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Abstract. In this paper we study the exponents of 2-multiarrangements. More precisely, we compose a basis

for D(A, k) in the case where A consists of three lines using Q-polynomials
(X
λ

)
. Here

(X
λ

)
is the generalized

binomial coefficient of the partition λ.

1. Introduction

Let V be an �-dimensional vector space (� > 0) over a field of characteristic zero K.
Let A be a central hyperplane arrangement in V , that is, A is a finite set of codimension one
subspaces of V . For simplicity, we call A an �-arrangement. A pair (A, k) consisting of an
�-arrangement A and a multiplicity k : A → N = Z≥0 is called an �-multiarrangement in
V . This term was introduced by G. Ziegler in [6]. We can regard any arrangement A as a
multiarrangement with the constant multiplicity k(H) = 1 for all H ∈ A. The restriction of
an arrangement A to one of its hyperplanes is a typical example: Fix H ∈ A and define a

multiarrangement (AH , k) in H by AH := {H ′ ∩ H | H ′ ∈ A \ {H }} and k(X) := #{H ′ ∈
A \ {H } | H ′ ∩H = X}.

Let V ∗ be the dual space of V and S = K[V ] be the algebra of all polynomial functions
on V which is equal to K[x1, . . . , x�] for any basis (x1, . . . , x�) for V ∗. The algebra S is
naturally graded by S = ⊕

q≥0 Sq where Sq is the K-vector space consisting of zero and all

homogeneous polynomials of degree q . It is convenient to define Sq = 0 for q < 0. For each
hyperplane H , we choose a linear form αH ∈ V ∗ such that H = ker(αH ). Let (A, k) be an
�-multiarrangement. Define a homogeneous polynomial Q(A, k) ∈ S by

Q(A, k) :=
∏
H∈A

αH
k(H) .

We call Q(A, k) the defining polynomial of the multiarrangement (A, k).
A K-derivation of S is a K-linear map θ : S → S such that

θ(f g) = θ(f )g + f θ(g) (f, g ∈ S) .
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Let DerK(S) be the S-module of all K-derivations of S. A non-zero K-derivation θ is called a
homogeneous derivation of degree q if θ(V ∗) ⊆ Sq . Let DerK(S)q denote the K-vector space
consisting of zero and all homogeneous derivations of degree q . For each �-multiarrangement
(A, k), define an S-submodule D(A, k) of DerK(S) by

D(A, k) := {θ ∈ DerK(S) | θ(αH ) ∈ αH k(H)S for any H ∈ A} .
An element of D(A, k) is called an (A, k)-derivation. For each q ∈ Z, put D(A, k)q :=
D(A, k) ∩ DerK(S)q . Then D(A, k) = ⊕

q∈ZD(A, k)q . The S-module D(A, k) is graded

by the direct sum decomposition. An �-multiarrangement (A, k) is said to be free if D(A, k)
is a free S-module. Then the degrees exp(A, k) := [d1, . . . , d�] of a homogeneous basis for
D(A, k) are called the exponents of (A, k). For a given (multi)arrangement, it is important
to examine its freeness. The following theorem is fundamental:

THEOREM 1.1 (G. Ziegler [6, Corollary 7]). Every 2-multiarrangement is free.

As for 3-arrangements, M. Yoshinaga [5, Theorem 3.2] showed the following:

THEOREM 1.2 (M. Yoshinaga [5, Theorem 3.2]). Let A be a 3-arrangement which

contains a hyperplaneH . Put χ0(A, t) := (t−1)−1χ(A, t), where χ(A, t) is the characteris-
tic polynomial of A. Let [d1, d2] be the exponents of the restricted multiarrangement (AH , k).

Then the dimension of the cokernel of the restriction mapping res1
H : Ω1(A) → Ω1(AH , k)

is finite and is given by

χ0(A, 0)− d1 · d2 .

By this theorem, we can characterize the freeness of 3-arrangements. Moreover, we
can explicitly write the characteristic polynomial χ(A, t) = ∑

X∈LA µ(X)t
dimX of a 3-

arrangement A with H ∈ A as

χ(A, t) = (t − 1){(t − d1)(t − d2)+ dimK coker(res1
H )} ,

where exp(AH , k) = [d1, d2].
Because of this theorem, the exponents [d1, d2] of 2-multiarrangements are important

in order to study the freeness of a 3-arrangement. We give some known examples of 2-
multiarrangements and their exponents:

EXAMPLE 1.3. Let (A, k) be a 2-multiarrangement.
(1) If A = {H }, then exp(A, k) = [k(H), 0].
(2) If A = {H1,H2} (H1 �= H2), then exp(A, k) = [k(H1), k(H2)].
EXAMPLE 1.4 (L. Solomon-H. Terao [4, §5. Examples 1], S. Yuzvinsky). Let (A, k)

be a 2-multiarrangement with #A ≥ 2 and 1 ≤ k(H) ≤ 2 for any H ∈ A. Then

exp(A, k) =
{ [n− 1, ε + 1] if ε < n ,

[n, n] if ε = n
,

where n = #A and ε = #{H ∈ A | k(H) = 2}.



ON THE EXPONENTS OF 2-MULTIARRANGEMENTS 101

In this paper we give explicitly a homogeneous basis for D(Ã) using the generalized

binomial coefficients
(
X
λ

) ∈ Q[X] for any 2-multiarrangement Ã consisting of three lines. We

give the definition of
(
X
λ

)
in Definition 2.1, in Section two. We will essentially use the fact

that a special value of the well-known Schur function can be written as a generalized binomial
coefficient (Lemma 2.5). From this observation, we can describe the generalized binomial
coefficient as the determinant of a matrix whose entries are the usual binomial coefficients
(Theorem 2.8).

