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On the Parity Conjecture for Multiple L-values of
Conductor Four

Hirofumi TSUMURA

Tokyo Metropolitan University

Abstract. In this paper, we prove that the multipleL-value of conductor 4 can be expressed in terms of lower
depth multipleL-values under the condition on the parity of its depth and weight. This can be regarded as a character
analogue of what is called the “parity result” for multiple zeta values which was proved by Zagier.

1. Introduction

Let N be the set of natural numbers,N0 = N ∪ {0}, Z the ring of rational integers,Q the
field of rational numbers,R the field of real numbers andC the field of complex numbers.

Let χ be a Dirichlet character. The multipleL-value of depthr and of weight
∑r
j=1 kj

can be defined by

L(k1, k2, . . . , kr ;χ) =
∞∑

n1,...,nr=1

χ(n1)χ(n2) · · ·χ(nr)
n
k1
1 (n1 + n2)k2 · · · (n1 + · · · + nr)kr

(1)

for k1, . . . , kr ∈ N. Arakawa and Kaneko proved some relation formulas for them by
considering the shuffle product (see [1]). In particular whenχ is the trivial characterχ0,
L(k1, k2, . . . , kr ;χ0) is the multiple zeta value (also called the Euler-Zagier sum).

In [2], Borwein and Girgensohn conjectured the following fascinating result which is
called the parity result or the parity conjecture for multiple zeta values.

PARITY RESULT. For r ∈ N with r ≥ 2 and (k1, . . . , kr) ∈ N with kr ≥ 2,
ζ(k1, . . . , kr ) can be expressed in terms of lower depth multiple zeta values when its depth
and weight are of different parity.

The case of depth 2 has been already considered by Euler, and the case of depth 3 was
proved by Borwein and Girgensohn in [2]. Recently Zagier (with Ihara and Kaneko) gave the
proof in the general case (see [4] § 8). More recently the author gave another proof of this
result in a different method ([7]).

As a next target, we would like to prove the parity result for multipleL-values. But
it seems to be hard. Indeed, Terhune [5] proved a kind of the parity result for another type
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of doubleL-values. However a complicated calculation is necessary to prove it even for the
doubleL-values. At present, no parity results for general multipleL-values have been known.

The aim of this paper is to prove the parity result for the multipleL-values of general
depth attached to the primitive Dirichlet characterψ of conductor 4. Namelyψ(1) = 1,
ψ(3) = −1 andψ(2) = ψ(4) = 0, and

L(k1, k2, . . . , kr;ψ)

=
∞∑

j1,...,jr=0

(−1)j1 · · · (−1)jr

(2j1 + 1)k1(2j1 + 2j2 + 2)k2 · · · (2j1 + · · · + 2jr + r)kr

=
∑

0≤m1≤···≤mr

(−1)mr

(2m1 + 1)k1(2m2 + 2)k2 · · · (2mr + r)kr
.

(2)

Furthermore we letψ2 be the non-primitive character such thatψ2(n) = ψ(n)2 for n ∈ Z,
and consider

L(k1, . . . , kr ;ψ2) =
∑

0≤m1≤···≤mr

1

(2m1 + 1)k1 · · · (2mr + r)kr
(3)

for k1, . . . , kr ∈ N with kr ≥ 2.
For r ∈ N, letΛr be theQ-algebra generated by

r⋃
m=1

⋃
χ∈{ψ,ψ2}

{L(j1, . . . , jm;χ) | (j1, . . . , jm) ∈ Nm, jm > 1 (if χ = ψ2)} .

Note thatπ ∈ Λr because of the well-known formulaL(1;ψ) = π/4. Using these notation,
we prove the following theorem by the method introduced in our previous work (see [6, 7, 8]).

THEOREM 1. For r ∈ N with r ≥ 2 and (k1, . . . , kr ) ∈ N with kr ≥ 2,
L(k1, . . . , kr;ψ2) ∈ Λr−1 holds when its depth r and its weight

∑r
j=1 kj are of different

parity. Furthermore, L(k1, . . . , kr ;ψ) ∈ Λr−1 holds when its weight
∑r
j=1 kj is odd.

2. Preliminaries

We make use of the notation and quote some results in[6, 7, 8]. Letδ ∈ R with δ > 0
andu ∈ R with 1 ≤ u ≤ 1 + δ. We define

ρ(s; u) =
∞∑
m=0

(−u)−m
(2m+ 1)s

(4)

for s ∈ C. If u > 1 thenρ(s; u) is convergent for anys ∈ C. Note thatρ(s; 1) = L(s;ψ)
andρ(2j + 1; 1)π−2j−1 ∈ Q for j ∈ N0 (see (47)). Let

F(x; u) = 2uex

e2x + u
=

∞∑
m=0

Em(u) x
m

m! (5)
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for x ∈ D(π/2) = {x ∈ C | |x| < π
2 }. From [6] Section 2, we have

ρ(−j ; u) = 1

2
Ej (u) (j ∈ N0) , (6)

E2N+1(1) = 0 (N ∈ N0) . (7)

Let γ ∈ R with 0 < γ < π/2, andCγ : z = γ eit for 0 ≤ t ≤ 2π , wherei = √−1. From
(5), we can easily check that∫

Cγ

F (z; u)z−n−1dz = (2πi)En(u)
n! (n ∈ N0) .

