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Generalized Burgers Equation with M easure Data
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(Communicated by Y. Yamada)

Abstract. A generalized Burgers equation with measure data is studied. The existence of aweak solution of an
initial boundary-val ue problem in a bounded cylindrical domain, is established. Time-periodic solutions are shown
to exist and an optimization problem related to an inverse problem is considered.

1. Introduction

Let £2 be abounded open subset of R® with a smooth boundary and consider the initial
boundary-value problem

3
9
(L.1) W = Au+ Y ut = g(Hp) in 2 x (0,7),
=1 ax]'

u(x,t)=00n02 x (0, T), u(x,0 =up(x) in 2

with {g, w, ug) € HY(0,T) x My(2) x L1(2). The set of al Radon measures of
bounded variationin £2, isdenoted by M($2).

The purpose of this paper is

o t0 establish the existence of a solution u of (1.1) with

{u, u'} € (L®0, T; LX(2)) N LP(0, T; Wy (2))} x L¥(0, T; LY(£2))

with 1 < p < 5/4,
o to prove the existence of atime-periodic solution of the problem

3
(1.2) u/—Au—i-Zua—u:g(t),u(x) in 2 x(0,7),
pa] 0x;

ux,t)=00n02 x O, 7), ux,0=ulx,T)in 2.

o to determine the source and its intensity from the partial measurements of the solution
of (1.1) in an interior subdomain.

Received April 7, 2003; revised September 11, 2006
1991 Mathematics Subject Classification: 35L05, 49320, 49N45.
Key Words: Burgers, Radon measure, inverse problem.




2 BUI AN TON

Parabolic initial boundary-value problems with Radon measure data were studied by
L. Boccardo and T. Gallouet [2], by H.Brezis and A. Friedman [4] and others. Nonlinear
elliptic boundary-value problems with Radon measure data have been the subject of extensive
investigations by M. F. Betta, A. Mercaldo, F. Murat and M. Porzio [1], L. Boccardo and T.
Gallouet [2], L. Boccardo, T, Gallouet and L. Orsina[3].

The strong monotonicity of the elliptic operator plays a crucia role in Boccardo and
Gallouet treatment of elliptic and parabolic problems with measure data. In contrast with the
caseof LP-data, 1 < p < oo,the lower order terms give rise to several technical difficulties.
The Burgers eguation which exhibits the nonlinear feature of the Navier-Stokes equations,
fals outside of their general framework as the eliptic part is not strongly monotone. It is
known that for the heat equation with measure data, the solution isin L>°(0, T; L1(£2)) N
LPQ,T; W(}”’(.(z)) for 1 < p < 5/4 and thusthe expression Z?::LI/{DJ'M may not belong
to some Banach spaces. In this paper, we shall circumvent the difficulty by assuming that g
isin H1(0, T) and establish an L>(0, T; L1(£2)) of the time-derivative of the approximate
solutions. The estimates allow usto obtainan L9(0, T; W17 (£2)) estimate of the expression
Z?=1MD]‘M. The existence of asolution of (1.1) is established in Section 2.

Time-periodic solutions of parabolic equations with measure data have not been treated
in the literature. The Poincare method, the abstract operator approach where the periodicity
of the problem is incorporated in the definition of the operator, used for L?(Q) data with
1 < p < oo do not seem applicable in the case of measure data. Appropriate estimates for
the time-periodic approximate solutions are obtained by using an associated cut-off function
and not a generic one. The existence of a solution is shown in Section 3 of the paper.

Let {g, u} bein G x U be some compact convex subsets of H1(0, T') x M, (2). We
associate with (1.1) the cost function

T
(1.3 J(g; w; uo; u; t) :/ / | u(x,s) — x(x,s) | dxds
t G

where u isasolution of (1.1) and x € L1(0, T; L1(G)) isthe observed values of u in
an interior subdomain G of 2. Let

V(uo; t) =inf {J(g; u; uo; u;t): u isasolutionof (1.1),

(1.4 Vig, ut € G xUj.
In Section 4, we shall show the existence of {g, 1} € G x U such that
(1.5 V(uo; 1) = J(g; [; uo; ;1)

wheren isasolution of (1.1) with source {g, fi}. The equation (1.5) allows us to determine
the source from the observed values of the solution in afixed interior subdomain.
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2. Initial boundary-value problem

In this section, we shall establish the existence of a weak solution of (1.1). With the
Laplace operator as the main part and a quadratic nonlinearity in u and its derivative, the
equation falls outside of the framework of Boccardo and Gallouet’s treatment.