Let � = dimK V = 2. To state our main theorem, we prepare some notations. For each
triple of natural numbers k = (k1, k2, k3) ∈ N3, define |k| := k1 + k2 + k3 and

Zk :=
{
q ∈ Z

∣∣∣∣ |k| − 1

2
≤ q ≤ k1 + k2 − 1

}
.

Put rk,q := k1 + k2 − q − 1 and sk,q := k1 + k3 − q − 1 for each k ∈ N3 and q ∈ Z. In

addition, define N3
0 := {k = (k1, k2, k3) ∈ N3 | max{k1, k2} ≤ k3}. Let Σ = (x, y) be a

K-basis for V ∗ and (k, q) ∈ N3
0 × Z with q ∈ Zk . Define a homogeneous derivation θΣ(k, q)

of degree q by

θΣ(k, q) :=
( q−k1+1∑

j=1

(
k3

λ
(j)

k,q

)
xq+1−j yj−1

)
∂

∂x

+ (−1)rk,q
( |k|−q∑
j=k2+1

(
k3

λ
(j)
k,q

)
xq+1−jyj−1

)
∂

∂y
,

where λ(j)k,q are the following partitions:

λ
(j)

k,q :=



(k3 − j + 1, sk,q + 1, . . . , sk,q + 1︸ ︷︷ ︸

rk,q

) j = 1, . . . , q − k1 + 1 ,

(

rk,q︷ ︸︸ ︷
sk,q , . . . , sk,q , |k| − q − j) j = k2 + 1, . . . , |k| − q .

For each K-basis Σ = (x, y) for V ∗, define a 2-arrangement AΣ by

AΣ := {ker(x), ker(y), ker(x + y)} .
Moreover for any k ∈ N3, we assume that AΣ,k is the 2-multiarrangement on AΣ with the
multiplicity defined by ker(x) 
→ k1, ker(y) 
→ k2, ker(x + y) 
→ k3. Note that we can
express every 2-multiarrangement consisting of three lines as AΣ,k for some K-basis Σ for

V ∗ and k ∈ N3
0.

The main result of this paper is the following:

THEOREM 1.5. Let Ã be a 2-multiarrangement consisting of three lines, and write

Ã = AΣ,k for some basis Σ = (x, y) for V ∗ and k ∈ N3
0.
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If k1 + k2 − 1 ≤ k3, then(
f
∂

∂x
+ g

∂

∂y
, xk1yk2

(
∂

∂y
− ∂

∂x

))

is a homogeneous basis for D(Ã), where f = ∑k3
i=k1

(
k3
i

)
xiyk3−i , g = ∑k1−1

i=0

(
k3
i

)
xiyk3−i .

If k3 < k1 + k2 − 1, then(
θΣ

(
k,

|k|
2

)
, θΣ

(
k′, |k|

2

))
if |k| is even ,

(
θΣ

(
k,

|k| − 1

2

)
, θΣ

(
k,

|k| + 1

2

))
if |k| is odd

is a homogeneous basis for D(Ã), where k′ = k + (0, 0, 1) ∈ N3
0.

Throughout this paper, we use the following notation:
• #X or |X| : The cardinal number of a finite set X.
• P(q) := {1, . . . , q}, where q ∈ Z. (q ≤ 0 ⇒ P(q) = ∅.)
• [A]ij : The (i, j)-entry of a matrix A.
• tA : The transpose matrix of a matrix A: [tA]ij = [A]ji .
• Kn := { t (a1, . . . , an) | ai ∈ K }. (The n-dimensional “column” vector space.)
• kerA := { u ∈ Kn | Au = 0 } for an m× n K-matrix A.
• For each (m, n)-type matrix A = (aij ), α = {i1 < · · · < ip} ⊆ P(m) and β =

{j1 < · · · < jq} ⊆ P(n), we define

A[α, β] :=


ai1j1 · · · ai1jq
...

...

aipj1 · · · aipjq


 .

2. Preliminaries for Generalized Binomial Coefficients

In this section we define the generalized binomial coefficients following I. G. Macdonald
[1]. Furthermore, we describe some properties of them. In particular, the relation between
the Schur functions and the generalized binomial coefficients is important (Lemma 2.5). This
relation leads us to the expression for each generalized binomial coefficient as the determinant
of a matrix consisting of the (usual) binomial coefficients (Theorem 2.8). The theorem plays
a central role in this paper.

Let λ = (λ1, λ2, . . . , λn, . . . ) be a partition. In other words, (1) λ1 ≥ λ2 ≥ · · · are non-
negative integers, (2) there exists a positive integerN ∈ Z>0 such that λn = 0 for all n ∈ Z>0

whenever n ≥ N . Regard a finite sequence (µ1, µ2, . . . , µn) ∈ Nn of non-negative integers
with µ1 ≥ µ2 ≥ · · · ≥ µn as a partition (µ1, . . . , µn, 0, 0, . . . ). Define the weight |λ| and the
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length �(λ) by |λ| := ∑
i λi and �(λ) := #{i ∈ Z>0 | λi �= 0}. Moreover, define the Young

diagram Y(λ) of λ by Y(λ) := {(i, j) ∈ Z>0
2 | j ≤ λi}. Sometimes we express the Young

diagram of a partition λ = (λ1, λ2, . . . ) by drawing the left-justified array of squares with λi
squares in the i-th row. For each i ≥ 1, define λ̃i := #{j ∈ Z>0 | i ≤ λj } ∈ N. In particular,

λ̃1 = �(λ). Then λ̃ = (λ̃1, λ̃2, . . . ) is also a partition. We call this partition the conjugate of

λ. (e.g. λ = (5, 4, 4, 1) ⇒ λ̃ = (4, 3, 3, 3, 1).) By definition, Y(λ̃) = {(j, i) | (i, j) ∈ Y(λ)}.
In other words, Y(λ̃) is the diagram which is obtained by reflecting Y(λ) with respect to the

main diagonal. In particular, it follows that ˜̃
λ = λ.