LetM1(γ ) = max|F(z, u)| for (z, u) ∈ Cγ × [1,1 + δ]. Then we obtain

|En(u)|
n! ≤ M1(γ )

γ n
(8)

for anyn ∈ N0. This means that (5) is uniformly convergent in the wider sense with respect
to (x, u) ∈ D(π/2)× [1,1 + δ]. Forθ ∈ (−π/2, π/2) ⊂ R andu ∈ [1,1 + δ], we let

G(θ; u) = 1

iπ

∞∑
j=0

E2j+1(u)
(iθ)2j+1

(2j + 1)! ; H(θ; u) = 1

π

∞∑
j=0

E2j (u)
(iθ)2j

(2j)! . (9)

From (6), we see that ifu ∈ (1,1 + δ] then

G(θ; u) = 2

π

∞∑
m=0

(−u)−m sin((2m+ 1)θ) ;

H(θ; u) = 2

π

∞∑
m=0

(−u)−m cos((2m+ 1)θ) ,

(10)

where we letλm = {1 + (−1)m}/2 form ∈ Z. From (7)–(9), we have

lim
u→1+0

G(θ; u) = 0 . (11)

For s1, . . . , sr ∈ C andu ∈ [1,1 + δ], we let

Lr (s1, . . . , sr ;ψ; u) =
∑

0≤m1≤...≤mr

(−u)−mr
(2m1 + 1)s1 · · · (2mr + r)sr

, (12)

Lr (s1, . . . , sr ;ψ2; u) =
∑

0≤m1≤...≤mr

u−mr
(2m1 + 1)s1 · · · (2mr + r)sr

. (13)

We denote thepth derivative of sin(X) by sin(p)(X), and further denote sin(p)(X)
∣∣
X=α

by sin(p)(α) for α ∈ R. For a ∈ N, b, p ∈ N0, (k1, . . . , kr−1) ∈ Nr−1, u ∈ [1,1 + δ] and
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θ ∈ [−π/2, π/2], we define

Rp
r (θ; k1, . . . , kr−1; a, b; u) = i1−p

πr

b∑
ν=0

(
a − 1 + b − ν

b − ν

)
(−θ)ν
ν!

×
∑

0≤m1≤...≤mr

(−u)−mr sin(ν+p)((2mr + r)θ)

(2m1 + 1)k1 · · · (2mr−1 + r − 1)kr−1(2mr + r)a+b−ν
.

(14)

Since sin(ν+2) θ = − sin(ν) θ andi2 = −1, we have

Rp
r (θ; k1, . . . , kr−1; a, b; u) = Rp+2

r (θ; k1, . . . , kr−1; a, b; u) . (15)

Then we obtain the following lemma. Note that (just as elsewhere in this paper) an empty
sum is to be interpreted as zero.

LEMMA 1. Let u ∈ [1,1 + δ]. If a + λb+r ≥ 2, then

R0
r (π/2; k1, . . . , kr−1; a, b; u) = i

πr

b∑
ν=0

(
a − 1 + b − ν

b − ν

)
(−1)(ν+r−1)/2λν+r+1

× Lr (k1, . . . , kr−1, a + b − ν;ψ2; u)(−π/2)
ν

ν! .

(16)

If a + λb+r+1 ≥ 2, then

R1
r (π/2; k1, . . . , kr−1; a, b; u) = 1

πr

b∑
ν=0

(
a − 1 + b − ν

b − ν

)
(−1)(ν+r)/2λν+r

× Lr (k1, . . . , kr−1, a + b − ν;ψ2; u)(−π/2)
ν

ν! .

(17)

In particular, for µ ∈ {0,1},
Rµ
r (π/2; k1, . . . , kr−1; a,0; u)

=



0 (p ≡ r (mod 2)) ;
i1−µ

πr
L(k1, . . . , kr−1, a;ψ2) (p 
≡ r (mod 2)) ,

(18)

and

(iπ)µ−1Rµ
r (π/2; k1, . . . , kr−1; a, b; 1) ∈ 1

πr+1−µΛr . (19)

PROOF. We can easily check that

sin(ν)
(
(2m+ r)

π

2

)
= (−1)m+(ν+r−1)/2λν+r+1

for ν,m ∈ N0. From (14), we have the assertion.
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Now we prepare some lemmas similar to those in [7] Section 2 as follows. From (2.16)
in [7], we have the formal relation

b∑
ν=0

(
a − 1 + b − ν

b − ν

)
(−θ)ν
ν!

sin(ν+p)(θx)
xa+b−ν

= ip−1
∞∑
N=0

(
a − 1 + b −N

b

)
(iθ)N

N ! λp+1+N x−a−b+N .

(20)

LEMMA 2. With the above notation and for u ∈ (1,1 + δ],

Rp
r (θ; k1, . . . , kr−1; a, b; u) = 1

πr

∞∑
N=0

(
a − 1 + b −N

b

)

× Lr (k1, . . . , kr−1, a + b −N;ψ; u)λp+1+N
(iθ)N

N ! .

(21)

In particular, for c ∈ N0 we have

Rp+c
r (θ; k1, . . . , kr−1; a + c, b; u) = 1

πr

∞∑
m=−c

(−1)b
(
m− a

b

)

× Lr (k1, . . . , kr−1, a + b −m;ψ; u)λp+1+m
(iθ)m+c

(m+ c)! .
(22)

PROOF. By (12), (14) and (20), we obtain (21). (22) can be proved by replacingp

with p+ c, a with a+ c and puttingN = m+ c in (21), and by using the well-known relation(−X
j

)
= (−1)j

(
X + j − 1

j

)
.

LEMMA 3. With the above notation and for u ∈ (1,1 + δ],
iRp+1

r (θ; k1, . . . , kr−1; a, b; u)G(θ; u)+ Rp
r (θ; k1, . . . , kr−1; a, b; u)H(θ; u)

= 2

πr+1

∞∑
m=0

{ b∑
ν=0

(−1)ν
(
m

ν

)(
a − 1 + b − ν

b − ν

)

× Lr+1(k1, . . . , kr−1, a + b − ν, ν −m;ψ; u)
}
λp+1+m

(iθ)m

m! .

(23)

PROOF. By (10), (12), (14) and using the well-known relations

sin(k+1) α · sinβ + sin(k) α · cosβ = sin(k)(α + β)

and

sin(p)(θ) = ip−1
∞∑
n=0

λp+1+n
(iθ)n

n! ,
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we can verify that the left-hand side of (23) equals to

2

ip−1

b∑
ν=0

(
a − 1 + b − ν

b − ν

)
(−θ)ν
ν!

×
∑

m1<···<mr

(−u)−mr+1 sin(ν+p)((2mr+1 + r + 1)θ)

(2m1 + 1)k1 · · · (2mr−1 + r − 1)kr−1(2mr + r)a+b−ν

= 2

ip−1

b∑
ν=0

(
a − 1 + b − ν

b − ν

)
(−θ)ν
ν!