Let {ug, u} € L1(2) x Mp(£2), then there exists {ug, fu} € Cp°(£2) with

I fallrcey < el (g fu} = {uo, n} inD'(2) x D'(2).

Let
(21) Eo; g5 w) = lluoll L2y + 9l mro, 1) Il My (2 »

Consider theinitial boundary-value problem

3
(2.2 u;l—Au,,—i—ZunDjun:g(t)fn in 2x(0,7),
j=1

up(x, 1) =00n0902 x (0, 7), uu(x,0) =uj(x) in 2.

LEMMA 2.1. Let {uo, g, fu} bein LY(2) x HY(0, T) x C§°(£2) with | full 1) <
| el a1, (2) - Then there exists

un € L2(0, T; H3(22) N HE(2)) N L™®(0, T; L3(2)),
solution of (2.1) with
it ll 0.7 2202y < CHL+ | 2 | +Euo; g5 1)),
where C isindependent of n and £ is defined by (2.1).

PROOF. With f, in C5°(£2), the existence of aweak solution in L?(0, T; Hy(£2)) N
L>®(0, T; L?(£2)) of (2.2) may be obtained by using the standard Galerkin approximation
method. Since 2 isabounded open subset of R3

llun (., t)”izl(g) < Cllu,(., [)”LZ(Q)”M}’I(" I)HH&(Q) s

hence u, isin L*0, T; L*(£2)) and thus u/, € L?(0, T; H1(£2)). A standard regularity
proof showsthat u, isin L2(0, T; H?(52)) and now the usual argument shows that the solu-
tion isunique. We shall establish the estimate of the lemma. Let

1 if 1<y,
vs)=1 s if —1<s<1,
-1 ifs<-1

and set

¢(S)=/o Y(o)do .
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Multiplying (2.2) by ¥ (u,) and we obtain

i/ ¢(Mn(x,t))dx+/ W' (un) | Vin(x, 1) | dx
dt Jo 7]
3
—i—Z/ up(x, )Djun(x, )Y (uy(x,1))dx
j=17%

=/Q 9@ far (up (x, 1))dx .

We note that
up(x,t)
/unDjunw(un(x,t))dx=/ Dj{/ s1//(s)ds}dx
Q Q2 0

Uup(x,t)
(2.3 =/ ej./ sy (s)dsdo(x) =0
082 0

asu, =0 onas2 x (0, T). Taking (2.3) into account, we obtain

d
(2.4 E/ﬂﬂun(x,l))dx < gl g0, 1y lellagy (2) -

Integrating between 0 and ¢ and we get

t
/ | up(x,1) | dXEC{ | §2 | +/ / ¢(un(x,S))dde}
2 0 JR

(2.5) < C{ | £2 | +/Q¢(u0)dx + ||9||Hl(0,T)||lL||Mb(Q)}
=C{l 2| +&wo; g5 W},
where C is a constant independent of n.The lemmais proved.

LEMMA 2.2. Suppose all the hypotheses of Lemma 2.1 are satisfied. Then

lnll o oy < CULF 12 | +E o g3 )

for 1 < p < 5/4 with a constant C independent of 7.
PrROOF. 1) Let m beapositiveinteger and let v, (s) bethe truncated function

1 if s>m+1,
s—m ifm<s<m+1,
Ym(s) =19 0 if —m <s=<m,

s+m if —-m—1<s<-m,
-1 if —m—1<s.
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Taking the pairing of (2.2) with ¥, (u,, (x, t)) and we obtain by taking into account (2.3)
/ Gm(un(x, 1))dx + / Y, (n (X, 1)) | Vin(x, 1) |? dx
2 2

S/ Gm (uo()dx + 191l a0, 1) | 141l m,(2)
2

< C{1+ | 2 | +Euo; g; w}.