Define the hook-length function of λ hλ : Z>0
2 → Z by hλ(i, j) := λi − j+ λ̃j − i+ 1

( �= 0). For eachP = (i0, j0) ∈ Y(λ), hλ(P ) expresses the number of points of the intersection
Y(λ) and the hook HP which has the right angle at P :

HP = {(i0, j) ∈ Z>0
2 | j ≥ j0} ∪ {(i, j0) ∈ Z>0

2 | i ≥ i0} .
(e.g. If λ = (5, 4, 4, 1) and P = (1, 2), then hλ(P ) = 6. See Figure 2.1.)

FIGURE 2.1: The hook-length function hλ

Now we are ready to state the following.

DEFINITION 2.1. Let λ be a partition. Define a Q-coefficient polynomial
(
X
λ

)
by(

X

λ

)
:=

∏
(i,j)∈Y(λ)

X − c(i, j)

hλ(i, j)
,

where c(i, j) = j − i. We call the polynomial
(
X
λ

)
the generalized binomial coefficient

(corresponding to λ).
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EXAMPLE 2.2. (1) Let λ = (5, 4, 4, 1) and m = 7. Then hλ(P ) and c(P ) are as
follows:

Each number in the square at P expresses hλ(P ) and m− c(P ) respectively. Computing
(
m
λ

)
,

we get (
m

λ

)
= 10 × 9 × 82 × 73 × 63 × 52 × 4 × 3

(8 × 6 × 5 × 4)× (6 × 4 × 3 × 2)× (5 × 3 × 2)
= 30870 .

(2) If λ = (n, 0, 0, . . . ) (n ∈ N), then(
X

λ

)
= X(X − 1) · · · (X − n+ 1)

n! =
(
X

n

)
,

which is usually called the binomial coefficient. In other words, regarding a natural number as
a special partition, we can regard the generalized binomial coefficient as the usual one which

is extended to every partition. This is the reason why we call
(
X
λ

)
the generalized binomial

coefficient.

LEMMA 2.3. Let r ∈ Q and λ = (λi)i≥1 be a partition. If λ1 ≤ r , then
(
r
λ

)
> 0.

PROOF. Since hλ(i, j) > 0 and

c(i, j) = j − i ≤ λi − i ≤ λ1 − i < λ1

for any (i, j) ∈ Y(λ), it follows that
(
r
λ

)
> 0. �

Fix a positive integer n. For each λ = (λ1, . . . , λn) ∈ Nn, we write X1
λ1 · · ·Xnλn =

Xλ, where X1, . . . , Xn are variables over Z. Define a polynomial aλ(X1, . . . , Xn) ∈
Z[X1, . . . , Xn] by

aλ = aλ(X1, . . . , Xn) := det(Xj
λi )1≤i,j≤n .

If we substituteXj forXi in the polynomial aλ, then aλ = 0 for any (i, j)with 1 ≤ i < j ≤ n.
This means that aλ is divisible in Z[X1, . . . , Xn] by each of the differencesXi −Xj (1 ≤ i <

j ≤ n) and hence by their product aδ = ∏
i<j (Xi −Xj ), where δ := (n− 1, . . . , 2, 1, 0).

DEFINITION 2.4. Let λ be a partition of length ≤ n. (Then we can regard λ ∈ Nn.)
Define the Schur function corresponding to λ by

Sλ = Sλ(X1, . . . , Xn) := aλ+δ
aδ

.

Then Sλ is a symmetric function for any partition λ with �(λ) ≤ n.
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A special value of the function Sλ can be expressed as a generalized binomial coefficient.
The following lemma expresses this fact:

LEMMA 2.5 (cf. I. G. Macdonald [p. 45 Example 4]). Let λ be a partition such that
�(λ) ≤ n. Then

Sλ(1, 1, . . . , 1) =
(
n

λ̃

)
.

For each integer r ≥ 0, the r-th elementary symmetric function er(X1, . . . , Xn) ∈
Z[X1, . . . , Xn] is the sum of all products of r distinct variables Xi so that

er = er (X1, . . . , Xn) =
∑

1≤i1<···<ir≤n
Xi1 · · ·Xir .

Define er = 0 for any r < 0. The following lemma is the basic proposition to connect the
Schur function with the elementary symmetric functions:

LEMMA 2.6 (cf. I. G. Macdonald [p. 41 (3.5)]). Let λ be a partition of length ≤ n.
Then

Sλ = det(eλ̃i−i+j )1≤i,j≤m ,

for any positive integer m with λ1 ≤ m.

From Lemmas 2.5 and 2.6, we get the following:

LEMMA 2.7. Let λ be a partition of length ≤ n. Then(
n

λ̃

)
= det

((
n

λ̃i + c(i, j)

))
1≤i,j≤m

for any positive integer m with λ1 ≤ m.