× iν+p−1
∞∑
n=0

Lr+1(k1, . . . , kr−1, a + b − ν,−n;ψ; u)λν+p+1+n
(iθ)n

n! .

From the binomial theorem, this equals to

2
∞∑
m=0

b∑
ν=0

(
m

ν

)
(−1)ν

(
a − 1 + b − ν

b − ν

)

× Lr+1(k1, . . . , kr−1, a + b − ν, ν −m;ψ; u)λp+1+m
(iθ)m

m! .

Thus we have the assertion.
Let a ∈ N, b ∈ N0 and(k1, k2, . . . , kr−1) ∈ Nr−1 andu ∈ (1,1 + δ]. Form ∈ Z, we

define

Am(k1, . . . , kr−1; a, b; u) = 2

πr+1

b∑
ν=0

(−1)ν
(
m

ν

)(
a − 1 + b − ν

b − ν

)

× Lr+1(k1, . . . , kr−1, a + b − ν, ν −m;ψ; u) .
(24)

In particular whenm ≤ −1, we can define

Am(k1, . . . , kr−1; a, b; 1) = lim
u→1+0

Am(k1, . . . , kr−1; a, b; u) . (25)

Lemma 3 states that

iRp+1
r (θ; k1, . . . , kr−1; a, b; u)G(θ; u)+ Rp

r (θ; k1, . . . , kr−1; a, b; u)H(θ; u)

=
∞∑
m=0

Am(k1, . . . , kr−1; a, b; u)λp+1+m
(iθ)m

m! .
(26)
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LEMMA 4. With the above notation and for c ∈ N0,

b∑
ν=0

(
a − 1 + b − ν

b − ν

)
Rp+c+1
r+1 (θ; k1, . . . , kr−1, a + b − ν; c, ν; u)

= 1

2

∞∑
m=−c

Am(k1, . . . , kr−1; a, b; u)λp+m
(iθ)m+c

(m+ c)! .
(27)

PROOF. By applying (22) to the left-hand side of (27) and using (24), we obtain the
asserted formula.

PROPOSITION 1. With the above notation,Rp
r (θ; k1, . . . , kr−1; a, b; u) is defined and

holomorphic for all θ ∈ D(π/2) when u ∈ [1,1 + δ]. Furthermore, for any γ ∈ R with
0< γ < π/2, there exists a constant Mr (γ )(> 0) independent of u such that

|Am(k1, . . . , kr−1; a, b; u)|
m! ≤ Mr (γ )

γ m
(m ∈ N0, u ∈ (1,1 + δ]) . (28)

In particular

lim inf
m→∞

{ |Am(k1, . . . , kr−1; a, b; u)|
m!

}−1/m

≥ π

2
(u ∈ (1,1 + δ]) . (29)

PROOF. We prove this proposition by induction onr ∈ N. Whenr = 1, by (21), we
have

Rp

1 (θ; ; a, b; u)

= 1

π

∞∑
N=0

(
a − 1 + b −N

b

)
ρ(a + b − N; u)λp+1+N

(iθ)N

N !
(30)

for u ∈ (1,1 + δ]. From (8), the right-hand side of (30) is uniformly convergent with respect
to (θ, u) ∈ [−γ, γ ] × [1,1 + δ] for anyγ ∈ R with 0 < γ < π/2. Hence (30) holds for
u ∈ [1,1+ δ] whenθ ∈ (−π/2, π/2). Namely, foru ∈ [1,1+ δ], Rp

1 (θ; ; a, b; u) is defined
and holomorphic for allθ ∈ D(π/2) and continuous for all(θ, u) ∈ D(π/2)× [1,1+ δ]. By
(26), we have

iRp+1
1 (θ; ; a, b; u)G(θ; u)+ Rp

1 (θ; ; a, b; u)H(θ; u)

=
∞∑
m=0

Am(; a, b; u)λp+1+m
(iθ)m

m!
(31)

for u ∈ (1,1 + δ]. Furthermore, it follows from the above consideration that the left-hand
side of (31) is holomorphic forθ ∈ D(π/2) and continuous for(θ, u) ∈ D(π/2)× [1,1+ δ].
Hence, by the same method as in the proof of (8), we obtain, forγ ∈ R with 0< γ < π/2,

|Am(; a, b; u)|
m! ≤ M1(γ )

γ m
(m ∈ N0, u ∈ (1,1 + δ]) , (32)
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where

M1(γ ) = max
(θ,u,p)∈

Cγ ×[1,1+δ]×{0,1}
|iRp+1

1 (θ; ; a, b; u)G(θ; u)+ Rp

1 (θ; ; a, b; u)H(θ; u)| .

Thus we have the assertion in the case whenr = 1.
Next we assume that the case ofr holds. Then, for anyγ ∈ R with 0 < γ < π/2, there

exists a constantMr (γ )(> 0) independent ofu such that

|Am(k1, . . . , kr−1; a, b; u)|
m! ≤ Mr (γ )

γ m
(m ∈ N0, u ∈ (1,1 + δ]) .

In particular whena = kr ∈ N andb = 0, it follows from (24) that

2|Lr+1(k1, . . . , kr−1, kr ,−m;ψ; u)|
πr+1 m! ≤ Mr (γ )

γ m
(m ∈ N0, u ∈ (1,1 + δ]) .

Hence the right-hand side of (21) in the case ofr + 1 is uniformly convergent in the wider
sense with respect to(θ, u) ∈ (−π/2, π/2) × [1,1 + δ]. Therefore, foru ∈ [1,1 + δ],
Rp

r+1(θ; k1, . . . , kr; a, b; u) is defined and holomorphic for allθ ∈ D(π/2) and continuous
for all (θ, u) ∈ D(π/2)× [1,1 + δ]. Using (26) in the case ofr + 1 and the same method as
above, we have the assertion in the case ofr + 1. By induction, we obtain the proof.

3. Proof of Theorem 1 in the case of depth 2

In this section, we prove Theorem 1 in the case whenr = 2, namely prove that

L(k, l;ψ) ∈ Λ1 andL(k, l;ψ2) ∈ Λ1 for k, l ∈ N with k + l ≡ 1 (mod 2), wherel ≥ 2 in
the case ofψ2.

