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Abstract. In this paper we consider a projective model for the time- and spacelike ultrahyperbolic unit balls
in the orthogonal space Rm,m. By means of an associated principal fibre bundle, a Dirac operator on these mani-
folds is defined and its fundamental solution is constructed (in case m ∈ 2N + 1) with the aid of generalized Riesz
distributions. Using the method of descent, we then construct fundamental solutions for the Dirac operator on time-
or spacelike ultrahyperbolic unit balls in spaces of signature (m, q) and (p,m) respectively (with p, q < m).

1. Introduction

In this paper Clifford analysis techniques are used to construct a fundamental solution
for the Dirac operator on specific SO(p, q)-invariant ultrahyperbolic manifolds in Rp,q .

Clifford analysis offers a nice and elegant generalization to higher dimension of the
theory of holomorphic functions in the complex plane, the Dirac operator being the higher
dimensional analogue of the Cauchy-Riemann operator. It is centred around the notion of
monogenic functions, i.e. nullsolutions for the Dirac operator. Standard reference books are
[1], [7] and [14] and a nice overview of the most basic results can be found in [6].

Whereas these references are mostly concerned with the Dirac operator on flat Euclidean
space, a natural generalization consists in studying the Dirac operator on general manifolds.
We refer e.g. to [14] and the work of Calderbank and Cnops, see [2], [4] and [5]. These latter
references study the Dirac operator within the framework of Clifford analysis by embedding
the manifolds under consideration into an orthogonal space and by using properties of the
Dirac operator on this embedding space. This as opposed to the classical spinor Dirac operator
on manifolds, which is studied intrinsically within the framework of differential geometry (see
e.g. [17]).

For the more specific choice of a positively curved Riemannian manifold we refer to the
work of Sommen and Van Lancker [22] and [23], whereas for the case of a negatively curved
Riemannian manifold we refer to the work of Leutwiler and his school [16] and [20] and some
of our recent papers [9] and [11]. It should be stressed that the Dirac operator in our approach
differs fundamentally from the one considered by Leutwiler: whereas his operator acts on

Spin(1)-fields, our operator acts on Spin( 1
2 )-fields, as was already pointed out in [3]. The
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hyperbolic Dirac operator studied in our papers is invariant under the automorphism group
SO(1,m) of the hyperbolic unit ball, which is a subgroup of the conformal group SO(2,m).
Therefore, the conformal case is included in the present approach as a special case.

In this paper we consider a projective model for the SO(m,m)-invariant ultrahyperbolic
unit balls in Rm,m, defined in section 2. An introduction to the Clifford setting will be given in
section 3, and this enables us to define the Dirac operator on the ultrahyperbolic manifolds in
section 4. In section 5 we reduce the hyperbolic Dirac equation to a scalar equation, which will
be solved by means of an explicitely constructed fundamental solution for the ultrahyperbolic
wave-operator. In section 6 this solution is then used to construct the fundamental solution
for the Dirac operator on ultrahyperbolic unit balls in Rp,q , with p �= q .

2. The projective model

Consider the orthogonal space Rp,q with orthonormal basis (ε1, · · · , εp, e1, · · · , eq), en-
dowed with the quadratic form

Qp,q(T ,X) =
p∑
i=1

T 2
i −

q∑
j=1

X2
j = |T |2 − |X|2 .

The nullcone NCp,q is defined as the set {(T ,X) ∈ Rp,q : Qp,q(T ,X) = 0} and separates
the timelike region TLRp,q from the spacelike region SLRp,q , given by

T LRp,q = {(T ,X) ∈ Rp,q : Qp,q(T ,X) > 0}
SLRp,q = {(T ,X) ∈ Rp,q : Qp,q(T ,X) < 0} .

Both the T LRp,q and the SLRp,q contain a canonical SO(p, q)-invariant subset, with
SO(p, q) the orthogonal group containing the linear transformations of unit determinant on
Rp,q leaving the quadratic formQp,q(T ,X) invariant, given by

MT (p, q)= {(T ,X) ∈ Rp,q : Qp,q(T ,X) = +1}
MS(p, q)= {(T ,X) ∈ Rp,q : Qp,q(T ,X) = −1} .

Due to the obvious equivalence between MT (p, q) and MS(q, p), we can transpose results
for the timelike ultrahyperbolic unit ball in Rp,q to the spacelike ultrahyperbolic unit ball in
Rq,p by a simple substitution T ↔ X.

A projective model for these manifolds MT (p, q) andMS(p, q), originated by Gelfand,
is then given by the manifolds of halfrays

Ray(T LRp,q)= {{λ(T ,X) : λ ∈ R+
0 } : (T ,X) ∈ TLRp,q }

Ray(SLRp,q)= {{λ(T ,X) : λ ∈ R+
0 } : (T ,X) ∈ SLRp,q} .

