Two-bridge links with strong triviality

Ichiro TORISU

Naruto University of Education
(Communicated by K. Taniyama)

Abstract

In this article, we study strong triviality of two-bridge links. We prove that every (non-trivial) two-bridge link can not be strongly n-trivial for $n \geq 1$.

1. Introduction

A knot K in S^{3} is called strongly n-trivial if there exist $n+1$ crossings contained in a diagram of K such that the result of any $0<m \leq n+1$ crossing changes on these crossings is the trivial knot (Figure 1). Note that by definition, the unknotting number of strongly n-trivial knots is one. Recently, Askitas-Kalfagianni and Howards-Luecke have started the study of strongly n-trivial knots by using 3-manifold topology. See [1], [3]. In the previous paper [7], the author determined strong triviality of two-bridge knots, that is, only the trivial knot, the trefoil knot and the figure-eight knot have both two-bridge and strongly n-trivial diagrams for $n \geq 1$.

In the current paper, we continue to study strong triviality for links. Especially, we prove that every (non-trivial) two-bridge link can not be strongly n-trivial for $n \geq 1$.

Figure 1. Strongly 1-trivial knots.

[^0]

Figure 2. A Brunnian Suzuki graph and a strongly 2 -trivial link.

2. Main result

DEFINITION 2.1. Let n be a non-negative integer. A k-component link L in S^{3} is strongly n-trivial if there exist $n+1$ crossings contained in a diagram of L such that the result of any $0<m \leq n+1$ crossing changes on these crossings is the k-component trivial link.

We remark that for a strongly n-trivial k-component link L, any crossing change in Definition 2.1 must be done on one component of L and the linking number of any 2-component in L is zero. Moreover Vassiliev invariants for L of orders $\leq n$ coincide with that for the k-component trivial link. As in [1], [3], we can construct strongly n-trivial knots for any n via "Brunnian Suzuki graphs" as follows. A Brunnian Suzuki graph G consists of one circle C and edges E such that if we remove any non-empty subset of E from G, the resulting graph is trivial. By creating hooks along E as indicated in Figure 2, we have a strongly n-trivial knot K, where $n=\sharp|E|-1(\sharp|\cdot|$ denotes the cardinality). Take a disk D such that (i) ∂D surrounds the ends of one edge in E, (ii) D does not intersect other edges in E, (iii) ∂D is sufficiently close to C, as indicated by a bold circle in Figure 2. Then we have a strongly n-trivial 2-component link $K \cup \partial D$.

Let $S(\alpha, \beta)$ be a two-bridge link whose two-fold branched cover is the lens space $L(\alpha, \beta)$, where α is an even integer and β is an integer coprime to α. Note that $S(\alpha, \beta)$ is a 2 -component link and $S(0,1)$ is the trivial link.

Our theorem is then the following.
THEOREM 2.2. If a two-bridge link $S(\alpha, \beta)$ is non-trivial, then $S(\alpha, \beta)$ can not be strongly n-trivial for every $n \geq 1$.

REMARK 2.3. (i) Two-bridge links with unlinking number one was determined by Kohn in [4]. He proved that a two-bridge link $S(\alpha, \beta)$ has unlinking number one if and only if $\alpha=2 r^{2}$ and $\beta=2 r s \pm 1$ for some coprime integers r and s. Actually, the proof of Theorem 2.2 is simiar to that of Theorem 1 in [4].
(ii) After writing this paper, the author was informed that Tsutsumi have proved that strongly n-trivial links are boundary links [8]. So Theorem 2.2 is also obtained from his theorem.

Figure 3.

3. Proof of Theorem $\mathbf{2 . 2}$

Since strongly n-trivial link is obviously strongly m-trivial for all $m \leq n$, it is sufficient to show that if $S(\alpha, \beta)$ is strongly 1-trivial, then $S(\alpha, \beta)$ is the 2 -component trivial link. As in [4], [7], we will prove Theorem 2.2 via Dehn surgery techniques.