We formally defineE1
j (u) = 2ρ(−j ; u) for any j ∈ Z. Note thatE1

j (u) = Ej (u) for

j ∈ N0. From (21) withb = 0, we have

Rp

1 (θ; ; a,0; u) = 1

2π

∞∑
N=0

E1
N−a(u)λp+1+N

(iθ)N

N ! , (33)

becauseL1(s;ψ; u) = ρ(s; u). Fork ∈ N, p ∈ N0, u ∈ [1,1 + δ] andθ ∈ [−π/2, π/2], let

Ip1 (θ; k; u) = Rp

1 (θ; ; k,0; u)− 1

2π

k−1∑
j=0

E1
j−k(u)λp+1+j

(iθ)j

j ! , (34)

J p

1 (θ; k; u) = Rp+1
1 (θ; ; k,0; u) . (35)

If u ∈ (1,1 + δ] then

Ip1 (θ; k; u) = 1

2π

∞∑
m=0

E1
m(u)λm+p+1+k

(iθ)m+k

(m+ k)! , (36)
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J p

1 (θ; k; u) = 1

2π

∞∑
n=0

E1
n−k(u)λn+p

(iθ)n

n! . (37)

From Proposition 1, we obtain the following (see [6] (2.8)).

LEMMA 5. Let k ∈ N and θ ∈ (−π/2, π/2). Then Rp
1 (θ; ; a,0; u), I1(θ; k; u) and

J1(θ; k; u) can be defined and holomorphic for θ ∈ D(π/2) when u ∈ [1,1 + δ], and
continuous for (θ, u) ∈ D(π/2)× [1,1 + δ]. Furthermore limu→1+0 I1(θ; k; u) = 0.

Forn ∈ Z andu ∈ (1,1 + δ], we define

E2
n(k; u) = 2L2(k,−n;ψ; u)−

k−1∑
j=0

(
n

j

)
E1
j−k(u)λk+1+jρ(j − n; u) . (38)

In particular whenn ≤ −1, we defineE2
n(k; 1) by (38) with u = 1. We can prove the

following assertions by the same method as in [7].

LEMMA 6. For k ∈ N, p ∈ N0 and u ∈ (1,1 + δ],

iJ p

1 (θ; k; u)G(θ; u)+ Ip1 (θ; k; u)H(θ; u) = 1

π2

∞∑
N=0

E2
n(k; u)λk+1+N

(iθ)N

N ! .

PROOF. Applying (23) with(a, b, p, r) = (k,0, k,1), we have

iRp+1
1 (θ; ; k,0; u)G(θ; u)+ Rp

1 (θ; ; k,0; u)H(θ; u)

= 2

π2

∞∑
N=0

L2(k,−N;ψ; u)λp+1+N
(iθ)N

N ! .
(39)

From (6), (9) and using the binomial theorem, we have

1

π

k−1∑
j=0

ρ(k − j ; u)λk+1+j
(iθ)j

j ! H(θ; u) .

= 2

π2

∞∑
N=0

{ k−1∑
j=0

(
N

j

)
ρ(k − j ; u)λk+1+jρ(j −N; u)

}
λk+1+N

(iθ)N

N ! ,

becauseλp+rλq+r = λp+rλp+q . By (38), we have the assertion.

LEMMA 7. For k ∈ N and γ ∈ R with 0< γ < π/2, there exists a constantM2(γ ) >

0 independent of u such that

|E2
n(k; u)|
n! ≤ M2(γ )

γ n
(n ∈ N0, u ∈ (1,1 + δ]) , (40)

in particular

lim inf
n→∞

{ |E2
n(k; u)|
n!

}−1/n

≥ π

2
(u ∈ (1,1 + δ]) . (41)
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Furthermore

lim
u→1+0

E2
n(k; u)λk+1+n = 0 (n ∈ N0) . (42)

PROOF. By Proposition 1 withr = 2 andb = 0, we obtain

|L2(k,−n;ψ; u)|
n! ≤ M̃2(γ )

γ n
(n ∈ N0, u ∈ (1,1 + δ])

for a certainM̃2(γ )(> 0) independent ofu. Combining this and (8), it follows from (38) that
(40), namely (41) holds. Hence the equation of Lemma 6 holds foru = 1, and tends to 0 as
u → 1 + 0 by (11) and Lemma 5. Thus we obtain (42).

PROPOSITION 2. For k, l ∈ N, µ ∈ {0,1}, u ∈ (1,1 + δ] and θ ∈ (−π/2, π/2),

Rk+l+µ
2 (θ; k; l,0; u)− 1

2π

k−1∑
j=0

E1
j−k(u)(−1)jλk+1+jRk+l+µ

1 (θ; ; l, j ; u)

= 1

2π2

∞∑
m=−l

E2
m(k; u)λk+1+m+µ

(iθ)m+l

(m+ l)! .
(43)

PROOF. By (22) with (a, b, c, p, r) = (0,0, l, k + µ,2) and(0, j, l, k + µ,1), we
obtain (43) whenθ ∈ (−π/2, π/2).

By (40), the right-hand side of (43) is uniformly convergent with respect tou ∈ (1,1+δ].
Hence we letu → 1 + 0 in (43). Then it follows from (42) that

Rk+l
2 (θ; k; l,0; 1)− 1

2π

k−1∑
j=0

E1
j−k(1)(−1)jλk+1+jRk+l

1 (θ; ; l, j ; 1)

= 1

2π2

−1∑
m=−l

E2
m(k; 1)λk+1+m

(iθ)m+l

(m+ l)!

= 1

2π2

l−1∑
ν=0

E2
ν−l (k; 1)λk+1+l+ν

(iθ)ν

ν! .

(44)

In particular whenl ≥ 2 andµ = 0, both sides of (44) are continuous forθ ∈ [−π/2, π/2].
Hence (44) holds forθ ∈ [−π/2, π/2].