Denoting the multiplicative group R+
0 by G, these manifolds can be defined in a rigorous

geometrical way as principal G-bundles. For that purpose it suffices to consider the action
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of G on TLRp,q (resp. SLRp,q ) given by λ(T ,X) = (λT , λX). This is a free action and
its orbit space is precisely the manifold Ray(T LRp,q) (resp. Ray(SLRp,q)), such that in the
language of bundles we get

Ray(T LRp,q)= (T LRp,q, π, T LRp,q/G)

Ray(SLRp,q)= (SLRp,q, π, SLRp,q/G) ,

with π the projection on a representant of the fibre, being the orbit under theG-action. These
representants can for example be chosen as the intersection of the halfrays with MT (p, q)

(resp. MS(p, q)).
The ultrahyperbolic wave-operator on Rp,q is defined as the differential operator

�p,q =
p∑
i=1

∂2
Ti

−
q∑
j=1

∂2
Xj

= ∆(T )p −∆(X)q ,

where ∆(T )p (resp. ∆(X)q ) stands for the Laplace operator on Rp (resp. Rq ) in coordinates T
(resp. X). In section 4 we will explicitely construct a fundamental solution for the operator
�m,m, in case of an odd dimension m, inspired by the construction of the Riesz potential Z2

as a fundamental solution for the wave-operator �1,m on R1,m (see [19]).

3. Ultrahyperbolic clifford analysis

In this section we define the Dirac operator on Rp,q , a first-order differential operator
which factorizes �p,q and which is invariant under the group Spin(p, q), the double covering
group for SO(p, q) (cfr. infra).

For that purpose we define the Clifford algebra Rp,q as the associative algebra generated
by the orthonormal basis for Rp,q and the multiplication rules εrεs + εsεr = 2δrs for all
1 ≤ r, s ≤ p, eiej + ej ei = −2δij for all 1 ≤ i, j ≤ q and εrei + eiεr = 0 for all 1 ≤ r ≤ p

and 1 ≤ i ≤ q . Elements of this algebra are so-called Clifford numbers and have the form
a = ∑

A⊂M aAeA with aA ∈ R, with A = {i1, · · · , ik} ⊂ M = {1, · · · , p + q}, with eφ = 1
and eA = εi1 · · · εij eij+1 · · · ek for 1 ≤ i1 < · · · < ij ≤ p and p + 1 ≤ ij+1 < · · · < ik ≤
p + q .

Those Clifford numbers for which |A| = k are called k-vectors, and denoting the projec-

tion of a ∈ Rp,q on its k-vector part as [a]k we thus have a = ∑
k[a]k, with [a]k ∈ R(k)p,q . The

even subalgebra is then defined as R(+)p,q = ∑
k∈2N R(k)p,q and yields a subalgebra of the algebra

Rp,q .
The orthogonal space Rp,q can be embedded canonically into the Clifford algebra Rp,q

by sending an element (T ,X) onto its corresponding 1-vector:

(T ,X) ∈ Rp,q −→ T +X ∈ R(1)p,q .
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Consider then (T ,X) and (S, Y ) ∈ Rp,q . The Clifford product is defined by

(T ,X)(S, Y ) = (T ,X) · (S, Y )+ (T ,X) ∧ (S, Y )
where the inner and outer product are respectively given by

2(T ,X) · (S, Y )= (T ,X)(S, Y )+ (S, Y )(T ,X)

2(T ,X) ∧ (S, Y )= (T ,X)(S, Y )− (S, Y )(T ,X) .

On Rp,q we then define three important involutory (anti)automorphisms: for all a, b ∈ Rp,q
we have

• the main involution a �→ ã with ε̃i = −εi , ẽj = −ej and (̃ab) = ãb̃

• the reversion a �→ a∗ with ε∗i = εi , e∗j = ej and (ab)∗ = b∗a∗

• the conjugation a �→ a with εi = −εi , ej = −ej and (ab) = ba .

The Clifford group Γ (p, q) is then defined as the set of all invertible elements g ∈ Rp,q
such that for all (T ,X) ∈ Rp,q we have g(T ,X)̃g−1 ∈ Rp,q , the group Pin(p, q) is the

quotient group Γ (p, q)/R+ and the group Spin(p, q) is defined as Pin(p, q) ∩ R(+)p,q . For
each s ∈ Pin(p, q) the mapping χ(s) : Rp,q �→ Rp,q sending (T ,X) �→ s(T ,X)s induces
an orthogonal transformation. In this way Pin(p, q) defines a double covering of O(p, q)
whereas Spin(p, q) defines a double covering of SO(p, q). More information on this can be
found in e.g. [18].

The Dirac operator on the orthogonal space Rp,q is then defined as the vector derivative
∂p,q given by

∂p,q =
p∑
i=1

εi∂Ti −
q∑
j=1

ej ∂Xj .

LetΩ ⊂ Rp,q be open and let f ∈ C1(Ω) be an Rp,q -valued function. If f satisfies ∂p,qf =
0 inΩ , f is called monogenic with respect to the Dirac operator on Rp,q . As the operator ∂p,q
factorizes the ultrahyperbolic wave-operator on Rp,q , monogenic functions are nullsolutions
for �p,q but not vice-versa.