It follows that
(2.6) / | Vi (x, 1) |2 dxdt < C{1+ | 2 | +Euo; g; 1))
with
By ={(y,0): (y,0)in 2 x(0,T), m <un(y,t) <m+1}.
2) Letl < p < 5/4,then an application of the Holder inequality gives
mIBm|§/ | up(x,t) | dxdt
Bm
2.7 < llunll Lars3s,) | Bm 14P73/%P
Therefore
- 4p/3
(28) | By 1= m =B 17505,
Again, an application of the Holder inequality yields
IVienll7 o,y < 1Vitull 725 o 1 B 1772
(29 < Cm @Dy, | T DS 2 | +Ewo: g5 )}

LA/3(By,)

We have applied the estimates (2.7)—2.8) in the above inequality.
3) Letmg beafixed positive number and let v be the truncated function

mo if s >mop,
Yis) =4 s if —mo<s<mo,
—mg if s < —mg.

Then a proof exactly asin that of Lemma 2.1 gives

(2.10) / | Vien 12 dxdi < Clmot | 2 | +Euo; g 10}
DmO

with

Do = {(x, 1) 2 (x, 1) In 2 x (0, T); | un(x, 1) |< mo}.
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An application of the Holder inequality yields

| Vi |7 dxdt < |Vu, P2 | 2@ P2
Dﬂlo L (Dﬂlo)

(2.12) < Clmo+ Euo; g; WP+ | 2 |4P% .
It followsfrom (2.9) and (2.11) that

INunll} po.7:r(2y) < CnOL+ | 2 | +Euo; g; 1))

2p(2=p)/3 . —(2-p)2p/3
(212) + Z ||ul‘t||L4p/3(B ) pizp/

m=mq

< C(mo) {1+ | 2 | +E(uo; g; 1)}

o0 p/2
—4(2—p)/3
+||un”L4P/3(0TL41’/3(Q)){ Z m (2=p)/ }
m=mq
We have applied the Holder inequality in (2.12).
4) Again, the Holder inequality gives
1 3/4

(2.13) ltall avssy < el o it - ) -

With the estimate of Lemma 2.1, we obtain

2p(2—p)/3
||Mn||L4p/3(0 T: L4p/3(_Q)) — C(1+ | 2 | +5(M05 g; I’L))

(2.14) x[lun |72 72

LP(0,T;L30/G=P)(2)) "

The Sobolev imbedding theorem gives

”Mn”Lp(o T; 1.3p/(3— 1))(9)) = C””””L!’(O T W(ZJI.[)(Q))

It follows from (2.12)—(2.14) that

”u”||€P(0,T;L3p/(3_/’)(!2)) C{1+ | 94 | +5(u07 g; /’L)}”un”

oo
(2.15) x { > mAED3

m=mq

LP(0,T:;L3P/G=pP)(2))
}p/(Zp—p)

Sincel < p < 5/4 the series converges and there exists mg such that

(216) ”Mn”Lp(OT L3p/(3— 1))(9))) — C{1+ | 9 | +g(u07 g3 ,bL)}

Hence (2.14) yields, by taking (2.16) into account

2p(2—p)/3 —
(2.17) | 255 02 sy < CUH | 21 +E o g3 )P/,
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With (2.17), the inequality (2.12) becomes

4017 7o gyy < C 1 2 1 +Eoi gi )P P72
o p/2
(2.18) x{ > m—4<2—1’>/3}
m=mg

< C{I+ | 2 | +Euo: g3 w4172,
Thelemmais proved.

REMARK. Therestrictionon p, namely that 1 < p < 5/4 isneeded so that 4(2 —
p)/3 > 1 for the convergence of the seriesin (2.15). With mq large enough, it allows us to

taketheterm [u||7, (0.7 L33 () 10 theleft hand side.