Now we assume thatk+ l ≡ 0 (mod 2) in (44). Substituting (16) into (44) withθ = π/2
and using (15) and (18), we have

− 1

2π

k−1∑
j=0

E1
j−k(1)(−1)j λk+1+jR0

1(π/2; ; l, j ; 1)

= 1

2π2

[(l−2)/2]∑
j=0

E2
2j+1−l(k; 1)

(iπ/2)2j+1

(2j + 1)! .
(45)
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Puttingl− 2 = 2m+ η with m ∈ N0 andη ∈ {0,1} such thatη ≡ k (mod 2), and multiplying
4π/i on both sides of (45), we have

m∑
j=0

E2
2j−2m−η−1(k; 1)

(iπ/2)2j

(2j + 1)! = − 2

π

k−1∑
j=0

E1
j−k(1)(−1)j λk+1+j

× π

i
R0

1(π/2; ; 2m+ 2 + η, j ; 1) ∈ Λ1 .

(46)

Indeed, it is known that

ρ(2j + 1; 1) = (−1)jπ2j+1

(2j)!22j+2 E1
2j (1) (j ∈ N0) (47)

(see, for example, [3] § 1). Hence, if 0≤ j < k then

1

π
E1
j−k(1)λk+1+j = 2

π
ρ(k − j)λk+1+j ∈ Q[π2]

and(π/i)R0
1(π/2; ;m+ 2, j ; 1) ∈ Λ1 from (18). Hence (46) holds.

We recall the following lemma (see [8] Lemma 4.1).

LEMMA 8. Let ξ ∈ {0,1}. Suppose {Pm} and {Qm} are sequences which satisfy the
relation

m∑
j=0

Pm−j
(iπ/2)2j

(2j + ξ)! = Qm (m ∈ N0) .

Then the relation

Pm =
m∑
ν=0

Bm−ν,ξ
(iπ/2)2m−2ν

(2m− 2ν)! Qν

holds for any m ∈ N0, where {Bn,q}n≥0 are the rational numbers defined by

2tξ

et + (−1)ξ e−t
=

∞∑
n=0

Bn,ξ
t2n

(2n)! (ξ ∈ {0,1}) .

Applying Lemma 8 withξ = 1, Pm = E2−2m−η−1(k; 1) and using (46), we can easily

check thatE2−2m−η−1(k; 1) ∈ Λ1, namely

E2−N(k; 1)λk+1+N ∈ Λ1 (48)

for N ∈ N, becauseπ ∈ Λ1. By (38), we see thatL2(k,N;ψ; 1)λk+1+N ∈ Λ1. Namely
L(k,N;ψ) ∈ Λ1 for k,N ∈ N with k +N ≡ 1 (mod 2).
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Next we assumek + l ≡ 1 (mod 2) in (44). Similarly, substituting (16) withu = 1 into
(44) and using (15) and (18), we have

− 1

π2
L2(k, l;ψ2; 1)− 1

2π

k−1∑
j=0

Ej−k(1)(−1)jλk+1+j
[(j−1)/2]∑
σ=0

(
l − 2 + j − σ

j − σ − 1

)

× (−1)σ+1L1(l + j − 2σ − 1;ψ2; 1)
(π/2)2σ+1

(2σ + 1)!

= 1

2π2

[(l−1)/2]∑
j=0

E2
2j−l(k; 1)

(iπ/2)2j

(2j)! .

(49)

Combining (48) and (49), we haveL(k, l;ψ2) = L2(k, l;ψ2; 1) ∈ Λ1 for k, l ∈ N with
k + l ≡ 1 (mod 2). Thus we obtain the assertion of Theorem 1 in the case whenr = 2.

EXAMPLE. Putting(k, l) = (1,3) in (46) and using (18), we have

E2−2(1; 1) = −L(3;ψ2) = −7

8
ζ(3) ,

becauseL(s;ψ2) = (
1 − 2−s) ζ(s), whereζ(s) is the Riemann zeta function. Putting

(k, n) = (1,−2) in (38) and(k, l) = (1,2) in (49), we have

L(1,2;ψ) = L(1;ψ)L(2;ψ)− 1

2
L(3;ψ2) = π

4
L(2;ψ)− 7

16
ζ(3) ,

L(1,2;ψ2) = 1

2
L(3;ψ2) = 7

16
ζ(3) .

By the same method as above, we obtain, for example,

L(2,3;ψ) = −3L(1;ψ)L(4;ψ)+ π

6
L(1;ψ)L(3;ψ2)+ 2L(5;ψ2)

= −3

4
πL(4;ψ)+ 7

192
π2ζ(3)+ 31

16
ζ(5) .

4. Proof of Theorem 1 in the case of an arbitrary depth

In this section, we aim to complete the proof of Theorem 1 by the same method as in
Section 4 of [7].

For r ∈ N andu ∈ [1,1 + δ], we denote byΛr(u) theQ-algebra generated by

r⋃
m=1

⋃
χ∈{ψ,ψ2}

{Lm(j1, . . . , jm;χ; u) ∣∣ (j1, . . . , jm) ∈ Nm, jm > 1 (if χ = ψ2)} .
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Note thatΛr(1) = Λr . Furthermore, forp ∈ N0, we denote byVr (p; u) theΛr(u)-module
generated by

r⋃
j=1

{Rp

j (θ; k1, . . . , kj−1; a, b; u) | (k1, . . . , kj−1) ∈ Nj−1 ,

a ∈ N, b ∈ N0 with a + λb+j+p ≥ 2} .

By (15), we haveVr (p; u) = Vr (p + 2; u). It follows from (19) that ifg(θ; u) ∈ Vr (µ; u)
for µ ∈ {0,1} then(iπ)µ−1g(π/2; 1) ∈ π−r−1+µΛr . We define theΛr(u)-linear operator

∆̃(l) : Vr (p; u) → Vr+1(p + l + 1; u) for l, r ∈ N, p ∈ N0 andu ∈ [1,1 + δ] by

∆̃(l)(Rp

j (θ; k1, . . . , kj−1; a, b; u)) (50)

=
b∑
ν=0

(
a − 1 + b − ν

b − ν

)
Rp+l+1
j+1 (θ; k1, . . . , kj−1, a + b − ν; l, ν; u) ,

wherej ∈ N with 1 ≤ j ≤ r. We further define

Γ̃2,µ(θ; k, l; u) = ∆̃(l)(Rk−1+µ
1 (θ; ; k,0; u))

− 1

2π

k−1∑
j=0

E1
j−k(u)(−1)jλk+1+jRk+l+µ

1 (θ; ; l, j ; u) .

for k, l ∈ N, µ ∈ {0,1}, θ ∈ [−π/2, π/2] andu ∈ [1,1 + δ]. Then we have

Γ̃2,µ(θ; k, l; u)− Rk+l+µ
2 (θ; k; l,0; u)

= − 1

2π

k−1∑
j=0

E1
j−k(u)(−1)jλk+1+jRk+l+µ

1 (θ; ; l, j ; u) ∈ V1(k + l + µ; u) .
(51)

From Proposition 2 and (50), we have

Γ̃2,µ(θ; k, l; u) = 1

2π2

∞∑
m=−l

E2
m(k; u)λk+1+m+µ

(iθ)m+l

(m+ l)! . (52)

These results can be generalized as follows.

