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Abstract. We show in this paper that the multiplicities of mixed representations are uniformly infinite or
uniformly finite and bounded, in the setting of completely solvable Lie groups extending then the situation of nilpotent
Lie groups. Necessary and sufficient conditions for these multiplicities to be finite are provided.

1. Introduction

Recently, it has been shown that mixed representations (up-down and down-up repre-
sentations) of exponential solvable Lie groups obey the orbital spectrum formula (see[1] and
[2]). Explicit formulae of the multiplicity function occurring in the disintegration of such rep-
resentations were given. The present work is a continuation of the papers [1] and [2] where
detailed information about the behavior of the multiplicity function of mixed representations
have been given in the setting of nilpotent Lie groups. More precisely, we proved that the
multiplicities of such representations are uniformly infinite or finite and bounded. Necessary
and sufficient conditions for the multiplicities to be finite were provided. We show in the
present work that such results can be extended to encompass completely solvable Lie groups.

2. Generalitiesand notations

2.1.  We begin this section by reviewing some facts about induced and restricted repre-
sentations of a solvable Lie group. One says that G is an exponential solvable Lie group if
the exponential mapping exp : g — G isadiffeomorphism. Throughout, G always denotes a
connected and simply connected exponential solvable Lie group with Liealgebrag. Let g* be
the dual space of g. The group G actson g* by the coadjoint representation. For any f in g*,
define the skew-symmetric bilinear form By on g by the formula By (X,Y) = f([X,Y]).
If b is aLie subalgebra of g, then we write h(f) = {X € g | By(X,h = {0}} and
bt = {l € g* : I} = O}, where /|, standsfor the restriction of / to .
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If h C h(f), then h issaid to be an isotropic subalgebraof f. Denoteby S(f, g) the set
of all isotropic subalgebras of f. If hisin S(f, g), we define the unitary character x r of the
group H = exp(h) by

xrExpy)) =e/M  yep.

Let o be a unitary representation of H acting on a Hilbert space H,,, and let db be the left
Haar measure on H. Theinduced representation t (o) = Indga acts on the completion of the
space

CX(G, H.0)={f:G — Ho, [ISC™, fgh) = Af %o~ ) f(9).

h e H, g€ G,]| fl|l compactly supported mod H}
by the formula
(2.1) (@) (9) f(x) = flg x).

It uniquely specifiesa G-invariant positive linear form d g on G/ H which obeys the equality:

/f(x)dx:f /f(gh)dhdg.
G G/H JH

(see [4]). The action given by formula (2.1) extends to a unitary representation of G on
L%(G/H,d§j) = L%(G, H, o).

Let M(f, g) be the set of elements of S(f, g) of maxima dimension and 7(f, g) the
subset of S(f, g) consisting of subalgebras h, such that 7(f) = v(x ) isirreducible. Then, as
isknown, an element h of M (f, g) isin I(f, g) if and only if b is a Pukanszky polarization,
i.e,

(2.2) H-f=f+ht=ry.

This condition holds for al elements of M (f, g) when G is nilpotent.

The dual space G of equivalence classes of irreducible and unitary representations of G
is parameterized canonically by the orbit space g*/G. More precisely, for I € g*, we may
find areal polarization b for I which satisfies the Pukanszky condition. The representation
= Indg xs (B = expb) is then irreducible and its class is independent of the choice of b.
The Kirillov-Bernat mapping @¢ : g* — G, [ — m; is surjective and factors to a bijection
fromg*/G on G. Given 7 € G, wedenoteby 26 c g* the coadjoint orbit associated to 7.