Let $N(k)$ be a regular neighbourhood of a knot k in a closed orientable 3-manifold M, with μ a meridian for $N(k)$ and let $E(k)=M-\operatorname{int} N(k)$ be the exterior of k in M. Now let $k(\gamma)$ denote the manifold obtained by attaching a solid torus V to $E(k)$ so that a curve of slope γ on $\partial E(k)$ bounds a disk in V, where γ indicates the isotopy class of an essential simple closed curve on $\partial E(k)$. For a knot k in S^{3}, a slope γ is represented by an element $\frac{m}{n} \in \mathbf{Q} \cup\left\{\frac{1}{0}\right\}$, where $\gamma=m \mu_{k}+n \lambda_{k}$ in $H_{1}(\partial E(k), \mathbf{Z}),\left(\mu_{k}, \lambda_{k}\right)$ is a preferred meridian-longitude pair of k and m, n are coprime integers. We shall say that $k(\gamma)$ is the result of γ-Dehn surgery on k. Dehn surgery on a 2-component link $k \cup k^{\prime}$ is also defined in the same way and denoted by $k \cup k^{\prime}\left(\gamma, \gamma^{\prime}\right)$ for slopes γ and γ^{\prime} of k and k^{\prime}, respectively. For two slopes γ and δ in $\partial E(k)$, let $\Delta(\gamma, \delta)$ be their minimal geometric intersection number.

The next well-known lemma was first observed by Montesinos in [5].
Lemma 3.1. Let K and K^{\prime} be knots in S^{3} and let M_{K} and $M_{K^{\prime}}$ be the two-fold branched covering spaces of S^{3} along K and K^{\prime}, respectively. Suppose the result of a crossing change on K is K^{\prime}. Then $M_{K^{\prime}}$ is obtained by γ-Dehn surgery on some knot k in M_{K}, with $\Delta(\gamma, \mu)=2$.

Proof. We regard the crossing change as a replacement of sufficiently small 2 -string trivial tangles $(B, t) \hookrightarrow\left(S^{3}, K\right)$ and $\left(B, t^{\prime}\right) \hookrightarrow\left(S^{3}, K^{\prime}\right)$. Then the two-fold branched covering spaces of the tangles along the 2 -strings are solid tori V and V^{\prime}, respectively. Therefore $M_{K^{\prime}}$ equals the result of some γ-Dehn surgery on a knot in M_{K}. Let D and D^{\prime} be essential meridian disks for (B, t) and $\left(B, t^{\prime}\right)$, respectively (see Figure 3). Then in M_{K}, the preimages of each component of ∂D and ∂D^{\prime} essentially intersects each other at 2 points on $\partial V=\partial V^{\prime}$. Hence we have $\Delta(\gamma, \mu)=2$.

A torus knot in a lens space is a knot isotopic onto a Heegaard torus of the lens space. For the proof of Theorem 2.2, we need the following theorem essentially obtained in [6].

THEOREM 3.2. Let k_{T} be a torus knot in $S^{2} \times S^{1}$. Suppose that $k_{T}(\gamma)$ is homeomorphic to $S^{2} \times S^{1}$ for some slope γ with $\Delta(\gamma, \mu)=2$. Then k_{T} is the trivial knot, that is, k_{T} bounds a disk in $S^{2} \times S^{1}$.

Proof. We use the notation in [6, p. 1568] and suppose that k_{T} is a" (m, n)-torus knot" $C_{m, n}$ in $L(0,1)=S^{2} \times S^{1}$, where m and n are coprime integers. In this case, remark that $C_{m, n}$ is trivial if and only if $n=0$. Then by [6, Lemma 7], if $k_{T}(\gamma)$ is a lens space, then $k_{T}(\gamma)$ is orientation preserving homeomorphic to $L\left(-2 n^{2}, 2 b n^{2}+2 m n \pm 1\right)$ for some b. (In [6, p. 1568], $r=0, s=1, a=-1, d=2$). Therefore by our assumption, n must be zero. This completes the proof.

The next easy lemma depends on a specific property of $S^{2} \times S^{1}$.
Lemma 3.3. A torus knot in $S^{2} \times S^{1}$ represents the trivial element in the fundamental group of $S^{2} \times S^{1}$, which is isomorphic to \mathbf{Z}, if and only if it is the trivial knot.

Proposition 3.4. If a two-bridge link $S(\alpha, \beta)$ is strongly 1-trivial, then there is a 2component link $k_{1} \cup k_{2}$ in $S^{2} \times S^{1}$ such that $k_{1}\left(\gamma_{1}\right)$ and $k_{2}\left(\gamma_{2}\right)$ are homeomorphic to $S^{2} \times S^{1}$ and $k_{1} \cup k_{2}\left(\gamma_{1}, \gamma_{2}\right)$ is homeomorphic to $L(\alpha, \beta)$, where each slope γ_{i} satisfies $\Delta\left(\gamma_{i}, \mu\right)=2$. Moreover each k_{i} is the trivial knot in the original $S^{2} \times S^{1}$ and a torus knot in $k_{j}\left(\gamma_{j}\right)=S^{2} \times S^{1}$ $(i \neq j)$.