PROPOSITION 3. For r ∈ N with r ≥ 2, (k1, . . . , kr ) ∈ Nr , µ ∈ {0,1}, u ∈ [1,1 + δ]
and θ ∈ [−π/2, π/2], there exist

Γ̃r,µ(θ; k1, . . . , kr; u) ∈ Vr
( r∑
j=1

(kj + 1)+ µ; u
)
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and {Erm(k1, . . . , kr−1; u)}m∈Z such that the following conditions hold:

Γ̃r,µ(θ; k1, . . . , kr ; 1)− R
∑r
j=1(kj+1)+µ

r

× (θ; k1, . . . , kr−1; kr,0; 1) ∈ Vr−1

( r∑
j=1

(kj + 1)+ µ

)
;

(53)

Γ̃r,µ(θ; k1, . . . , kr ; u) = 1

2πr

∞∑
m=−kr

Erm(k1, . . . , kr−1; u)λ∑r−1
j=1(kj+1)+µ+m

(iθ)m+kr
(m+ kr)! ;

(54)

lim
u→1+0

Erm(k1, . . . , kr−1; u)λ∑r−1
j=1(kj+1)+r+m = 0 (m ∈ N0) ; (55)

Er−N(k1, . . . , kr−1; 1)λ∑r−1
j=1(kj+1)+r+N ∈ Λr−1 (N ∈ N) . (56)

Furthermore, for any γ ∈ R with 0< γ < π/2, there exists a constant Mr(γ ) > 0 such that

|Erm(k1, . . . , kr−1; u)|
m! ≤ Mr(γ )

γ m
(m ∈ N0) . (57)

PROOF. We prove this proposition by induction onr(≥ 2). The case ofr = 2 is what
we mentioned above. Indeed, it follows from (40), (42), (48), (51) and (52) that we obtain
(53)–(57) in the case whenr = 2.

Now we assume that we definẽΓr,µ(θ; k1, . . . , kr; u) ∈ Vr (
∑r
j=1(kj + 1) + µ; u)

and {Erm(k1, . . . , kr−1; u)}m∈Z satisfying (53)–(57), and prove the assertion in the case of
r + 1. Supposeu > 1 and letp = ∑r

j=1(kj + 1). By the assumption, we can write

Γ̃r,0(θ; k1, . . . , kr; u) ∈ Vr (p; u) as the following finite sum:

Γ̃r,0(θ; k1, . . . , kr; u) =
∑
σ

Cσ (u)Rp
dσ
(θ; lσ,1, . . . , lσ,dσ−1; aσ , bσ ; u) ,

whereCσ (u) ∈ Λr(u) anddσ ≤ r for anyσ . By Lemma 2 and (54), we see that

Γ̃r,1(θ; k1, . . . , kr ; u) =
∑
σ

Cσ (u)Rp+1
dσ

(θ; lσ,1, . . . , lσ,dσ−1; aσ , bσ ; u)

holds. By (53), we can assume thatC1(u) = 1 and{
(d1; l1,1, . . . , l1,d1−1; a1, b1) = (r; k1, . . . , kr−1; kr,0) (σ = 1);
dσ ≤ r − 1 (σ 
= 1) .

(58)
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Letµ0 ∈ {0,1} with µ0 ≡ r (mod 2), and put

Ir (θ;k1, . . . , kr ; u)
= Γ̃r,µ0(θ; k1, . . . , kr ; u)

− 1

2πr

−1∑
m=−kr

Erm(k1, . . . , kr−1; u)λp−(kr+1)+µ0+m
(iθ)m+kr
(m+ kr)!

= Γ̃r,µ0(θ; k1, . . . , kn; u)− 1

2πr

kr−1∑
j=0

Erj−kr (k1, . . . , kr−1; u)λp+1+µ0+j
(iθ)j

j ! ,

(59)

and

Jr (θ; k1, . . . , kr ; u) = Γ̃r,1−µ0(θ; k1, . . . , kr ; u) . (60)

By (54) and (55), we have

lim
u→1

Ir (θ; k1, . . . , kr ; u) = 0
(
θ ∈

(
−π

2
,
π

2

))
. (61)

In the same way as in the proof of Lemma 6, it follows from (9), (26) and the binomial theorem
that

iJr (θ;k1, . . . , kr ; u)G(θ; u)+ Ir (θ; k1, . . . , kr; u)H(θ; u)

=
∞∑
m=0

{∑
σ

Cσ (u)Am(lσ,1, . . . , lσ,jσ−1; aσ , bσ ; u)

− i

πr+1

kr−1∑
j=0

Erj−kr (k1, . . . , kr−1; u)
(
m

j

)
ρ(j −m; u)λp+1+µ0+j

}

× λp+1+µ0+m
(iθ)m

m! ,

(62)

sinceλp+1+µ0+mλj+m = λp+1+µ0+jλp+1+µ0+m. Hence we define

Er+1
m (k1, . . . , kr; u) = πr+1

∑
σ

Cσ (u)Am(lσ,1, . . . , lσ,dσ−1; aσ , bσ ; u)

− i

kr−1∑
j=0

Erj−kr (k1, . . . , kr−1; u)
(
m

j

)
ρ(j −m; u)λp+1+r+j

(63)

form ∈ Z. Then (62) can be written as

iJr (θ;k1, . . . , kr ; u)G(θ; u)+ Ir (θ; k1, . . . , kr; u)H(θ; u)