22. Letp, :g* — h* bethe canonical projection of h and 2H the coadjoint orbit
associated to the representation o by the Kirillov-Bernat mapping @y : h* — H, (where
H isthe unitary dua of H). The natural measure on p;l(Qf) is the fiber measure with H-

invariant measurein the base 2/ and the L ebesgue measure on the affine fiber . 1t follows
from Fujiwara’s result ([9]) that the representation t (o) obeysthe orbital spectrum formula,
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i.e.,

o
(2.3) (o) ~ / ngTedvg p(9)
Gp @/ G

where v, ,; isthe push-forward of the natural measure on ph—l(ﬂf ) C g* under the mapping
p;l(Q};’) - G- p;l(Qf)/G, and the value of the multiplicity function ng is given by the
number of H-orbitsin p;l(.Qf) N G - ¢, we denote this number by #[p;l(.Qf) NG-¢/H]
(For aset E, the symbol #E meansthe cardindity of E).

If G isacompletely solvable Lie group, then the multiplicity function ¢ +— ng iseither

uniformly infinite or uniformly finite and bounded. In particular, these multiplicitiesarefinite
if and only if

(2.4) dimG-¢ —2dmH - ¢ +dimeH =0,
for generic ¢ ph—l(.(zf) (see[19]).

2.3. Let A = exp(a) be an analytic subgroup of G associated to a subalgebraa and =
a unitary and irreducible representation which is associated to the coadjoint orbit 2¢ < g*.
Letaso p, : g* — a* bethe canonical projection of a, and let 4 be the restriction of 7 to
A. Theredtriction 4 obeys the orbital spectrum formula

®
(2.5) A = / niav,duﬁﬁ(l/f)
Pa(29)/A

wherenﬁ =#(2¢ ﬂp;l(A -Y)]/A, and ;ﬂj‘)G isthe push-forward of the canonica measure

on £2¢ under the mapping 28 — p_(£29)/A (see[10]).
In the completely solvable case, it is likewise known that the multiplicity function ¢ —

ni iseither uniformly infinite or uniformly finite and bounded. These multiplicities are finite

if and only if, we have

(2.6) dim2% —2dimA-¢ +dmA - p_ (¢) =0,

genericaly on 28 (see[15]).

3. Pseudo-algebraic geometry

3.1. Pseudo-algebraic sets.

DEFINITION 3.1. Let P beapolynomial function with real coefficients on R™** and
Ai tR™ - R, 1< < karerea linear functionals. The function

(32) Fp=F:R" >R x> P(x,d1, . ),

is called a pseudo-algebraitunction associated to the polynomia P.
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DEFINITION 3.2. A subset V of R is called pseudo-algebraidf it admits some rep-
resentation of the form

(3.2 V={xeR": i(x)=---= F,(x) =0},
where F;, 1 < i < r are pseudo-algebraic functions on R™.

DEeErFNITION 3.3. A subset A of R™ is called semi-pseudo-algebrai€ it admits some
representation of the form

(3.3) A={xeR": Fix)=---= F,(x) =0, G1(x) > 0, ..., Gi(x) > 0},

where F; = Fp,1<i <randG; = Go,,1<j<=lI are pseudo-algebraic functions on R™
associated respectively to the polynomials P, and Q.

It is so clear that any semi-pseudo-algebraic set of R™ is the intersection of the closed
set of common zeros of afinite number of pseudo-algebraic functions on R” and an open set
of R™.

The following theorem plays an important role in the sequel of the paper, asthe analysis
of the multiplicity function of mixed representations naturally involves the pseudo-algebraic
geometry (see next section for details).

THEOREM 3.4. LetA be a semi-pseudo-algebraic set®f, defined as in(3.3). Then
the number of connected componentg ah the Euclidean topology is finite and is bounded
by a scalar which depends only en r, [, k, deg P;, anddeg Q ;, but not on the coefficients
of either the polynomials or the linear functionals.