This lemma holds for arbitrary n. Therefore, we have the following theorem:

THEOREM 2.8 (cf. I. G. Macdonald [p. 45 Examples 4]). Let λ = (λi)i≥1 be a parti-
tion and m be a positive integer. If �(λ) ≤ m, then(

X

λ

)
= det

((
X

λi + c(i, j)

))
1≤i,j≤m

.

3. Proof of Theorem 1.5

In this section we will prove Theorem 1.5. First we prepare two criteria for the freeness
of multiarrangements. We recall that DerK(S) is the S-module of all K-derivations of the
symmetric algebra S = K[V ]. For simplicity, write DerS := DerK(S). Let (x1, . . . , x�)

be a K-basis for V ∗. For given derivations θ1, . . . , θ� ∈ DerS , define the coefficient matrix
(with respect to the basis (x1, . . . , x�) for V ∗) M = M(θ1, . . . , θ�) by [M]ij = θj (xi). By
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definition, we can write θj = ∑
i[M]ij ∂i , where ∂i is the usual derivation ∂

∂xi
. Then we have

the following criterion:

THEOREM 3.1 (Ziegler’s criterion [6]). Let θ1, . . . , θ� be (A, k)-derivations. Then
they form a basis forD(A, k) if and only if detM(θ1, . . . , θ�)

.= Q(A, k).
Here and elsewhere

.= stands for equality up to a nonzero constant multiple: f
.= g ⇔

f = cg for some c ∈ K∗ (f, g ∈ S). This criterion is the “multi-version” of Saito’s criterion
[2, Theorem 4.19], [3, p. 270]. The following theorem can easily be derived from Ziegler’s
criterion:

THEOREM 3.2. Let θ1, . . . , θ� ∈ D(A, k) be homogeneous and linearly independent
over S. Then (θ1, . . . , θ�) is a basis forD(A, k) if and only if∑�

j=1
deg θj =

∑
H∈A k(H) .

Next we list some basic properties of 2-multiarrangements.

LEMMA 3.3. Let (A, k) be a 2-multiarrangement and put |k| = ∑
H∈A k(H).

(1) If q0 = min{q ∈ Z | D(A, k)q �= 0}, then exp(A, k) = [q0, |k| − q0].
(2) Let H ∈ A and q ∈ Z. If q < min{k(H), |k| − k(H)}, then D(A, k)q = 0.
(3) If (|k| − 1)/2 ≤ q ∈ Z, thenD(A, k)q �= 0.
(4) Let H ∈ A. If (|k| − 1)/2 ≤ k(H), then exp(A, k) = [k(H), |k| − k(H)].
PROOF. (1) Write exp(A, k) = [d1, d2] ( d1 ≤ d2 ). Then it follows that d1 = q0,

since the Poincaré series Poin(D(A, k), t) = ∑
q∈Z(dimKD(A, k)q )tq is equal to (td1 +

td2)/(1 − t)2. Moreover by Theorem 3.2, d2 = |k| − q0. Thus we have exp(A, k) =
[q0, |k| − q0].

(2) We choose coordinates (x, y) so that x = αH . Then θ(x) ∈ Sq ∩ xk(H)S =
xk(H)Sq−k(H). Since q < k(H), θ(x) = 0. Next we show that θ(y) = 0. Let

Q = Q(A, k)/αH k(H). Since θ(x) = 0, it follows that θ(y) ∂αH ′
∂y

∈ αH ′ k(H
′)S for any

H ′ ∈ A \ {H }. Since the polynomials αH ′k(H
′) are relatively prime and ∂αH ′

∂y
�= 0, we have

θ(y) ∈ QS. On the other hand, θ(y) ∈ Sq . By the assumption, we obtain θ(y) = 0.
(3) Suppose that there is an integer q ≥ (|k| − 1)/2 such that D(A, k)q = 0. Write

exp(A, k) = [d1, d2]. Then since q + 1 ≤ d1, d2, we have |k| + 1 ≤ 2q + 2 ≤ d1 + d2. It
follows from Theorem 3.2 that |k| + 1 ≤ |k|. This is a contradiction.

(4) Put m := min{q ∈ Z | D(A, k)q �= 0} and Q := Q(A, k)/αH k(H). Let (x, y) be a
basis for V ∗ where x = αH . Since (|k|−1)/2 ≤ k(H), it follows from (3) thatD(A, k)k(H) �=
0. Thus we havem ≤ min{k(H), |k| − k(H)} becauseQ ∂

∂y
∈ D(A, k) and degQ ∂

∂y
= |k| −

k(H). On the other hand, from (2) and by the definition of m, min{k(H), |k| − k(H)} ≤ m.
Thus we have m = min{k(H), |k| − k(H)}. From (1), we can conclude that exp(A, k) =
[k(H), |k| − k(H)]. �
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LEMMA 3.4. Let M = ⊕
n∈ZMn be a free graded S-module with a homogeneous

basis (δ1, δ2) such that deg δ1 ≤ deg δ2. Put p := deg δ1, q := deg δ2 and d := q − p. If

θ1 ∈ Mp, θ2 ∈ Mq and xdθ1, x
d−1yθ1, . . . , y

dθ1, θ2 are linearly independent over K, then
(θ1, θ2) is a basis for M , where (x, y) is a K-basis for V ∗.

PROOF. Since (δ1, δ2) is a basis for M , there exist a, b ∈ K, f ∈ S−d and g ∈ Sd such
that θ1 = aδ1 + f δ2, θ2 = gδ1 + bδ2. Define a matrix A by

A =
(
a g
f b

)
.

