) bea
basisfor V* wherex = ay. Since (|k|—1)/2 < k(H), itfollowsfrom (3) that D(A, k) H) #
0. Thuswe havem < min{k(H), |k| — k(H)} because Q% € D(A, k) and deg Qaiy = |k| —
k(H). On the other hand, from (2) and by the definition of m, min{k(H), |k| — k(H)} < m.
Thus we have m = min{k(H), |k| — k(H)}. From (1), we can conclude that exp(A, k) =
[k(H), |k| — k(H)]. d
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LEMMA 3.4. Let M = @, M, be a free graded S-module with a homogeneous
basis (81, 82) such that degé; < degé,. Put p := degéi, g := degd andd := g — p. If
61 € My, 02 € M, and x?01, x?~1y64, ..., y?61, 6, are linearly independent over K, then
(01, 62) isabasisfor M, where (x, y) isaK-basisfor V*.

PROOF. Since (81, 82) isabasisfor M, thereexista,b € K, f € S_; and g € S; such
that 61 = ad1 + f 682,02 = g81 + bS2. Defineamatrix A by

a g
A= ( f b ) |
Then (61, 62) = (81, §2)A. Consider the following two cases.

Case 1: d =0.Inthiscase, f, g € K. Inother words, A isaK-matrix. It follows that
detA € K* = K \ {0}, since 61, 6, are linearly independent over K. Thus (61, 62) is abasis
for M.

Case 2. d > 0. Inthiscase, f = Obecause f € S_q. Write g = Y9 a;x? "/ with
a; € K and let

a 0| ag
A = :

0 -+ alag

0 - 0f»b

Then (x401, x4 1y01, ..., y401, 02) = (x981, x?1y81, ..., y¥81, 82)A’. It follows from the
assumption that a¢+1h = det A’ % 0 and hence det A = ab # 0. Thuswe can conclude that
(61, 62) isabasisfor M. O

We retain the notation of Section one. Now we start preparing for the proof of Theorem
15. Fix aK-basis & = (x,y) for V* and k = (k1, k2, k3) € N§. For each ¢ € Z, put
rg i =rkg =ki+ka—q—1,58, :=58rq=ki+ks—qg—1andt, := g —kz+ 1. Moreover
for each g € Z withg > k3, definea (g + 1, 7,)-type matrix M, by

M, = ks
T \\kz + ¢, j) Lizqtl ’
=Jj=lq

Here, whenm < n orn < 0, thevalue of the binomial coefficient (') is set to zero (m, n € N)
andc(i, j) = j —i. Thenit follows that

(X9, X971y, YM, = (X + v)Re(x7Re xa—he=ly | yaThsy, (3.1)

forany g € Zwithg > k3. Foreachq € Z, puta, := P(g—k1+1) and B, := P(g+1)\P(k2).
(oq and B, are subsets of P(g + 1).) When g > ks, define

Aq = Mq[()lq, P([q)] , Bq = Mq[,Bq7 P(tq)] .
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In other words, A, (resp. B,) is the matrix consisting of the first (resp. last) g — k1 + 1
(resp. g — ka2 + 1) rows of M,. Furthermore define f, := (x4, x77 1y, ... xfyi=F)A,,
g, = (x97keyke  xya=1 y7)B, and aK-linear mapping p, : K's —> (Derg), by
ad ad
pg () = fqua + gqu@
(z € K isacolumn vector), for each g € Z with g > k3.
LEMMA 3.5. TheK-linear mapping p, isinjectivefor all ¢ € Z suchthat ¢ > ks.
PrOOF. Since[A,]; = Lforali,[A,];; =Oforal (i, j)withj >iandg —ki+1>
q —ks+1=1t,,itfollowsthat ker A, = 0. Thuswe have
pgu) =0= f,u=0
=Au=0
=u=0,
for any u € K'a. Thiscompletesthe proof. O

Foreachg e Z,puty, :=Plg+ D\ (@gUBy) CPlg+D.lfksa<qg <ki+kx—1,
theny, ={qg —ki+2,..., ko} # 0. Therefore we can definea (ry, t,)-type matrix C, by

k
Cy = Mylyy, Pty = ((Sq + c3(i ])>> isizrg

1<j<tg

Then it follows that

Moreover, define a subspace W, of K’ by
wo— | Ko ifg=kit+ke -1,
4= kerC, if g<ki+kx—1
foreachg € Zwithkz < g <ki+ ko — 1.