LEMMA 2.3. Suppose all the hypotheses of Lemma 2.1 are satisfied. Suppose further
that L£(ug) isin M, (£2) with

3

L(ug) = Aug — Z uoDjug.
j=1

Then
lupll Lo 0.7: 022y < CLI+ | 2 | +E@o0; g5 1) + 1Lwo) I, @2)} >
where C is a constant independent of n, ug, g, i.
PrRoOoOF. 1) Differentiating (2.2) with respect to ¢, we get

3 3
u, — Auj, + Zu;Djun =— ZMHDJ'M;! +4 f, in2x(0,T),
j=1 j=1
(2.19) u,(x,1)=00n92 x (0,7),

u'(x,0)=Lwug) + g(0) f, in$2.
We have
1L L1y + 190) fall 12y < CUIL@O) M, 2) + 19l w1 1) litllm, )} s
where C isa constant independent of n, w, g and of ug. Moreover
L) — L(ug) inD'(2).
2) Let y(s) be the function of Lemma 2.1. Taking the pairing of (2.19) with

¥ (ul, (x, 1)), weobtain

d
—/ ¢>(u:,(x,r)>+/ W' ul) | Vil (x, 1) |? dx
dt Jo I7)
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3
(2.20) +> f ul, Djunr (ul, (x, 1))dx
j=17%

3
+ /Q up(x,t) Z Djuj, (x, 1)y (u), (x, 1))dx

j=1
< gl g2, llellag, 2) -
3) Wehave

/u;l(x,t)Djun(x,t)w(u;(x,t))dx=—/ Djuy, (x, D (x, )Y (), (x, 1))dx
7) 2

— / u;l(x, Hu,(x, t)DjI//(M;l (x,1))dx .
2

Therefore

/{unDjun}’w(u;(x,t))dxz—/ un (x, Ou,, (x, )Dju, (x, DY (u),(x, 1))dx
2 2

ul, (x,1)
:—/ un(x,t)Dj{/ sd/(s)ds}dx
2 0
up, (x,1)
:/ Dju,,(x,t){/ sw/(s)ds}dx.
2 0

u (x,t)
/ sy'ds
0

A smple calculation yields

<1.

It follows that
3
j=1

The inequality (2.20) becomes

/{u;D,-un+unDju;}w(u;<x,r>)dx < Cllun (Dl yrp g | 2 179
Q 0

t
/ ¢(uﬁ,(x,t))dX+/ / Wy (x,9) | Vuy(x, 5) |* dxds
2 0 J2

< / ¢l (x, 0)dx + Cllunll Lo o.7:wrr ey + 1910, Il -
2

Therefore

ety -, Dl 1) 5C{1+/ﬂ¢(u;(x,t))dx}
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(2.21) <C{1+ 1Lwo)llmy(2) + E@os g5 1) + llunllLro,:wir 2y}
<C{1+ [[L@o)lmy)+ | 2] +Ewo; g5 1)}
by taking into account the estimate of Lemma 2.2 O
LEMMA 2.4. Suppose all the hypotheses of Lemma 2.3 are satisfied. Then

3

1Y wnDjunll oo w12y < CUA | 2 | +1Lw0)Imy@2) + Ewo; gi )
j=1

withl/p+1/g =1and1l < p < 5/4 where C isa constant independent of n, uo, g, .
PrROOF. With1 < p < 5/4, the Sobolev imbedding theorem implies that

Wy(2) c L¥(RQ), 1/p+1/g=1.

The assertion is an immediate consequence of the equation and of the estimates of Lem-
mas 2.2, 2.3. O

The main result of the section is the following theorem.

THEOREM 2.1. Let {ug, g, p} bein LY(2) x HY0, T) x My(2) with L(ug) €
Mp(£2). Thenthere exists a solution 1 of (1.1) with

lull po o, 7,2 2)) + ||M||LP(O)T;W§,1)(Q)) + ' 0,72 11(52))
< C{1+ | 2 | HILwo)llmy2) + E(uo; g5 )}
for 1 < p < 5/4, where £ isdefined by (2.1). Moreover

3

1Y " uDjull oo 1 w-1ray < ClI+ | 2 | +1Lw0) | my(2) + E(uo g5 1)}
Jj=1

with £ asin Lemma 2.3.