PROOF. We argue as in Proposition 4.4.5 of [3]. Let 7 : R”*1 — R” be the natural

continuous projection (x1, ..., Xu+1) — (x1,...,x,) andlet A C R"+1 pe the pseudo-
algebraic set defined by
Ax = {(xq, ... s Xm41) = (x, xm+l) € Rm+l cFi(x)=---=F(x)=0

xm4+1G1(x) - Gi(x) =1}.
Thentheset A1 = 7 (A») isdefined by
Ar={xeR": Fi(x) =--- = F(x) =0,G1(x)--- G;(x) # 0}
Indeed, suppose (x, x,;,+1) € A2, then
Fix)=---=F@x)=0 ad Gi(x)---Gi(x) #0,

sox € A1 and hence m(A2) C Aj. Conversely, let x € Aq, since Gi(x)---Gi(x) # 0,
wetake x,+1 = (G1(x) --- Gl(x))_l. Then (x, x,,4+1) € Ap, it followsthat x € 7 (A2) and
A1 C m(A2). On the other hand, the subset {x € R™ : G;(x) > 0} is open and closed
in{x e R" : Gj(x) # 0}, forali =1,...,1. Hence A is open and closed in A1 and
each connected component of A is also a connected component of A;. Finally, the number
of connected components of A is less than or equal to the number of connected components
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of A; whichisin turn less than or equa to the number of connected components of Aj, as
A1 = m(Ay). Thefollowing result, which can befound in [15], enablesusto conclude. Every
pseudo-algebraic subset V of R™ defined asin (3.2) hasonly finitely many componentsin the
Euclidean topology. In fact, the number of the connected components of V is bounded by a
scalar which dependsonm, r, [, k, deg P; and deg Q ;, but not on the coefficients of either the
polynomials or the linear functionals. O

COROLLARY 3.5. LetS c R™ be a semi-pseudo-algebraic set defined ag3i3).
Let F(x1,...,%m, ¥1, ..., yx) be a polynomial function with real coefficients. Suppgse
R"™ — R, 1 <i < k are real linear functionals. Then there is a numiérdepending only
onm,r 1, k,deg P;, deg Q;, anddeg F, such that either

(1) F(x,et™® . . ™) =0has an infinite number of solutions &
or

(2) the number of solutions ifi is bounded byw.

PROOF. Suppose that the number of solutionsin S of the equation
(3.9 F(x, et . ey =0

isfinite, so it is equal to the number of connected components of the semi-pseudo-algebraic
set V N S where

V={xeR": F(x,e""™ . . ¢"®)=0},

and the coroallary follows from the previous theorem. a

3.2. Semi-analytic sets. We now recall some properties of semi-analytic setsin R".
This material is quite standard (see [11], [17]). Given an open neighborhood U C R", let
C®(U, R) be the set of real analytic functions on U. Denote by B(C®(U, R)) the boolean
algebra generated by sets of the form

(3.5 xeU: fix)=---= fp(x) =0, g1(x) >0,..., g;(x) > 0},
where f1, ..., fp, 91, ..., gy @€inC*(U, R).

DEFINITION 3.6. A subset M of R" is semi-analytidf for every x € R", thereis an
open neighborhood U of x suchthat M N U € B(C® (U, R)).

It is well-known that the complement, the finite intersection and the locally finite union
of semi-analytic sets is semi-analytic. The inverse image of a semi-analytic by any analytic
map is semi-analytic. The closure, the interior and the boundary of any semi-analytic set are
semi-analytic.

Let M beasemi-analytic set in R” and p apositiveinteger. A point x € M issaid to be
p-regular if thereisan open neighborhood U of x suchthat M NU isan analytic sub-manifold
of dimension p of U; x isO-regular if it isan isolated point of M. The set of regular points of
M (i.e., p-regular pointsfor some p) isdensein M. The dimension dim M of M islessthan
or equal to p if there are not g-regular pointsof M withg > p; dmM = pifdmM < p
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butnotdimM < p — 1. LetdimM = p; thendimM = p anddim(M \ M) < p (M denotes
the closure of M).

3.3. Structureof coadjoint orbits. Thefollowing theorem describes the structure of
the coadjoint orbits space of an exponential solvable Lie group and is proved in [8].