LEMMA 3.6. p;(W,;) = D(Ax ), forall g € Zwithks < g < k1 +k>— 1. In
particular, it follows from Lemma 3.5 that W, and D(Ax ), are isomorphic as K-vector
spaces.

PrOOF. First we show that p,(W,;) € D(Asi),. Letu € W, and put 6 := p,(u).
Then we have

0(x) = f,u= (1, 7Yy xRy TRy A u e xS

0(y) =g u = (x47*2yk2  xy?71 y)Bou € y*2s,
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Ox+y)=fu+gu= (x4, x7 Ly, .., Y Myu

= (x + y)edhe x17kely Ly Ry e (x 4 y)Res.

The last equality follows from (3.1). Thus® € D(Ax ). Sincethis holds for any u € W,,
we can conclude that p, (W) € D(Ax r)4. Next we show that p,(W,) 2 D(Axi),. Let
0 € D(Asx x)q. Thenwe get

q
i=kq
q—k2
i=0

o) exisns, =P Kxyi™, (3.2)

oy eyesns, =P “Kxlyr. (3.3)

Sinced(x + y) € (x + y)*3S,_,, thereexists u € K's such that
O(x +y) = (x9,x97 Yy, ...,y Myu. (3.9

By (3.2), (3.3) and (3.4), we have 6 (x) = f,u, 6(y) = g,u. Inother words 0 = p,(u).
Moreover weget C,u = 0, if ¢ < k1 + k2 — 1. Thusé e p,(W,). Since this holds for any 6,
we can conclude that D(As x)g € pg(Wy). O

The next result follows from Lemma 3.6.

LEMMA 3.7. Ifks < k1 +ko, thenexp(As i) = [L%lj, (%1]. Here |a| = max{m e
Z|lm<a}and[a]=min{m € Z|a < m}foranya € R.

PrROOF. Since (k| — 1)/2 < ||k|/2], it follows from Lemma 3.3 (3) that
D(Ax,k)UkT\J # 0. Next we show that D(Ax x), = O for any integer ¢ with g < [|k|/2].
Let g be an integer which setisfies g < [ |k|/2]. (Thent, < r,.) If ¢ < ks, then it follows
from Lemma 3.3 (2) that D(Ax ), = 0 since k3 < k1 + k2. Thus we may assume that
k3 < g, namely, 1, > 1. Defineapartition A by A = (s4, ..., s4) € N. Then it follows from
Theorem 2.8 that

k
det C4[P(tg), P(tg)] = (;) . (3.5)

On the other hand, since k3 > s, it follows from Lemma 2.3 that (’;3) > 0. From this
inequality and (3.5), we have detC,[P(,), P(t;)]1 # O and hence W, = kerC, = O.
By Lemma 3.6, we get D(Ax 1), = 0. Thus we can conclude from Lemma 3.3 (1) that
exp(As k) = [LIkl/2], Tlkl/21]. O
Any 2-multiarrangement consisting of three linesis of the form Ax ; for some K-basis
X forV*andk € Ng. Thus we can completely determine the exponents exp(A, k) for all
2-multiarrangements (A, k) with |A| = 3 from Lemmas 3.3 (4) and 3.7.
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THEOREM 3.8. Let (A, k) be a 2-multiarrangement with |A] = 3. Put |k| =
Y neak(H)andm := max{k(H) | H € A}. Then

[m, |kl —m] it B2 <m,

A k) =
oA (L&, Tl it mo< &L

We proceed to the proof of Theorem 1.5. Define two K -linear mappings
Ogr Vg Klt = Kla Tl
by ¢g() == (B), Yo ) == (J).forg € Zwithks < g < ks + k2 — 1.
LEmMMA 3.9. The following diagrams are commutative:

@l Wy Yyl Wy

Wq BASELN K tg+1 Wq BESNLN K +1

,0q|qu lpqﬁ—l , pq‘qu lpq-%—l .