= 1

πr+1

∞∑
m=0

Er+1
m (k1, . . . , kr−1, kr ; u)λp+1+r+m

(iθ)m

m! ,
(64)
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becauseµ0 ≡ r (mod 2). By (24) and (63), we can define

Er+1
m (k1, . . . , kr; 1) = lim

u→1+0
Er+1
m (k1, . . . , kr; u) (65)

for m ∈ Z with m ≤ −1. Letγ ∈ R with 0 < γ < π/2. Combining (8), (28), (57) and (62),
there exists a constantMr+1(γ )(> 0) independent ofu such that

|Er+1
m (k1, . . . , kr ; u)|

m! ≤ Mr+1(γ )

γ m
(m ∈ N0) , (66)

which means that (57) in the case ofr+1 holds. Hence the left-hand side of (64) is uniformly
convergent in the wider sense with respect to(θ, u) ∈ (−π/2, π/2) × [1,1 + δ]. Therefore
we can letu → 1+ 0 on both sides of (64), namely (64) holds foru ∈ [1,1+ δ]. Combining
(11), (61) and (64), we have

lim
u→1+0

Er+1
m (k1, . . . , kr; u)λ∑r

j=1(kj+1)+(r+1)+m = 0 (m ∈ N0) , (67)

becausep = ∑r
j=1(kj + 1). Forkr+1 ∈ N andµ ∈ {0,1}, we define

Γ̃r+1,µ(θ; k1, . . . , kr+1; u) = ∆̃(kr+1)(Γ̃r,µ(θ; k1, . . . , kr ; u))

− 1

2πr

kr−1∑
j=0

Erj−kr (k1, . . . , kr−1; u)(−1)jλp+j+1Rp+kr+1+1+µ
1 (θ; ; kr+1, j ; u) ,

(68)

wherep = ∑r
j=1(kj + 1). This means that (55) in the case ofr + 1 holds. Furthermore, by

(27) and (50), we have

∆̃(kr+1)(Γ̃r,µ(θ; k1, . . . , kr; u))
=

∑
σ

Cσ (u)∆̃(kr+1)(Rp+µ
dσ

(θ; lσ,1, . . . , lσ,dσ−1; aσ , bσ ; u))

=
∑
σ

Cσ (u)
bσ∑
νσ=0

(
aσ − 1 + bσ − νσ

bσ − νσ

)

× Rp+µ+kr+1+1
dσ+1 (θ; lσ,1, . . . , lσ,dσ−1, aσ + bσ − νσ ; kr+1, νσ ; u)

= 1

2

∑
σ

Cσ (u)
∞∑

m=−kr+1

Am(lσ,1, . . . , lσ,dσ−1; aσ , bσ ; u)λp+µ+m
(iθ)m+kr+1

(m+ kr+1)! .

(69)

By (69), we see that (68) states

Γ̃r+1,µ(θ; k1, . . . , kr+1; u)

= 1

2πr+1

∞∑
m=−kr+1

Er+1
m (k1, . . . , kr; u)λp+µ+m

(iθ)m+kr+1

(m+ kr+1)!
(70)
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for µ ∈ {0,1}, which means that (54) in the case ofr + 1 holds. From the assumption (58),
we have

∆̃(kr+1)(Γ̃r,µ(θ; k1, . . . , kr ; u))− Rq+µ
r+1 (θ; k1, . . . , kr; kr+1,0; u) ∈ Vr (q + µ; u) , (71)

whereq = ∑r+1
j=1(kj + 1). Hence, from (56) and (68), we have

Γ̃r+1,µ(θ; k1, . . . , kr+1; u)− Rq+µ
r+1 (θ; k1, . . . , kr ; kr+1,0; u) ∈ Vr (q + µ; u) , (72)

which means that (53) in the case ofr + 1 holds. Note that

∆̃(kr+1)

(
R

∑r
j=1(kj+1)+µ

r (θ; k1, . . . , kr−1; kr,0; u)
)

= Rq+µ
r+1 (θ; k1, . . . , kr ; kr+1,0; u) .

Now we fix (k1, . . . , kr ) ∈ Nr . Let kr+1 ∈ N with
∑r+1
j=1 kj ≡ r + 1 (mod 2) and

µ ∈ {0,1} with µ ≡ r + 1 (mod 2), namelyq ≡ 0 (mod 2). Let

h(θ; k1, . . . , kr+1; u) = Γ̃r+1,µ(θ; k1, . . . , kr+1; u)
− Rµ

r+1(θ; k1, . . . , kr ; kr+1,0; u) .
(73)

Sinceq ≡ 0 (mod 2), it follows from (72) thath(θ; k1, . . . , kr+1; u) ∈ Vr (µ; u) = Vr (r +
1; u). By combining (70) and (73), we have

Rµ
r+1(θ; k1, . . . , kr; kr+1,0; u)+ h(θ; k1, . . . , kr+1; u)

= 1

2πr+1

∞∑
m=−kr+1

Er+1
m (k1, . . . , kr ; u)λp+µ+m

(iθ)m+kr+1

(m+ kr+1)! ,
(74)

wherep = ∑r
j=1(kj + 1). Assumekr+1 ≥ 2. Then, by (66), we can letu → 1 + 0 on both

sides of (74). Furthermore, by (18) and (67) and the assumptionsq ≡ 0 andµ ≡ r + 1 (mod
2), we can letθ → π/2, and obtain

h(π/2; k1, . . . , kr+1; 1)

= 1

2πr+1

−1∑
m=−kr+1

Er+1
m (k1, . . . , kr ; 1)λ∑r

j=1(kj+1)+r+1+m
(iπ/2)m+kr+1

(m+ kr+1)!

= 1

2πr+1

kr+1−1∑
ν=0

Er+1
ν−kr+1

(k1, . . . , kr; 1)λr+ν
(iπ/2)ν

ν! .