THEOREM 3.7. LetG be a connected and simply connected exponential solvable Lie
group with Lie algebrgy. Then there is a finite partitiop of g* such that:
(1) eachU € g is G-invariant,
(2) foragivenU € g, the dimension of the coadjoint orbits ihis constant
(3) thereis atotal orderind/; < Uz < --- < U, of p such that for eaclv/,
U{U’ : U’ < U} is Zariski open ing*.
GivenU e g, there is a subspack in g*, and there are associated td indices: and g, for
eachj e : acomplex valued rational functiom; ong* and for eachj € ¢, a complex valued
rational functiong; ong* such that
(4 thesety ={leVNU:p;()=0, jeu, |qj(l)|2 =1, j € ¢} isacross-section
for the coadjoint orbits inJ.
Moreover there is an analytic-invariant functionP : U — U such thatP(U) = .

REMARK 3.8. If G isacompletely solvable Lie group, then ¢ is empty and for each
j €1, pjisared valued rational function on g* (see[7]).

COROLLARY 3.9. LetG be a connected and simply connected exponential solvable
Lie group with Lie algebrag. Every coadjoint orbit2 (lying in a layerU) is closed inlU and
is a semi-analytic set ip*. In particular £2 is locally closed ing*.

PROOF. Let U bealayerin g suchthat 2 ¢ U andlet P : U — U be the analytic
G-invariant function such that P(U) = X', where X' is a cross-section for the coadjoint orbits
in U, asin Theorem 3.7. So £2 meets ¥ in asingle point. Let {{} = X N £2. The subset
P~L1({1}) is G-invariant and every orbit 2’ ¢ P~1({l}) intersects 2, so 2 = P~1({l}). This
showsthat §2 isclosedin U and semi-analyticas P isanalytic. Finally, asU issemi-algebraic
setin g*, 2 issemi-analytic setin g*. a

4. Multiplicities of up-down representations of completely solvable Lie groups

Let G beareal Liegroup, A and H closed connected subgroups of G and o a unitary
representation of H. The representation

(4.2 (G, H, A, 0)=Ind%o|,,

of A iscalled an up-downrepresentation, see[1] and [12].
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In the context of exponential solvable Lie group, we showed in[1] that the representation
o(G, H, A, o) obeysthe orbital spectrum formula, that is

53]

[Pa(G-p H(QF))1/A

Whereug,H’A isthe push-forward of the measure (dg x 1) on G x p;l(szg') (u isthe natural
measure on ph—l(Qf )) under the Jmappings
G x p, Q) = G- p MR = p (G p QYD) — [p.(G - p H@I))I/A - and
43) m(y) = 3 ngnl
QelG-p MG p )1/ G
withn% = #[(£2 N ph_l(Qf))]/H and né =#(2 N p 1A ¥))]/A (seedso[12]).

Assume now that G is acompletely solvable Lie group with Lie algebrag. Let x s bea
unitary character of H. For » € p (G - I'y), let

(4.4) My=G-TynG-pt).

Let e bethe largest index in {1, ..., u} such that U = U,, defined as in Theorem 3.7,
meets I'y in anon-empty Zariski-open subset of I'y. Let
(4.5) o=UNTy.

Forany ¢ € p_(G - Ip), let
(4.6) y=G-ToNG-ptY)=MyNU.

Let dg be the maximal dimension of G-orbitsin G - I'y, d4 the maximal dimension of
A-orbitsin G - I'y, d', the maximal dimension of A-orbitsin p (G - I'y) and dy the maximal
dimension of H-orbitsin G - I'y. Then, the set of linear forms ¢ such that dimG - ¢ =
dg, dmH - ¢ = dy anddimA - ¢ = d, isan open dense co-null setin G - I'y. Likewise,
thesetof ¢ € p.(G - I'y) suchthat dim A - ¢ = d/, isopendenseco-null in p (G - I'y).