(Ders);, — (Derg),4+1  (Derg), T) (Derg)g+1
. .

In particular, it follows from Lemmas 3.5 and 3.6 that ¢, (W,;) N ¥, (W,) € Wy41.

PROOF. Letx¥) bethei-th row of the matrix C,. Then we have
A Ag | * 1/'0
q+1= x@ (llii) - ( % Aq ) s
’
B,.q—(Bel* ) _ Gi3) | *"
q+ 0|1 * B, :

Letu e W, = kerC, and put u := ¢, (u). It follows from the above expressions that
Agait = (*1") and By1a = (P4). Thuswe have

fopait = (x0T xy o Rttyeh ghyatdohny A g
=x- fqu,

gyl = (xIHReyke o xyd VIt B
=x-g.u,

and hence p,41(t) = x - py(w). Since this holds for any u € W,, the left diagram is
commutative. Similarly, we can show that the right diagram is commutative. |

Letg € Zy. (ThenO <r, <1,.) For j € ay U B, put

A = det My, U {j}, Pry + D]
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Here we recall the partitions )L,((j ) and the derivation 6 s (k, q) (see Section one). By Theorem

q

2.8, it follows that

k3 o

() G | i JjEeagUB NPkl —q)),
Ag = )‘k,q

0 otherwise

and hence
: o 9 . . R}
05k, q) = (Z Ai,f)xﬁlfyfl)a + (—1)’q(2 AP x4+ y]1>5. (3.6)
Jj€ay J€By

The following result is the key lemma for the proof of Theorem 1.5:

LEMMA 3.10. 6Ox(k,q) € D(As i) \ D(As x), wherek’ =k + (0,0, 1) e N3.

PROOF. First we claim that 65 (k, q) € D(Asz). If ¢ = ki + ko — 1, then A% =
[My]).1. Puttingu, =(1,0,...,0),wehavebx(k, g) = p,(uy) from(3.6). By Lemma3.6,
it followsthat 65 (k, g) € D(Ax ) because W, = K in this case. Wheng # k1 + k2 — 1,

pUL C} := Mylyg. PUrg)l and Cf) := MLy, (P(r) \ (i) U {rg + Dl foranyi = 1,....7,.
Define avector u, € K’ by

tg—rq—1

—
ug = "(detC, —detC@, ..., (1o tdetCy”, (1) detC,.0, ..., 0),

thenu, ¢ W, = kerC, and 0s(k,q) = py(uy). Thus we can conclude thet 0x(k, g) €
D(Ax k). Next we show that 05 (k, ) ¢ D(Ax x). From (3.1),

[pg@)](x 4+ y) = (x + y)ks(xdks xaks=Ly  ya~ke)y

forany u € W,. Thus we have the following:

(x) Foru € Wy, py(u) € D(Ax ) & (x47%, x0787y 3y Ry e (x +y)S
s @, -1...., (D" Hu=0.

If g = ki+ ko — 1, thenuy, =7(1,0,...,0). Itfollowsfrom (x) that 05 (k, ) = py(uy) ¢
D(Ax ). Ing # k1 + ko — 1 case, define partitions w; (i =1,2,...,r4) by

rg—i+1 i1

—_——
wi=0g+1 ... 50 +L5sg,...,8).
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Then det Céi) = (ﬁf) by Theorem 2.8. Since k3 > s, + 1, it follows from Lemma 2.3 that
rq

detcy” = (12) > 0. Similarly, if i := (55, .. 5), then det ¢}, = (*3) > 0. Thuswe have

"q
@ -1.... (=D Hu, =) detC’ +detC; > 0.
i=1

We can conclude from (x) that 05 (k, ¢) = pg(1g) ¢ D(As i). m]

Now we prove Theorem 1.5.