Then (θ1, θ2) = (δ1, δ2)A. Consider the following two cases.
Case 1: d = 0. In this case, f, g ∈ K. In other words, A is a K-matrix. It follows that

detA ∈ K∗ = K \ {0}, since θ1, θ2 are linearly independent over K. Thus (θ1, θ2) is a basis
forM .

Case 2: d > 0. In this case, f = 0 because f ∈ S−d . Write g = ∑d
i=0 aix

d−iyi with
ai ∈ K and let

A′ =



a · · · 0 a0
...

. . .
...

...

0 · · · a ad

0 · · · 0 b




Then (xdθ1, x
d−1yθ1, . . . , y

dθ1, θ2) = (xdδ1, x
d−1yδ1, . . . , y

dδ1, δ2)A
′. It follows from the

assumption that ad+1b = detA′ �= 0 and hence detA = ab �= 0. Thus we can conclude that
(θ1, θ2) is a basis forM . �

We retain the notation of Section one. Now we start preparing for the proof of Theorem

1.5. Fix a K-basis Σ = (x, y) for V ∗ and k = (k1, k2, k3) ∈ N3
0. For each q ∈ Z, put

rq := rk,q = k1 + k2 − q − 1, sq := sk,q = k1 + k3 − q − 1 and tq := q − k3 + 1. Moreover
for each q ∈ Z with q ≥ k3, define a (q + 1, tq)-type matrixMq by

Mq :=
((

k3

k3 + c(i, j)

))
1≤i≤q+1
1≤j≤tq

.

Here, whenm < n or n < 0, the value of the binomial coefficient
(
m
n

)
is set to zero (m,n ∈ N)

and c(i, j) = j − i. Then it follows that

(Xq,Xq−1Y, . . . , Y q)Mq = (X + Y )k3(Xq−k3 ,Xq−k3−1Y, . . . , Y q−k3) , (3.1)

for any q ∈ Z with q ≥ k3. For each q ∈ Z, put αq := P(q−k1+1) and βq := P(q+1)\P(k2).
(αq and βq are subsets of P(q + 1).) When q ≥ k3, define

Aq := Mq [αq,P(tq)] , Bq := Mq [βq,P(tq)] .
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In other words, Aq (resp. Bq ) is the matrix consisting of the first (resp. last) q − k1 + 1

(resp. q − k2 + 1) rows of Mq . Furthermore define f q := (xq, xq−1y, . . . , xk1yq−k1)Aq ,

gq := (xq−k2yk2, . . . , xyq−1, yq)Bq and a K-linear mapping ρq : Ktq −→ (DerS)q by

ρq(u) := f qu
∂

∂x
+ gqu

∂

∂y

(u ∈ Ktq is a column vector), for each q ∈ Z with q ≥ k3.

LEMMA 3.5. The K-linear mapping ρq is injective for all q ∈ Z such that q ≥ k3.

PROOF. Since [Aq]ii = 1 for all i, [Aq]ij = 0 for all (i, j) with j > i and q− k1 + 1 ≥
q − k3 + 1 = tq , it follows that kerAq = 0. Thus we have

ρq(u) = 0 ⇒ f qu = 0

⇒Aqu = 0

⇒ u = 0 ,

for any u ∈ Ktq . This completes the proof. �

For each q ∈ Z, put γq := P(q + 1) \ (αq ∪ βq) ⊆ P(q + 1). If k3 ≤ q < k1 + k2 − 1,
then γq = {q − k1 + 2, . . . , k2} �= ∅. Therefore we can define a (rq, tq )-type matrix Cq by

Cq := Mq [γq,P(tq)] =
((

k3

sq + c(i, j)

))
1≤i≤rq
1≤j≤tq

.

Then it follows that

Mq =

 Aq

Cq

Bq


 .

Moreover, define a subspace Wq of Ktq by

Wq :=
{

Ktq if q = k1 + k2 − 1 ,
kerCq if q < k1 + k2 − 1

for each q ∈ Z with k3 ≤ q ≤ k1 + k2 − 1.

LEMMA 3.6. ρq(Wq) = D(AΣ,k)q for all q ∈ Z with k3 ≤ q ≤ k1 + k2 − 1. In
particular, it follows from Lemma 3.5 that Wq and D(AΣ,k)q are isomorphic as K-vector
spaces.

PROOF. First we show that ρq(Wq) ⊆ D(AΣ,k)q . Let u ∈ Wq and put θ := ρq(u).
Then we have

θ(x)= f qu = (xq, xq−1y, . . . , xk1yq−k1)Aqu ∈ xk1S ,

θ(y)= gqu = (xq−k2yk2, . . . , xyq−1, yq)Bqu ∈ yk2S ,
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θ(x + y)= f qu + gqu = (xq, xq−1y, . . . , yq)Mqu

= (x + y)k3(xq−k3, xq−k3−1y, . . . , yq−k3)u ∈ (x + y)k3S .

The last equality follows from (3.1). Thus θ ∈ D(AΣ,k). Since this holds for any u ∈ Wq ,
we can conclude that ρq(Wq) ⊆ D(AΣ,k)q . Next we show that ρq(Wq) ⊇ D(AΣ,k)q . Let
θ ∈ D(AΣ,k)q . Then we get

θ(x) ∈ xk1S ∩ Sq =
⊕q

i=k1
Kxiyq−i , (3.2)

θ(y) ∈ yk2S ∩ Sq =
⊕q−k2

i=0
Kxiyq−i . (3.3)

Since θ(x + y) ∈ (x + y)k3Sq−k3 , there exists u ∈ Ktq such that

θ(x + y) = (xq, xq−1y, . . . , yq)Mqu . (3.4)

By (3.2), (3.3) and (3.4), we have θ(x) = f qu, θ(y) = gqu. In other words θ = ρq(u).
Moreover we get Cqu = 0, if q < k1 + k2 − 1. Thus θ ∈ ρq(Wq). Since this holds for any θ ,
we can conclude that D(AΣ,k)q ⊆ ρq(Wq). �

The next result follows from Lemma 3.6.