PROOF. Letu, beasinlLemmas2.1-2.4. Then from the estimates of Lemmas 2.1-2.4
and from Aubin’s theorem (seg, e.g.,[6, Chapt.1,5]), we get by taking subsequences

{un, M;,} — {u, M/}

(L0, T; LX(2))wears N LP(0, T; LP(2)) N (L7 (0, T5 Wy " (2))weat)
X (L0, T LY(2)) wear -

Furthermore u,(x, 1) — u(x,t) aein 2 x (0, T).
From Lemma 3.4 we have by taking subsequences
3
ZunD,un — F weaklyin L?(0, T; (W™ 1P ().
j=1
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We shall follow the proof of Aubin’s theorem and show that

3
= ZMD u
j=1

Sinceu, € L(0, T; H?(2) N H}(2)) N L*®(0, T; L3(R2)), we have

3 T 1 3 T
Z/ / upDjupv(x, t)dxdt = ——Z/ / u,%(x,t)Djv(x,t)dxdt
j=1 0 2 2j:l 0 Q

— (F, v) Vv e LY(0, T; Wy (2) N H3(2)).

The pairing between L” (0O, T'; W&”’(.Q) N H2($2)) anditsdual, isdenoted by (., .).
On the other hand we have

ug(x, 1) — ul(x,t) aein 2 x (0, T).

and

T S Y A
nlLrT;o/(; [(Z{jzﬂunDjun}vdxdt =n|Lrgo/(; /Q—Euan:levdxdt
— (F,v).
Let
OV ={(x.0): (x,1) € 2 x (0, T), | W?(x,1) —u?(x,1)) |< 1, for n> NJ.

Then QV isan increasing sequence of measurable sets and meas(Q") — meas(Q) as
N — oo with 0 = £2 x (0,T). Let v bein C§°(Q) with support in Q™Mo then by the
L ebesgue convergence theorem

T 3
/ /(u,zl—uz)ZDjvdxdtaO.
0 2 o
j=1
Since
3
. 2 .
nlLrT;o/ /unvZD undxdt—nlLrgo/ /9——14 ;D]vdxdt

= (F,v), veCLQ), supp(v) c 0N,

the expression MZZ?zl Djv isintegrableon £2 x (0, T). Thus,

T 1 3
/O /9 _EMZ(X, D) ;Djv(x, Ndxdt = (F, v)
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for v e C5°(Q) with supportin Q™. Since QV areincreasing and meas(Q") — T | 2 |,
we get

1 (T 3
(F,v) = ——/ / uz(x,t)ZDjv(x,t)dxdt Vv e C&(Q).
2Jo Jo a
On the other hand we have

n—oo

T
(F,v)= lim / / {unv' — Vu, Vv + g fv)dxdt
0 2

T T
=/ / {uv' — Vu.Vvldxdt —i—/ gu(.,0)dt
0 2 0

1 (T 3
=__/ /uz(x,t)ZDjv(x,t)dxdt Yo e C(Q).
2Jo Jo j=1
It follows that

3
F:ZuDju inD'(Q).
j=1
Now it is straightforward to check that u satisfies the equation (1.1) in

LP(0, T; (W~LP(£2)). The stated estimates are immediate consequences of those of Lem-
mas2.1-2.4. O

3. Time periodic solution

In this section, we shall establish the existence of atime-periodic weak solution of (1.2).
Time-periodic solutions of nonlinear parabolic equations with measure data do not seem to
have been treated in the literature.

Let f, beasin Section 2 and consider the time periodic problem

3
(3.1 u, — Auy + ZunDjun = g(t) fu(x) in 2 x (0, T)
j=1

u,(x,0)=0o0n 02 x 0, 7), wuy(x,0)=u,(x,T) in$2.