Forany ¢ € p (G - Ip), let

By =TyNG-p ) andB), =By NTY.
The set of generic orbitsin M, isthen the set
Q,, =G- Bﬁp.
We prove now our main upshot in this section.

THEOREM 4.1. LetG be a completely solvable Lie group, H analytic subgroups
of G and x y a unitary character off. Then
(1) the multiplicity function of the representatign(G, H, A, x ) is either uniformly
infinite or uniformly finite and bounded
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(2) the multiplicities of the representatign(G, H, A, x ) are uniformly finite if and
only ifM;b is a semi-analytic subset gf and the triple equality

dlmM;b =2dy = 2ds — d;\
holds generically o (G - I'y).

PrRooF. The proof of the theorem consists of the following list of lemmas.

LEMMA 4.2. We keep the same notations and hypotheses. The intggeris finite
if and only if/\/l(/j is a semi-analytic subset gf anddimM(/j =2dy —d), = 2dy.

PrROOF. If m(y) isfinite, then n(y) = #[M(/j]/G < o0, and for every G-orbit 2 C
M(/,, we have

4.7 nl, < oo andnl, < oco.
Write
k
My =i
i=1
wherethe £2;, i = 1, ..., k are different G-orbits with common dimension, it follows from

Corollary 3.9 that M(/j is a semi-analytic set as it is a finite union of semi-analytic sets.
Moreover, the dimension of M/w isequal todim£2; foralli =1, ..., k. Thehypothesis (4.7)
implies that 24y = dim £2; by means of (2.4) and 2d, — d/, = dim£2; by formula (2.6) for
i=1,...,k. Whence,

dlmMi// =2dy =2ds — d;‘ .

Conversely, write again
M, =]J%.
iel
Sointhis case,
dmg; < dimMip =2dy <dimg;,
forany i € I. Hence, dm M/, = dim£2;, which means that the G-orbit £2; isopenin Miﬂ
and, therefore, is closed in Miﬂ. As coadjoint orbits are connected, the orbits £2;, i € I turn
out to be the connected components of Mip- Let® : G x g* — g* bethe mapping defined
by @(g,1) = Ad*g . Since G is completely solvable, the mapping @ is a pseudo-algebraic.
The set

D={(g.) € G x p]*(¥): @(g,]) € I}
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is therefore a semi-pseudo-algebraic set. It is clear that B:# = @(D). By Theorem 3.4, the

set D has a finite number of connected components. Whence, thanks to the continuity of @
one obtains that B(/, has a finite number of connected components. Finaly, the number of

connected components of Mj/, =G- B{u is less than or equal to the number of connected
components of 3, as being theimage of G x B;, under the mapping ¢ and #[M;b]/G < oo0.

The multiplicity functions n_é and ngi arethen finite by (2.4) and (2.6). O

LEMMA 4.3. LetG be a completely solvable Lie grougnd letH, A be closed con-
nected subgroups @. Then#| (/j]/G is either uniformly infinite or uniformly finite and

bounded orp (G - I'y).

ProOOF. Let X be across-section for the G-orbitsin U and
M=M,NX.
Let
N={(g1. 2. 11.12.13) € G x G x 'y x p_*()) x T : ®(g1,11) =13, P(g2,12) = I3},

where @ is defined as in the proof of the previous lemma. As X is an algebraic set of U,
N is a semi-pseudo-algebraic set. On the other hand, M is a cross-section for the G-orbits
in M), and M = g(N), whereg : G x G x I'y x p;'(¥) x ¥ — X is the canonical
projection. If the number n(y) = #[/\/lip]/G isfinite then n(y) = #g(N)] = the number
of the connected components of ¢(N). This number is less than or equa to the number of
connected components of N. It follows from Theorem 3.4 that the number of connected
components of N is bounded by a number which does not depend on v on p (G - I'y) as
Y intervenes only in the expression of the coefficients of the considered pseudo-algebraic
functions. Then the number n () is either uniformly infinite or uniformly finite and bounded
by anumber which does not depend on v on p (G - I'y). This completes the proof. O

LEMMA 4.4. The multiplicity function ofp(G, H, A, x ) is either uniformly infinite
or uniformly finite and bounded op, (G - I'y).