LEMMA 3.7. If k3 ≤ k1 + k2, then exp(AΣ,k) = [� |k|
2 �, � |k|

2 �]. Here �a� = max{m ∈
Z | m ≤ a} and �a� = min{m ∈ Z | a ≤ m} for any a ∈ R.

PROOF. Since (|k| − 1)/2 ≤ �|k|/2�, it follows from Lemma 3.3 (3) that
D(AΣ,k)� |k|

2 � �= 0. Next we show that D(AΣ,k)q = 0 for any integer q with q < �|k|/2�.

Let q be an integer which satisfies q < �|k|/2�. (Then tq ≤ rq .) If q < k3, then it follows
from Lemma 3.3 (2) that D(AΣ,k)q = 0 since k3 ≤ k1 + k2. Thus we may assume that

k3 ≤ q , namely, tq ≥ 1. Define a partition λ by λ = (sq , . . . , sq ) ∈ Ntq . Then it follows from
Theorem 2.8 that

detCq [P(tq),P(tq)] =
(
k3

λ

)
. (3.5)

On the other hand, since k3 ≥ sq , it follows from Lemma 2.3 that
(
k3
λ

)
> 0. From this

inequality and (3.5), we have detCq [P(tq),P(tq)] �= 0 and hence Wq = kerCq = 0.
By Lemma 3.6, we get D(AΣ,k)q = 0. Thus we can conclude from Lemma 3.3 (1) that
exp(AΣ,k) = [�|k|/2�, �|k|/2�]. �

Any 2-multiarrangement consisting of three lines is of the form AΣ,k for some K-basis

Σ for V ∗ and k ∈ N3
0. Thus we can completely determine the exponents exp(A, k) for all

2-multiarrangements (A, k) with |A| = 3 from Lemmas 3.3 (4) and 3.7.
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THEOREM 3.8. Let (A, k) be a 2-multiarrangement with |A| = 3. Put |k| :=∑
H∈A k(H) and m := max{k(H) | H ∈ A}. Then

exp(A, k) =
{ [m, |k| −m] if |k|−1

2 ≤ m ,

[� |k|
2 �, � |k|

2 �] if m ≤ |k|
2 .

We proceed to the proof of Theorem 1.5. Define two K-linear mappings

ϕq,ψq : Ktq ⇒ Ktq+1

by ϕq(u) := (u
0

)
, ψq(u) := ( 0

u

)
, for q ∈ Z with k3 ≤ q < k1 + k2 − 1.

LEMMA 3.9. The following diagrams are commutative:

Wq

ϕq |Wq−−−→ Ktq+1

ρq |Wq
� �ρq+1

(DerS)q −−→
x· (DerS)q+1

,

Wq

ψq |Wq−−−→ Ktq+1

ρq |Wq
� �ρq+1

(DerS)q −−→
y· (DerS)q+1

.

In particular, it follows from Lemmas 3.5 and 3.6 that ϕq(Wq) ∩ ψq(Wq) ⊆ Wq+1.

PROOF. Let x(i) be the i-th row of the matrix Cq . Then we have

Aq+1 =
(
Aq ∗
x(1)

(
k3
k1

)
)

=
(

1 t0
∗ Aq

)
,

Bq+1 =
(
Bq ∗
t0 1

)
=
( (

k3
k2

)
x(tq )

∗ Bq

)
.

Let u ∈ Wq = kerCq and put ū := ϕq(u). It follows from the above expressions that

Aq+1ū = (Aqu
0

)
and Bq+1ū = (Bqu

0

)
. Thus we have

f q+1ū = (xq+1, xqy, . . . , xk1+1yq−k1 , xk1yq+1−k1)Aq+1ū

= x · f qu ,

gq+1ū = (xq+1−k2yk2, . . . , xyq, yq+1)Bq+1ū

= x · gqu ,
and hence ρq+1(ū) = x · ρq(u). Since this holds for any u ∈ Wq , the left diagram is
commutative. Similarly, we can show that the right diagram is commutative. �

Let q ∈ Zk . (Then 0 ≤ rq < tq .) For j ∈ αq ∪ βq , put

∆
(j)
q := detMq [γq ∪ {j },P(rq + 1)] .
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Here we recall the partitions λ(j)k,q and the derivation θΣ(k, q) (see Section one). By Theorem

2.8, it follows that

∆
(j)
q =



(
k3

λ
(j)
k,q

)
if j ∈ αq ∪ (βq ∩ P(|k| − q)) ,

0 otherwise

and hence

θΣ(k, q) =
(∑
j∈αq

∆
(j)
q xq+1−j yj−1

)
∂

∂x
+ (−1)rq

(∑
j∈βq

∆
(j)
q xq+1−j yj−1

)
∂

∂y
. (3.6)

The following result is the key lemma for the proof of Theorem 1.5:

LEMMA 3.10. θΣ(k, q) ∈ D(AΣ,k) \D(AΣ,k′), where k′ = k + (0, 0, 1) ∈ N3
0.