With £, € H1(£2), the existence of atime-periodic solutionu,, in L0, T; L3(2)) N
L2(0, T; H}($2) N H?(£2)) isknown and can be established by several methods (e.g. by the
Poincare’s method as in J. Lions' book [6], chapter 4, p. 482-489). We shall now establish
some crucial estimates of u,, intermsof || gl g1 7, and of |Iillm,(s)-
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LEmMMA 3.1. Let{g, u, f,} beasinLemma 2.1. Then there exists a solution u, in
L2(0, T; H3(£2) N H?(£2)) N L®(0, T; L2(£2)) of (3.1) with u}, € L?(0, T; L?(£2)). More-
over

lun(., Do) = C{1+1 2 [ +E(g: W)}
with
E(gs ) = gl gro.rlliellmy(2) »
where C isa constant independent of n, g, n, f, and
E(g: W) =gl gro,mllnlim, ) -
PROOF. 1) Sinceu, isin C(0, T; L?(R2)), thereexists y,, such that

sup  lun(., Py = lun (s va)ll 1oy
relT/3,T]

for some y, € [T/3, T1. Let ¢(r) be a C1(R)-function with ¢(r) = 0 for | ¢ |<
l—e,2@)=1for|t|>1withO<¢(r) <1 Set

o) =y, ).
Then we have
() =0for0<t=<y,(1—¢); &un=21for y, <t
with
1Znllcrcry < ClE leary i+ vt
<Cl¢lcrryX+3T7H,

where C is a constant independent of n.
2) Let ¥ (s) bethetruncated function of Lemma 2.1 and similarly let ¢ be asin that
lemma. Multiplying the equation (3.1) by ¢, (¢) and taking the pairing with y (u,) we obtain

d
Cnd—/ ¢ (un(x, 1)) dX+/ Ca¥ (un) | V(uy) 1 dx
tJo Q

3
< —Z/Q & (1)t D j ()W () dx
j=1

+C{1+ | 2 | +E(g; W}

We have

3 3
> / & ()1t D ()Y ()dx =y f Gnttn D (1) (1 )dx
=17 =1
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3 Un
= 6Cn D; d d
“t)/g; ,{/0 S (s) s}x
3 un(xst)
=§n(t);/m ej.{/() sw(s)ds}do =0.

Thuswe get, by integrating from7, = T(1—¢)/3 tor

£ (r) / Ut (x, P)dx < / / £ ()6 (un x, ))dxds
Q 7. Jo
+C{1+ | 22 | +E(g; W} .

It follows that

En (M) lun o)l = CALE | 2 [ +E(g: )} +/9¢(un(x,r))dX)

=C{I+ ] 2| +E@g: W} +/T /9 IS lcrry | un(x,s) | dxds

Hence

sup 80 (Mun(., M)l 1oy < C{I+ | 2 1 +E(g; 1)}
re[T(1-¢)/3,t]

+C /Tt lun (., ) L1 (2)dxds .
Thus,
Sn(ymllun s vlipioy = C{I+ 1 2 1 +E(g; w}
+C /Tt lun (s )l 1 (2ydxds .
Since ¢, (y») = 1, we deduce that
lunC., Ol L1y < lun (s vl i)

t
(3.2 =C{l+ [ 2| +E(g: W} +C/T lun (., ) L1(2)ds

forT, =T(1—¢)/3 < t. It followsfrom the Gronwall lemmathat

lun (. Ol 1oy = C{I+ | 2 [ +E(g; W}

foral r with T, <t < T. Therefore
(33 lun (s Tliprey < C{I+ 1821 +E(g; W}
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Since the solution is periodic in time, we obtain
(3-4) luen (., O)”Ll(!Z) = [lun (., T)”Ll(_(z) <C{l+]| 82 | +5(9§ Wi,
where C is a constant independent of n, g, . Repeating the proof of Lemma 2.1 and using
(3.4) for the L1(£2)-estimate of u,, (x, 0) we get the assertion.

LEmmA 3.2. Suppose all the hypotheses of Lemma 3.1 are satisfied and let u,, be a
solution of (3.1). Then

0l iy < CUH 121 +E(g3 )

for 1 < p < 5/4, where C isa constant independent of n, g; u.

PROOF. The proof is exactly the same as that of Lemma 2.2 with the L1(£2)-estimate
of u, (x, 0) replaced by (3.4).