PrRoOF. Werecall that the set of thelinear form ¢ suchthat dmG-¢ = dg, dmH ¢ =
dy anddimA-¢ = d, isanopendenseco-null setin G- I'y, onwhichdimG-¢ —2dimH - ¢
anddimG-¢ —2dim A - ¢ are constant. It followsfrom the above lemmasthat the multiplicity
function m () iseither uniformly infinite or uniformly finite. It remainsto provethat if m(y)
is uniformly finite, then it is bounded. But using the fact that the multiplicity n}”z isequal to
the number of connected components of the pseudo-algebraic set £2 N p;l(A -), which does
not depend on  aswe indicated above (see Theorem 3.4). Finally, we use similar arguments
asin the nilpotent situation to conclude (see [1] page 190). a



50 ALl BAKLOUTI AND HATEM HAMROUNI

5. On down-up representations

Let G bealiegroup, H aclosed subgroup of G and = a unitary representation of G.
The unitary representation of G

(5.1) 0(G, H, ) = Ind$, (7t11)

is called a down-uprepresentation (see [2]). Assume that G is an exponentia solvable Lie
group, and r isanirreducible unitary representation of G. Let d$2 be acanonical measure on
the coadjoint orbit 2 associated to the representation 7, and let A be the Lebesgue measure
on ht. Let u%H be the push-forward of the measure (d$2 x 1) on 29 x h* under the
mappings

Q27 xbt = p (29 xbt = p (2D +b" = G-(p, (2 +bD)/G = G- (27 +hH)/G .

Itisestablished in [2] that the down-up representation o (G, H, ) obeysthe orbital spectrum
formula

D
(52 p(G, H, )~ / Mz (@) pd S (¢)
G(28+h1)/G
where
(5.3 ma (@) = 3 n2 g’

R elpy @9)Npy 281/ H

withn2" = #Q6 n pyH(@))/H and n%H =#28 0 p;H2M)/H.

Let Vi1 < Vo < --- < V, bethestratification of h* asin Theorem 3.7 and e be the largest

indexin {1, ..., s}, suchthat V, meets p, (29). The set (.Qj,G+hL)ﬂp;1(Ve) isanon-empty
open co-null in (28 + b1). Forany ¢ € (28 +hHH N ph_l(Ve), let
(5.4) Ap =y (29N p (G- p)and Ay = Ve N A .
Itisclear that the set Ay is H-invariant. Theset A’y isan open dense and H -invariant subset
of Ag as A’y = (Up<,Ve)NAg and (U, <. V,r) isaZariski open set in h* (see property (3) of
Theorem 3.7). Itisclear that A’y isthe set of H-orbits of maximal dimensionin A,. Recall
the notation 2¢ = G - f.

Let p be aunitary and irreducible representation of G. For ¢ in 29, write

do(¢) =dimH - ¢, d, = max d,(¢),
¢e.(20G
and
dg(p) = 2d, —dim

theset Z, = {¢ € 27 : d,(¢) = d,,} isanon-empty co-null setin 2.
Our main result of this section is the following:
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THEOREM 5.1. Let G be a completely solvable Lie groufd = exph an analytic
subgroup ofG andsx an irreducible unitary representation of. Then
(1) the multiplicity function of the representatign{G, H, ) is either uniformly infi-
nite or uniformly finite and bounded
(2) the multiplicities ofp (G, H, r) are finite if and only ifA;, is a semi-analytic subset
of h* and the triple equality

dlmA;, = dG(JT¢) =dg(m),

holds generically om2¢ + h+.