PrROOF OF THEOREM 1.5. Casel: k1 + k> — 1 < k3. Put

d 0 0 il
01 := f— —, Gp=xRykef — — — )
! f8x+98y 2= <8y 8x>

where f = 312, (%) yks and g = Y1t (%) yks i, By definition, 61(x) = f € xh15.
Since k1 + ko — 1 < k3, itfollowsthat ko < k3 —i foreachi =0, ..., k1 — 1, and hence
61(y) = g € yk2S. Moreover 1(x +y) = f + g = (x + y)*3. Thus we can conclude that
01 € D(Ax ). Sincef2(x + y) = 0, it is standard to see that 6, isa Ay -derivation. Here

compute det M (61, 62):

det M (61, 2) = x¥1yk2

-1
g ‘ = 2"y 2 4 ).
g 1

It follows from Ziegler's criterion 3.1 that (61, 62) isabasisfor D(Ax k).

Case 2. k3 < k1+ ko — 1. By Lemma3.10, it follows that
(i) Ox(k,q),0s(k',q) € D(As ) arelinearly independent over K, for any g € Z/
C Z.
Forany g € Zy withg +1 € Zy, ¢,(uy), ¥4 (uy) andu,1 € K'att arelinearly independent
over K, whereu,, isthe vector defined in the proof of Lemma3.10. By theinjectivity of p,41
(Lemma 3.5) and Lemma 3.9, we obtain the following:
@ity x-0sk,q),y-0x(k,q),0x(k,qg + 1) are linearly independent over K, for any
g € Zy suchthatg + 1 € Z.
K]

When |k| is even, we apply (i) to ¢ = ‘7 € Zp. Then from Lemmas 3.4 and 3.7,

(s, &), 05 k', l)) isahomogeneous basis for D(Ax x). When |k| isodd, we apply (ii)

tog = ¥ Thenfrom Lemmas3.4and 3.7, (0 (k, “71), 05k, ¥11)) isahomogeneous
basisfor D(Ayx k). In both cases, we can prove Theorem 1.5. O
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4. SomeExamples

We will give some examples. Let ¥ = (x, y) beaK-basisfor V* and k = (k1, k2, k3) €
N3.

EXAMPLE 4.1. Suppose that k3 = k1 + k2 — 2 (eg. k = (3,3,4), (3,4,5),
(4,4,6),...). Then | &1 = 417 = k3 + 1 and ry 45+1 = 0. From Theorem 1.5,

kp—1 k;
oy im 22 ks iaras i ) 2 i ke phari-jy i) O
' J ox J ay’

j=0 Jj=kz
ko—1 k3+1
Go — 3t+l-j,J7 )\ 3t+1—jJ )
2(Z<j>x Rl O G S Fr
j=0 Jj=k2
is ahomogeneous basisfor D(Ax ). On the other hand, put
ko—2 k3
k3\ ks—j j+1) 9 k3\ pai ix1) O
92::(2(,)x3/y-’+ —+ Z Syt —
v Jj ax Pt Jj dy
Then 61 + 65 = 6. Moreover putting f := Zﬁi_()z (kj?’)xkffyf and g =
Zl;gzszl (kjs)xkg_jyj’ we have

k3 k=1 kp—1) 0 k3 \ k-1 -1\ 9
01 = 1 2 N — 1 2 —
! x{<f+(k1—1>x Y ax+ g k1—1 . Y 8y

Thus

det M (61, 62) = det M (61, 6%) = (k 3 1>x"1yk2 = Q(Az).
L

1 7
This also showsthat (61, 62) isabasisfor D(Ayx i) thanksto Ziegler's criterion 3.1.

EXAMPLE 4.2. Thecasek = (4,4,4): Then, [k|/2=6,rn6=rve =1 st6=1
si'.6 = 2 and hence

oo | GB=g2 it j =123 0 _[6-j.3if j=123
T8 T\ (,6—j) if j=56 " M TMWeT (27— if j=567"

where k' = k + (0,0, 1). By Theorem 1.5, it follows that 6; = 05 (k, 6), 02 = Ox(k’, 6)
isabasisfor D(Ax k). Now see Figure 4.1 in page 15. The figure expresses 4 — ¢(P), the