PROOF. First we claim that θΣ(k, q) ∈ D(AΣ,k). If q = k1 + k2 − 1, then ∆(j)q =
[Mq ]j,1. Putting uq = t (1, 0, . . . , 0), we have θΣ(k, q) = ρq(uq) from (3.6). By Lemma 3.6,

it follows that θΣ(k, q) ∈ D(AΣ,k) because Wq = Ktq in this case. When q �= k1 + k2 − 1,

put C′
q := Mq [γq,P(rq)] and C(i)q := M[γq, (P(rq) \ {i}) ∪ {rq + 1}] for any i = 1, . . . , rq .

Define a vector uq ∈ Ktq by

uq := t (detC(1)q ,− detC(2)q , . . . , (−1)rq−1 detC
(rq)
q , (−1)rq detC′

q,

tq−rq−1︷ ︸︸ ︷
0, . . . , 0) ,

then uq ∈ Wq = kerCq and θΣ(k, q) = ρq(uq). Thus we can conclude that θΣ(k, q) ∈
D(AΣ,k). Next we show that θΣ(k, q) /∈ D(AΣ,k′). From (3.1),

[ρq(u)](x + y) = (x + y)k3(xq−k3, xq−k3−1y, . . . , yq−k3)u

for any u ∈ Wq . Thus we have the following:

(∗) For u ∈ Wq , ρq(u) ∈ D(AΣ,k′ )⇔ (xq−k3, xq−k3−1y, . . . , yq−k3)u ∈ (x + y)S

⇔ (1,−1, . . . , (−1)tq−1)u = 0 .

If q = k1 + k2 − 1, then uq = t (1, 0, . . . , 0). It follows from (∗) that θΣ(k, q) = ρq(uq) /∈
D(AΣ,k′ ). In q �= k1 + k2 − 1 case, define partitions µi (i = 1, 2, . . . , rq ) by

µi := (

rq−i+1︷ ︸︸ ︷
sq + 1, . . . , sq + 1,

i−1︷ ︸︸ ︷
sq , . . . , sq ) .
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Then detC(i)q = (
k3
µi

)
by Theorem 2.8. Since k3 ≥ sq + 1, it follows from Lemma 2.3 that

detC(i)q = (
k3
µi

)
> 0. Similarly, if µ := (

rq︷ ︸︸ ︷
sq, . . . , sq ), then detC′

q = (
k3
µ

)
> 0. Thus we have

(1,−1, . . . , (−1)tq−1)uq =
rq∑
i=1

detC(i)q + detC′
q > 0 .

We can conclude from (∗) that θΣ(k, q) = ρq(uq) /∈ D(AΣ,k′ ). �

Now we prove Theorem 1.5.

PROOF OF THEOREM 1.5. Case 1 : k1 + k2 − 1 ≤ k3. Put

θ1 := f
∂

∂x
+ g

∂

∂y
, θ2 := xk1yk2

(
∂

∂y
− ∂

∂x

)
,

where f = ∑k3
i=k1

(
k3
i

)
xiyk3−i and g = ∑k1−1

i=0

(
k3
i

)
xiyk3−i . By definition, θ1(x) = f ∈ xk1S.

Since k1 + k2 − 1 ≤ k3, it follows that k2 ≤ k3 − i for each i = 0, . . . , k1 − 1, and hence
θ1(y) = g ∈ yk2S. Moreover θ1(x + y) = f + g = (x + y)k3 . Thus we can conclude that
θ1 ∈ D(AΣ,k). Since θ2(x + y) = 0, it is standard to see that θ2 is a AΣ,k-derivation. Here
compute detM(θ1, θ2):

detM(θ1, θ2) = xk1yk2

∣∣∣∣ f −1
g 1

∣∣∣∣ = xk1yk2(x + y)k3 .

It follows from Ziegler’s criterion 3.1 that (θ1, θ2) is a basis forD(AΣ,k).

Case 2: k3 < k1 + k2 − 1. By Lemma 3.10, it follows that
(i) θΣ(k, q), θΣ(k′, q) ∈ D(AΣ,k) are linearly independent over K, for any q ∈ Zk′

⊆ Zk .
For any q ∈ Zk with q+1 ∈ Zk , ϕq(uq), ψq(uq) and uq+1 ∈ Ktq+1 are linearly independent
over K, where uq is the vector defined in the proof of Lemma 3.10. By the injectivity of ρq+1

(Lemma 3.5) and Lemma 3.9, we obtain the following:
(ii) x · θΣ(k, q), y · θΣ(k, q), θΣ(k, q + 1) are linearly independent over K, for any

q ∈ Zk such that q + 1 ∈ Zk .

When |k| is even, we apply (i) to q = |k|
2 ∈ Zk′ . Then from Lemmas 3.4 and 3.7,

( θΣ(k,
|k|
2 ), θΣ(k

′, |k|
2 )) is a homogeneous basis forD(AΣ,k). When |k| is odd, we apply (ii)

to q = |k|−1
2 . Then from Lemmas 3.4 and 3.7, (θΣ(k,

|k|−1
2 ), θΣ(k,

|k|+1
2 )) is a homogeneous

basis forD(AΣ,k). In both cases, we can prove Theorem 1.5. �
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4. Some Examples

We will give some examples. LetΣ = (x, y) be a K-basis for V ∗ and k = (k1, k2, k3) ∈
N3

0.