PROOF. We shall provein afirst timethat for ¢ in (2 +hl)ﬂp;1(ve), theset A, has
afinite number of connected components in the Euclidean topology. Infact, let {X1, ..., X,}
be a Jordan-Holder basis of g (i. e. the subspace g; = R — span{X1, ..., X;} isanidea of g
foreveryi =1,...,n). Since G is completely solvable, the function

F:R'xg*—g*

(-xsl) = ((-xlv . '1-xl”l)1l) = expxnxn o 'exp-xlxl l

isapseudo-algebraic function andfor / € g*, onehasG -1 = {F(x,1), x € R"}. Weview an
element [ in h* asan element of g* with atrivial extension on g. The set

A={x,y,) eR"xR' xh*:1 eV, F(x, f)—1lebt, F(y,¢p)—1€bh*},

is semi-pseudo-algebraic in R* x R" x h*. Letg : R" x R" x h* — h* be the canonical
projection, then, it isclear that A’, = g(A). Therefore the number of connected components
of A;b is less or than equal to the number of connected components of A, so Theorem 3.4
enables usto conclude. With the above in mind, the number of the connected components of
Al isbounded by a scalar which does not depend on ¢ € 27 + b

Let now ¢ € 29 + bt and r, itsirreducible and unitary representation. We show that
my(¢) is finite if and only if A;, is a semi-analytic set and dimA;5 = dg(my) = dg(m).
Assume first that mz (¢) < oo, then #{A'y]/H < oc and for al H - in [A'4]1/H, we

v

have that nf'w = ng < oo and n%w = ny,

dg(my) = dimH - . Write

< 00. Hence, dg(7) = dmH - ¢ and

k
A'¢=UH'1//1',
i=1

where the H-orbits, H - ;,i = 1, ..., k have the same dimension. It follows from Corol-
lary 3.9 that A’y is a finite union of semi-analytic sets, which is in turn a semi-analytic
set. Moreover, the dimension of A'4 is equd to dimH - y; foral i = 1,...,k. Hence
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dimA'y = dg(mg) = dg (). Onthe other hand, let
Ay=|JH vi.
iel
Thenforal i € I, we have:
(5.5) dimH - y; > dg(my) = dg(m) =dimA'y > dimH - ;.

Hence, dim A’y = dim H - ;, which meansthat H - v; isopenin A’y and thereforeis closed
in A'. Since H is connected, the orbits H - y;, i € I arethe connected components of A’
which implies that 7 isfinite. Finally, thanks to (5.5), (2.4) and (2.6), we conclude that the

multiplicity functions n,;’ and n% arefinite.
Let X, bethe cross-section for H-orbitsin V,. For f in .Qj? let
U={(x,y,) eR"xR'xh*: l e X, F(x, f)—lebt, F(y,p)—1€cbh*}.
As X, isalgebraic, U is pseudo-algebraic. Moreover,
#HA'Gl/H =H#q (V).

Whence, thanks to Corollary 3.5, the set #[.A'4]/H is either uniformly infinite or uniformly
finite and bounded on £2¢ + b which achieves the proof of the Theorem. mi

6. Examples

Let g be the 4-dimensional Lie algebra spanned by A, X, Y, and Z with nonzero Lie
brackets

[A, X]=X, [A,Y]=-Y, [X,Y]=Z.
Let (A%, X*, Y*, Z*} bethedual basisof g* and ¢ = g(a.p.,.6) = ¢A*+BX*+yY*+8Z* €

G . . . .
g*. Wedenoteby 22, ; ., 5 the G-orbit of ¢(a,4.,.5)- A routine computation gives

Ad*((expaA expxX expyY expzZ) Do, p.y.5)
= Pla—Petx+ye=ay+xy,fet—8y,ye~9+8x,8) -
(1) h={A,X,Z}, a={A,Z}and f = 1A*. S0, [y = f + b+ = LA* @ RY* and
G-Iy ={(+xy)A* +yY* x,y €R}.