(75)

Let ξ ∈ {0,1} with ξ ≡ r (mod 2). As well as (46), we putkr+1 − 1 − ξ = 2m + η with

η ≡ kr+1 + 1 + ξ (mod 2). Sinceq = ∑r+1
j=1(kj + 1) ≡ 0 andξ ≡ r (mod 2), we have

η ≡
r∑
j=1

(kj + 1)+ r ≡
r∑
j=1

kj (mod 2) . (76)
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Puttingν = 2j + ξ , (75) states that

h(π/2; k1, . . . , kr ,2m+ 1 + ξ + η; 1)

= 1

2πr+1

m∑
j=0

Er+1
2j−2m−1−η(k1, . . . , kr ; 1)

(iπ/2)2j+ξ

(2j + ξ)! (m ∈ N0) .
(77)

Sinceh(θ; k1, . . . , kr ,2m+1+ ξ +η; u) ∈ Vr (r+1; u) = Vr (1− ξ; u), it follows from (19)
that

(iπ)−ξ h(π/2; k1, . . . , kr ,2m+ 1 + ξ + η; 1) ∈ 1

πr+1−ξ Λr ⊂ 1

πr+1
Λr .

Applying Lemma 8 with

Pm = 1

2πr+1Er+1
−2m−1−η(k1, . . . , kr; 1) ,

Qm = (iπ)−ξ h(π/2; k1, . . . , kr ,2m+ 1 + ξ + η; 1) ∈ 1

πr+1Λr

form ∈ N0, we have

1

2πr+1Er+1
−2m−1−η(k1, . . . , kr; 1) ∈ 1

πr+1Λr (m ∈ Z with m ≤ −1) . (78)

Using (76), we obtain

Er+1
−N (k1, . . . , kr; 1)λ∑r

j=1(kj+1)+r+1+N ∈ Λr (N ∈ N) . (79)

Hence it follows from (66), (67), (70), (72) and (79) that we obtain the proof of Proposition 3
by induction.

Finally we give the proof of Theorem 1 in §1 as follows.
Supposep = ∑r

j=1 (kj + 1) = ∑r
j=1 kj + r ≡ 1 (mod 2), namely

∑r
j=1 kj andr are

of different parity. Then the condition (53) gives

Γ̃r,µ(θ; k1, . . . , kr ; u)− R1+µ
r (θ; k1, . . . , kr−1; kr,0; u) ∈ Vr−1(1 − µ; u)

for µ ∈ {0,1}. Chooseµ ∈ {0,1} with µ ≡ r (mod 2). Then, by (19), we have

(iπ)−µ
(
Γ̃r,µ(π/2; k1, . . . , kr ; 1)− iµ

πr
L(k1, . . . , kr ;ψ2)

)
∈ 1

πr
Λr−1 ,

namely

(iπ)−µπr Γ̃r,µ(π/2; k1, . . . , kr; 1)− π−µL(k1, . . . , kr ;ψ2) ∈ Λr−1 . (80)
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On the other hand, by (57) and the conditionkr ≥ 2, we can letθ = π/2 andu → 1 + 0 in
both sides of (54). Then by (55), we have

Γ̃r,µ(π/2; k1, . . . , kr; 1)

= 1

2πr

−1∑
m=−kr

Erm(k1, . . . , kr−1; 1)λ∑r−1
j=1(kj+1)+µ+m

(iπ/2)m+kr
(m+ kr)!

= 1

2πr

kr−1∑
N=0

EN−kr (k1, . . . , kr−1; 1)λN+µ
(iπ/2)N

N !

= 1

2πr

[(kr−1−µ)/2]∑
ν=0

E2ν+µ−kr (k1, . . . , kr−1; 1)
(iπ/2)2ν+µ

(2ν + µ)! .

(81)

By the assumptionsµ ≡ r and
∑r
j=1 (kj + 1) ≡ 1 (mod 2), it follows from (56) that

E2ν+µ−kr (k1, . . . , kr−1; 1) ∈ Λr−1 .

Hence, from (81) and the fact thatπ ∈ Λr−1, we have

(iπ)−µπrΓ̃r,µ(π/2; k1, . . . , kr; 1) ∈ Λr−1 . (82)

By combining (80) and (81), we have

L(k1, . . . , kr;ψ2) ∈ πµΛr−1 ⊂ Λr−1 .

Hence we obtain the former assertion of Theorem 1.
Next we prove the latter assertion by induction onr ≥ 2. The case ofr = 2 has already

been proved in Section 3. Hence we assume that the case ofr holds, and prove the case of

r + 1. Choose(k1, . . . , kr+1) ∈ Nr+1 with
∑r+1
j=1 kj is odd, namely

r+1∑
j=1

(
kj + 1

) ≡ r (mod 2) . (83)

By (58) and (63) withu = 1 andm = −kr+1, we have

Er+1
−kr+1

(k1, . . . , kr ; 1) = πr+1A−kr+1(k1, . . . , kr−1; kr,0; 1)

+ πr+1
∑
σ 
=1

Cσ (u)A−kr+1(lσ,1, . . . , lσ,dσ−1; aσ , bσ ; 1)

− i

kr−1∑
j=0

Erj−kr (k1, . . . , kr−1; 1)λ∑r
j=1(kj+1)+1+r+j

(−kr+1

j

)
ρ(j + kr+1; 1) .

(84)
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It follows from (24) that the first term on the right-hand side of (84) coincides with
2L(k1, . . . , kr , kr+1;ψ), the second term belongs toΛr becausedσ < r (σ 
= 1). Fur-
thermore, from (56), we have

Erj−kr (k1, . . . , kr−1; 1)λ∑r
j=1(kj+1)+1+r+j

= Erj−kr (k1, . . . , kr−1; 1)λ∑r−1
j=1(kj+1)+r+(kr−j) ∈ Λr−1 ⊂ Λr .

Hence the third term on the right-hand side of (84) belongs toΛr . On the other hand, from
(56) and (83), we have

Er+1
−kr+1

(k1, . . . , kr ; 1) = Er+1
−kr+1

(k1, . . . , kr ; 1)λ∑r
j=1(kj+1)+(r+1)+kr+1

∈ Λr .
Combining these results, we obtainL(k1, . . . , kr+1;ψ) ∈ Λr . Hence we see that the assertion
in the case ofr + 1 holds. Thus, by induction, we obtain the latter assertion of Theorem 1.
This completes the proof of Theorem 1.
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