EXAMPLE 4.1. Suppose that k3 = k1 + k2 − 2 (e.g. k = (3, 3, 4), (3, 4, 5),

(4, 4, 6), . . . ). Then � |k|
2 � = � |k|

2 � = k3 + 1 and rk,k3+1 = 0. From Theorem 1.5,

θ1 :=
( k2−1∑

j=0

(
k3

j

)
xk3+1−j yj

)
∂

∂x
+
( k3∑
j=k2

(
k3

j

)
xk3+1−j yj

)
∂

∂y
,

θ2 :=
( k2−1∑

j=0

(
k3 + 1

j

)
xk3+1−j yj

)
∂

∂x
+
( k3+1∑
j=k2

(
k3 + 1

j

)
xk3+1−j yj

)
∂

∂y

is a homogeneous basis for D(AΣ,k). On the other hand, put

θ ′
2 :=

( k2−2∑
j=0

(
k3

j

)
xk3−j yj+1

)
∂

∂x
+
( k3∑
j=k2−1

(
k3

j

)
xk3−j yj+1

)
∂

∂y
.

Then θ1 + θ ′
2 = θ2. Moreover putting f := ∑k2−2

j=0

(
k3
j

)
xk3−j yj and g :=∑k3

j=k2−1

(
k3
j

)
xk3−j yj , we have

θ1 = x

{(
f +

(
k3

k1 − 1

)
xk1−1yk2−1

)
∂

∂x
+
(
g −

(
k3

k1 − 1

)
xk1−1yk2−1

)
∂

∂y

}

θ ′
2 = y

(
f
∂

∂x
+ g

∂

∂y

)
.

Thus

detM(θ1, θ2) = detM(θ1, θ
′
2) =

(
k3

k1 − 1

)
xk1yk2

∣∣∣∣ 1 f

−1 g

∣∣∣∣ .= Q(AΣ,k) .

This also shows that (θ1, θ2) is a basis for D(AΣ,k) thanks to Ziegler’s criterion 3.1.

EXAMPLE 4.2. The case k = (4, 4, 4): Then, |k|/2 = 6, rk,6 = rk′,6 = 1, sk,6 = 1,
sk′,6 = 2 and hence

λj := λ
(j)

k,6 =
{
(5 − j, 2) if j = 1, 2, 3
(1, 6 − j) if j = 5, 6

, µj := λ
(j)

k′,6 =
{
(6 − j, 3) if j = 1, 2, 3
(2, 7 − j) if j = 5, 6, 7

,

where k′ = k + (0, 0, 1). By Theorem 1.5, it follows that θ1 = θΣ(k, 6), θ2 = θΣ(k
′, 6)

is a basis for D(AΣ,k). Now see Figure 4.1 in page 15. The figure expresses 4 − c(P ), the

hook-length hλj (P ) (at P ∈ Y(λj )) and
( 4
λj

)
. Thus we have the following explicit expression
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for θ1 = θΣ(k, 6):

θ1 = 2

{
(3x6 + 10x5y + 10x4y2)

∂

∂x
− (5x2y4 + 2xy5)

∂

∂y

}
.

Similarly, we get the explicit expression for θ2 = θΣ(k
′, 6) (see Figure 4):

θ2 = 10

{
(x6 + 4x5y + 5x4y2)

∂

∂x
− (5x2y4 + 4xy5 + y6)

∂

∂y

}
.

Compute θ1(x + y), θ2(x + y) and the determinant of the coefficient matrix detM(θ1, θ2):

θ1(x + y)= 2x(3x − 2y)(x + y)4 ,

θ2(x + y)= 10(x − y)(x + y)5 ,

detM(θ1, θ2)= −200x4y4(x + y)4 .

Therefore, we know that (θ1, θ2) is a basis forD(AΣ,k) thanks to Ziegler’s criterion 3.1.

EXAMPLE 4.3. The case k = (5, 5, 5): Then, � |k|
2 � = 7, � |k|

2 � = 8, rk,7 = sk,7 = 2,
rk,8 = sk,8 = 1 and hence

λj := λ
(j)
k,7 =

{
(6 − j, 3, 3) if j = 1, 2, 3
(2, 2, 8 − j) if j = 6, 7, 8

, µj := λ
(j)

k,8 =
{
(6 − j, 2) if j = 1, 2, 3, 4
(1, 7 − j) if j = 6, 7

.

By Theorem 1.5, θ1 := θΣ(k, 7), θ2 := θΣ(k, 8) is a homogeneous basis for D(AΣ,k).
Explicitly, θ1 and θ2 are expressed as follows (see Figure 4 and 4):

θ1 = 25

{
(2x7 + 7x6y + 7x5y2)

∂

∂x
+ (7x2y5 + 7xy6 + 2y7)

∂

∂y

}
,

θ2 = 5

{
(2x8 + 9x7y + 15x6y2 + 10x5y3)

∂

∂x
− (3x3y5 + x2y6)

∂

∂y

}
.

Compute θ1(x + y), θ2(x + y) and the determinant of the coefficient matrix detM(θ1, θ2):

θ1(x + y)= 25(x + y)5(2x2 − 3xy + 2y2) ,

θ2(x + y)= 5x2(2x − y)(x + y)5 ,

detM(θ1, θ2)= −2500x5y5(x + y)5 .

Therefore, we verify that (θ1, θ2) is a basis for D(AΣ,k) thanks to Ziegler’s criterion.
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FIGURE 4.1: The Young diagrams Y(λ(j)
k,6)

FIGURE 4.2: The Young diagrams Y(λ(j)
k′,6)

FIGURE 4.3: The Young diagrams Y(λ(j)
k,7)

FIGURE 4.4: The Young diagrams Y(λ(j)
k,8)
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