Therefore, p, (G - I'r) = RA*. Moreover, for = aA* € p (G - I'y), one has

RA* @ R*Y* if o # A,

M, =
v {G'Ff otherwise,
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_ oG G _
and M, = 2610 Y200 _10 = 2+ U £2—. Notethat
dmM), =2, dy =1, ds=1, d, =0,
andfor 2 € [M,1/G,

n;é:land né:l.

It followsthat m(y) = 2 and

D
p(G.H, A, f)= 2/ soand
R

(2 h={A, X}, a={A,Y}and f = LA*. We haveinthiscasethat I'y = LA™ &
RY* ® RZ* and

G-Ty={M*U{aA*+yY*: aeR,y e R}U
(=) A* +xX* 4+ yY* 427" : x,y € R z € R},
Z
S0, p (G- Tp) = {AA*}U{xA*+yY*: x € R,y € R*}. The A-orbitsin general positionin

p.(G-T'y) areparameterized by theforms = £Y*. Moreover, fory = £Y* € p (G- Ty),
we have

My ={aA*+yY*:aeR ye R*}U{(A—Q)A*—i—xX*—i—yY*—i—zZ* :x,y €R,z € R},
Z

=10 = %)A*+xX*+yY*+zZ*: x,y€R zeR"
and therefore, dim/\/lgp = 3. Itfollowsthat for € p (G - I'y), m(y) = oo and

p(G,H, A, )~ occo_ @ ocooy,

where o istheirreducible unitary representation of A associated to theform ¢ = £Y*.

(3) We suppose hereafterthat h = {A, Y, Z} and let Dlay.s) = aA*+yY*+38Z* € h*.
as above,

—l o o
Ad*((expaAexpyY expzZ) )(P(a,y,(s) = Platye=ay,yea,8) -
Let f = BX*, B >0.Then
Q8 =G f={aA"+xX*, aeRxeR}}

and

G- (2¢ +ht) =RA* @ RX*.
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The generic orbitsin G - (2% + h1) are associated to the linear forms £ X*. For ¢ = +X*,
we have A;b = Ay = RA* and#[Ay]/H = oo. Hence
o(G, H,my) = oom_x+ ® oomy+ .

Moreover, we havedim Ay = 1 and dg () = 0.
(4) Consider finaly thecasewhereh = {A, X, Z}. Let <pz’a’ﬁ’5) =aA*+BX*+8Z* €

h*
Ad*((expaA eprX epoZ)_l)wfa)ﬁ)g) = w?ﬂt*ﬂe“x,ﬁe“,é) .
Let f = X*, we havethat
28 =G f={aA*+BX*, aeR, BeR},
G 1L
7+ ={aA"+ X" +yY*, a,y €R, BeRL},
and

G- (2° +bt) =29 +p*.
Let ¢ bein 29 + bt and wewrite p = aA* + BX* + yY*, then
G- -¢={(ad—Be'x+ye “y)A* + Be*X* +ye Y*, a,x,y €R},
and
H-¢={(ad— Be"x)A* + Be“*X* +ye™*Y*, a,x € R},
Itfollowsthat Ay = p, (25) N p, (G - ¢) = RA* + R% X*, and
dimAy = dg(m) =dg(mg) = 2.
Moreover, for ¢° = X* € h* wehave H-¢° = Ay. HenceA;) = Ay isasemi-analytic subset

of h* and #[Ay]/H = 1. Let “Qf(w") = H - ¢° where o (¢°) is the unitary and irreducible

representation associated to ¢° by the Kirillov-Bernat mapping @ . It is easy to check that
27N p;l(ﬂﬂ(p(,)) = H - 90100 and 27 N Pgl(f?f(w)) = H - ¢@,1,y,0, therefore
RH RH
ny"" =ng, " = 1. Findly, we have m, (¢) = 1.
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