hook-length 72, , (P) (at P € Y (3;)) and (;‘/_). Thus we have the following explicit expression
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for 9, = 0x(k, 6):
6 5 4.2, 9 2.4 5 0
01 =23 (3x° + 10x7y + 10x"y“)— — (5x“y™ + 2xy°)— ¢ .
ax ay
Similarly, we get the explicit expression for 62 = 05 (k’, 6) (see Figure 4):
6 5 4.2, 0 2.4 5, 60
02 = 104 (x° + 4x°y + 5x“y°) — — (5Gx“y* + 4dxy° +y°)—t .
ax ay
Compute 61(x + y), 62(x + y) and the determinant of the coefficient matrix det M (61, 62):
O1(x + y) =2x(3x — 2y)(x + y)*,

O2(x + y) =10(x — y)(x + y)°,
det M (61, 62) = —200x*y*(x + y)*.

Therefore, we know that (01, 82) isabasisfor D(Ax ;) thanksto Ziegler's criterion 3.1.

EXAMPLE 4.3. Thecasek = (5,5,5): Then, | 5] =7, 181 =8 r 7= 5.7 =2,
Tk,8 = Sk.8 = 1 and hence

L0 _[6-j83 i j=123 ) [6-j2 if j=1234
PTG T (2.2,8-)) if j=67.8" M TMNET (W 7—)) if j=67

By Theorem 1.5, 61 := 0x(k,7), 02 := 6x(k,8) is a homogeneous basis for D(Ax x).
Explicitly, 61 and 6, are expressed as follows (see Figure 4 and 4):
7 6 5.2 0 2.5 6 7, 0
01=25¢(2x" 4+ 7x°y + 7x7y )E—i-(?x y> 4+ Txy° 4 2y )5 ,
8 7 6.2 5.3 0 3.5, 2.6 9
02 =57 (2x° + 9x 'y + 15x°y“ 4 10x°y )a——(3x yo+x%y )8_ .
X y
Compute 01(x + y), 62(x + y) and the determinant of the coefficient matrix det M (61, 62):

O1(x +y) = 25(x + y)%(2x? — 3xy + 2y?),
O2(x + y) =5x%(2x — y)(x + y)°,
det M (01, 62) = —2500x°y°(x + y)°.

Therefore, we verify that (61, 62) isabasisfor D(Ayx ) thanksto Ziegler's criterion.



ON THE EXPONENTS OF 2-MULTIARRANGEMENTS 115

j 1 2 3 1 5 6
iepy | A2 2[1] [4]3]2] [4[3] :
' 54 54 504
o, (P) s[af2]1] [4]3]1] 2| |
201 201 2 :
() 6 20 20 1 10 4
FIGURE 4.1: The Young diagramsY()L,((%)
j 1 2 3 5 6 7
5 o(P) slalsl2|u] [s]als]2] [s]a]3] @ [5]a] [5]4a] [5]4]
' 6|54 6|54 6|54 65 |6
h () ols]a]2[1] [s]ala]1] [a]al2] = [3]2] [3][1] [2]1]
. 32]1 32]1 3[2[1] ¢ [2]1] [1]
() 10 10 50 50 10 10
FIGURE 4.2: The Young diagramsY(k/({f,')G)
j 1 2 3 5 6 7
5 o(P) slalsl2|u] [s]als]2] [s]a]3] @ [5]a] [5]4a] [5]4]
' 6|54 6|54 6|54 65 |6
h () ols]a]2[1] [s]ala]1] [a]al2] = [3]2] [3][1] [2]1]
. 3)2]1 32]1 3[2[1] ¢ [2]1] [1]
() 10 10 50 50 10 10
: i ()
FIGURE 4.3: The Young dlagrarnsY(Ak{7)
j 1 2 3 5 6 7
5 o(P) slalsl2|u] [s]als]2] [s]a]3] @ [5]a] [5]4a] [5]4]
' 6|54 6|54 6|54 65 |6
h () ols]a]2[1] [s]ala]1] [a]al2] = [3]2] [3][1] [2]1]
. 32]1 3]2]1 3[2[1] ¢ [2]1] [1]
() 10 10 50 50 10 10

FIGURE 4.4: The Young diagramsY()L,(({g)
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