LEmmA 3.3. Suppose all the hypotheses of Lemma 3.1 are satisfied and suppose fur-
ther that ¢(0) = ¢(T'). Let u,, beasolution of (3.1), then
||M;,||L°0(0,T;Ll(g)) <C{1+| 2 | +&(g; W},

where C isa constant independent of n, g, u.

ProoOF. 1) Let ¢, beasin Lemma3.1 with u, replaced by u/, , then we obtain by
differentiating (3.1) with respect to ¢

3
gn(t)uz - A({nuil) - ;,;u; = Z{gnu;Djun + MnDj ({nuil)}
Jj=1

(3'5) +§ﬂg/_fﬂ In ‘{2 X (07 T) ’
uy(x,1)=00n 92 x (0, 7), u'(x,00=u'(x,T) in 2.

Let ¢ bethetruncated function of Lemma 2.1 and let ¢ beasin that lemma. Then we
have

d
Cn(t)d—/ ¢ (uy, (x, 1)) dX+/ La (Y )y (x, 1) | Vil (x, 1) | dx
tJo Q

3
<- Zznm/ {ur, Djun () + 14 D (1) () Yl x
2

j=1
+C{1+ | £2 | +E(g; W)} .

Consider the expression

/ {uy Djun + un D ()} (uy,)dx .
12,
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A smpleintegration by partsyields
/ {u;leun +u,Dj (u;)}l//(u;l)dx =/ uy(x, t)u; (x,1)Dj (1//(u;l(x, 1)dx
2 2

=/ un (x, D, (x, DY (uy,(x, 1)) Djul, (x, 1)dx
2

ul, (x,1)
=/ Mn(x,t)Dj{/ sw’(s)ds}dx
2 0
=—/ Djun(x,t){/unsw/(s)ds}dx.
2 0

‘/ {u;leun+unDju;l}1ﬁ(u;)dx
2

Therefore

< CIDjunllLr) | 2 1Y

<1.

uj, (x,1)
/ sy’ (s)ds
0

We have used the property that v/(s) = 1for| s |< land ¢/(s) = 0for|s |)1. Thus,

d
g(r)d—/ B, (x. )dx < C{L+ | 2 | +E(g: w)
tJe
(3.6) +Cllun (., Dl () | 2 174

Integrating between T, = T (1 — ¢)/3 and r and we get

En (M)l (o )l L2y < C{1+ | 21+ . Cn(S)¢(u§,(x,S))dde}

(3.7 S/ / Cu () (uy, (x, 5))dxds + C{1+ | 2 | +E(g; 1)}
1. Je

+Cllunllpro, 7. wir2)) -

Taking into account the estimate of Lemma 3.2, we obtain

sup {5n (M)l (., Il 1oy} < CLIH | 2 [ +E(g5 1)

re[Te, t]
p
(3.8 +ClI¢ N crr) / Ny, () p1e2)ds -
T,

Thus,

ey (s Dl a2y < En ) llug, Co vl 1)
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(39 = llup (., YllLie) = sup lluy, (., e

relTe,t]
t
=C{+| 2| +E(g: W} +C/ llup, Co $)ll 22y ds -
T:

An application of the Gronwall lemmayields
lup (o Dl Loy < CHL+ | 2 [ +E(g; W)}, t € [T, T1.
Since u,, is periodic in time, we get
ey (s Ol L2y = llaa, s Tl 1)
=C{1+ 182 | +E@g; W}
Now a proof as of that of Lemma 3.3 gives
lupll oo, 22y < CL+ | 2 | +E(g; W}
LEMMmA 3.4. Suppose all the hypotheses of Lemmas 3.1-3.3 are satisfied. Then

3

1 unDjutnll o1, w-1a(y < CHL+ | 2 | +€(g; W)},
j=1

withl < p <5/4and1/p + 1/q = 1, where C isa constant independent of g, u, n.
PROOF. It isanimmediate consequence of the estimates of Lemmas 3.2, 3.3.