Proof. By definition, there are two crossings in a diagram of $S(\alpha, \beta)$ such that both each crossing change and simultaneous crossing changes yield the 2-component trivial link. The two-fold cover of the 2-component trivial link in S^{3} is $S^{2} \times S^{1}$. Therefore by Lemma 3.1 and its proof, there exists a 2-component link $k_{1} \cup k_{2}$ in $S^{2} \times S^{1}$ such that $k_{1}\left(\gamma_{1}\right)=k_{2}\left(\gamma_{2}\right)=$ $S^{2} \times S^{1}$ and $k_{1} \cup k_{2}\left(\gamma_{1}, \gamma_{2}\right)=L(\alpha, \beta)$, where $\Delta\left(\gamma_{i}, \mu\right)=2(i=1,2)$. Moreover, since $\Delta\left(\gamma_{i}, \mu\right)=2$, by Culler-Gordon-Luecke-Shalen's cyclic surgery theorem in [2], the exterior spaces $E\left(k_{1}\right)$ and $E\left(k_{2}\right)$ are Seifert fibred manifolds, respectively. But as in [6, Lemma 4] this implies k_{1} and k_{2} are fibers for some Seifert fibrations of both $S^{2} \times S^{1}$ and $L(\alpha, \beta)$. Moreover, it is well-known that any fiber for a Seifert fibration of a lens space is isotopic to some torus knot (for example, see [6]). By Theorem 3.2, it follows that k_{1} and k_{2} are trivial in the original $S^{2} \times S^{1}$, respectively. This completes the proof of Proposition 3.4.

We are ready to prove Theorem 2.2.
Proof of Theorem 2.2. Suppose a two-bridge link $S(\alpha, \beta)$ is strongly 1-trivial. Then there is a 2-component link $k_{1} \cup k_{2}$ in $S^{2} \times S^{1}$ which satisfies the properties in the statement of Proposition 3.4. Since k_{2} is trivial, k_{1} in $k_{2}\left(\gamma_{2}\right)=S^{2} \times S^{1}$ may be considered as a full-twisted k_{1} along some disk spanned by k_{2} in the original $S^{2} \times S^{1}$. Therefore notice that the full-twisted k_{1} is also homotopic to zero. By our assumption and Lemma 3.3, we conclude that the full-twisted k_{1} is the trivial knot in $S^{2} \times S^{1}$. It is well-known that Dehn surgery on the trivial knot in $S^{2} \times S^{1}$ is either a non-trivial connected sums of two lens spaces or $S^{2} \times S^{1}$
itself. Hence it follows that $k_{1} \cup k_{2}\left(\gamma_{1}, \gamma_{2}\right)=L(\alpha, \beta)$ is equal to $S^{2} \times S^{1}$. So we have $\alpha=0$ and $\beta=1$ and $S(\alpha, \beta)=S(0,1)$ is the 2-component trivial link in S^{3}.

This completes the proof of Theorem 2.2.

References

[1] N. Askitas-E. Kalfagianni, On knot adjacency, Topology and its Appl. 126 (2002), 63-81.
[2] M. Culler-C. Gordon-J. Luecke-P. Shalen, Dehn surgery on knots, Ann. of Math. (2) 125 (1987), 237-300.
[3] H. Howards-J. Luecke, Strongly n-trivial knots, Bull. London Math. Soc. 34 (2002), 431-437.
[4] P. Kohn, Two-bridge links with unlinkng number one, Proc. Amer. Math. Soc. 113 (1991), 1135-1147.
[5] J. M. Montesinos, Surgery on links and double branched coverings of S^{3}, Ann. of Math. Studies 84 (1975), 227-259.
[6] I. Torisu, The determination of the pairs of two-bridge knots or links with Gordian distance one, Proc. Amer. Math. Soc. 126 (1998), 1565-1571.
[7] I. Torisu, On strongly n-trivial 2-bridge knots, Math. Proc. Cambridge Philos. Soc. 137 (2004), 613-616.
[8] Y. Tsutsumi, Strongly n-trivial links are boundary links, preprint.

Present Address:
Naruto University of Education,
NARUTO-CHO, NARUTO-SHI, 772-8502 JAPAN.
e-mail: torisu@naruto-u.ac.jp

[^0]: Received November 6, 2004; revised February 23, 2005
 1991 Mathematics Subject Classification. 57M25.
 Key words and phrases. strongly n-trivial, two-bridge link, $S^{2} \times S^{1}$, Dehn surgery.