THEOREM 3.1. Let {g, u} bein HY(0, T) x My(£2) with ¢(0) = ¢(T). Then there
exists a time-periodic solution u of (1.1) with

lull poogo,7:L1(52)) + ”u”LP(O,T;W(}"’(.Q)) + ||”,||LOO(0,T;L1(_Q)) <SC{1+ | 2| +E(g; w},

where C isa constant independent of ¢, © andwith 1 < p < 5/4.

PROOF. Let u, be atime-periodic solution of (3.1). With the estimates of Lemmas
3.1-3.4, aproof identical to that of Theorem 2.1 gives the stated result.

4. An optimization problem: inver se problem

Let G bethe compact convex subset of L2(0, T') given by
G=A{9: llglmor =1
and let U be the closed convex subset of M, (§2) defined by
U={n: lInllme <1},

We denote by x,an L1(0, T'; L1(G))-function, representing the observed values of a
solution u of the initial boundary-value problem (1.1) in an interior subregion G of £2. With
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the contral {g; u} € G x U , we associate with (1.1) the cost function

T
4.1 J(g; w; uosu; )= / / | u(x,t) — x(x,t) | dxdt
T G

whereu isasolution of (1.1). The value function V (up; 7) of (1.1)—(4.1) is defined by
V(ug; ) =Iinf{J(g; u; ug; u; t): Vu solution of (1.1),
4.2 Vge g, Vuel}.
For theinitial boundary-value problem (1.1), we have the following result.

THEOREM 4.1. Letug, Lo bein M, (£2)) and let x bea L1(0, T; L1(G))-function.
Thenthereexists{g, it} inG x U and a solution # of (1.1) with

V(uo; ©) = J(g; s uo; u; 7).
Moreover
{#, @'y € L®O, T; LY(2))NLP(O, T; Wol”’(Q)) x L0, T; L*(£2)).

Itisaninverse problem as wetry to find the source & , the intensity of the source g from
the observed values of the solution in an interior subdomain.

Proor. With ug as in the theorem, we know from Theorem 2.1 that there exists a
solution u of (1.1) for any given {g, u}inG x U. Let {g,; w,} beaminimizing sequence of
the optimization problem (4.2) with

V(uo; ©) < J(gns Mns uo; un; ) < V(uo; ) +1/n.

From the estimates of Theorem 2.1, we have

lenl 0,7 we 2y + Nt leo. 7102y + Nl Lo mi2302)
< C{1+ | 2 | +EWo; gn: pn) + N1Luollmy(2)) -
Furthermore

3

1Y wnDjunll o, w-1ragoy < CU+ | 2 | +E@o: g; 1) + 1Lw0) w2} -
j=1

2) Thusthere exists a subsequence such that

/o~ ~

{Un, U5 Gny pn} — {0, @', g, i}

(L7, T; Wg'” (2))weak N (LXO, T : LX(2)))wears N L7 (0, T; LP(2))
X (L0, T; LY(2))) wear* X (HY(O, T))wear N L?(0, T)
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x D'(£2).

Furthermore

3
> unDju, — F weaklyin L9(0, T; W™H9(R2)).
j=1

A proof asin that of Theorem 2.1 shows that

3
F =Y aDji in D'(Q) with 0 = 2 x (0, T).
j=1

Itisclear that & isasolution of (1.1) with the controls {g, (i} and we have
V(uo; t) = J(g; it; uo; u; v), T €0, T]

The theorem is proved.
For the time periodic problem of Section 3, we have a similar result.

THEOREM 4.2. Let x beafunctionin L1(0, T; L1(G)), where G isaninterior open
subset of 2. Thereexists {g, i1} € G x U and &z such that

3

(4.3) i’ — A+ aDjii=git in 2 x (0.T),
j=1

u(x,t) =0 on 92 x (0, T), ua(x,0)=u(x,T) in 2
with {a, @'} in
L=(0, T; LY(2)) N LP(0, T; Wy'” (2)) x L®(0, T; LX(£2))
and
J@; g; ;) =inf{J(u; g; w): uisasolutionof (4.3), Vg € G, Yu € U}.
where the cost function J is defined by (4.1).

PrROOF. We use the estimates of Theorem 3.1 instead of those of Theorem 2.1 and the
proof isthe same asthat of Theorem 4.1.
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