Arbitrary vectors belonging to T LRp,q can be decomposed as follows:

Qp,q(T ,X)
1
2

(
T

Qp,q(T ,X)
1
2

,
X

Qp,q(T ,X)
1
2

)
= Qp,q(T ,X)

1
2 (τ , ξ)T ,

where (τ , ξ )T belongs to MT (p, q), and hence is called a timelike unit vector. If (T ,X) ∈
SLRp,q we can replace Qp,q(T ,X) by Qq,p(X, T ). The corresponding vector (τ , ξ )S then

belongs to MT (p, q) and is called a spacelike unit vector.
In what follows it will be necessary to let the Dirac operator ∂p,q act on functions defined

on TLRp,q (resp. SLRp,q ). We therefore mention the following decompositions for ∂p,q :

∂p,q = (τ , ξ )T

Qp,q(T ,X)
1
2

(Ep,q + Γp,q) = (τ , ξ )S

Qq,p(X, T )
1
2

(Ep,q + Γp,q) , (1)
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where Ep,q denotes the Euler operator measuring the degree of homogeneity with respect to
the coordinates (T ,X) ∈ Rp,q and with Γp,q the ultrahyperbolic angular operator on Rp,q

(when acting on functions depending on Qp,q(T ,X)
1
2 or Qq,p(X, T )

1
2 only, this operator

vanishes identically). In explicit coordinates these operators are given by

Ep,q =
p∑
i=1

Ti∂Ti +
q∑
j=1

Xj∂Xj

and

Γp,q =
∑
i<j

εiεj (Ti∂Tj − Tj∂Ti )−
∑
i<j

eiej (Xi∂Xj − Xj∂Xi )−
∑
i,j

εiej (Ti∂Xj +Xj∂Ti ) .

This can easily be verified by calculating the Clifford product (T + X)∂p,q and by collect-
ing the scalar terms (giving Ep,q ) and the bivector-terms (giving Γp,q ). Using these explicit
expressions, one can also verify that

Γp,q [(T ,X) · (σ , η)] = (T ,X) ∧ (σ , η) ,
a relation that will be crucial in what follows.

4. Clifford analysis on spin(p, q)-invariant manifolds

Due to the projective nature of our models forMT (p, q) andMS(p, q), the Dirac opera-
tor on these manifolds must be defined on Ray(T LRp,q) and Ray(SLRp,q). For that purpose
we define an associated principal G-bundle, for which we refer e.g. to reference [15]. The
basic idea is that given a particular principal bundle with structure group G, in our case this

is precisely the manifold of rays (where G = R+
0 ), one can form a fibre bundle with fibre F

for each space F on which G acts as a group of transformations. The main motivation then
lies in the fact that sections of this associated bundle will be equivalent to F -valued functions
satisfying a certain constraint (cfr. infra). Since monogenic functions are defined as Clifford
algebra-valued nullsolutions for the Dirac operator, it is thus very natural to construct the
principal fibre bundle with fibre F = Rp,q associated to the manifolds of rays.

Consider therefore the following representation Λ of G = R+
0 on the Clifford algebra

Rp,q :

Λ : G �→ End(Rp,q) : λ �→ λ−α , α ∈ C ,

where λ−α acts by multiplication. Since we now have a principal G-bundle and the Clifford
algebra Rp,q playing the role of aG-space, we may consider theG-product T LRp,q ×GRp,q
of orbits under the (abelian) action of G on the Carthesian product TLRp,q × Rp,q given by

λ((T ,X), a) = (λ(T ,X), (λ−α)−1a) = (λ(T ,X), λαa) .
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By definition, the associated bundle is then given by the bundle

(T LRp,q ×G Rp,q, πG, T LRp,q/G)

with fibre Rp,q , where the projection πG is defined as

πG : T LRp,q ×G Rp,q �→ TLRp,q/G : [(T ,X), a] �→ π(T ,X) ,

π being the projection associated to the principal bundle Ray(T LRp,q).
Since the sections of this associated principal fibre bundle are in bijective correspondance

with functions φ : T LRp,q �→ Rp,q satisfying

φ(λ(T ,X)) = (λ−α)−1φ(T ,X) = λαφ(T ,X) ,

we conclude that sections of the associated fibre bundle are homogeneous functions on the
timelike (resp. spacelike) region in Rp,q .

CONCLUSION. The Dirac operator on the ultrahyperbolic manifolds MT (p, q) and
MS(p, q) can be defined as the Dirac operator ∂p,q acting on homogeneous functions
F(T ,X) on either the timelike or spacelike region.

As the operator ∂p,q is homogeneous of degree (−1) it turns α-homogeneous sections
into (α − 1)-homogeneous sections, whence this operator is well-defined.

In order to construct the fundamental solution E(α)T (T ,X) (resp. E(α)S (T ,X)) for the
Dirac operator onMT (p, q) (resp. MS(p, q)) we first need to derive the corresponding ultra-
hyperbolic Dirac equation. By definition, this is an equation of the following type:

∂p,qE
(α)
T (T ,X) = DT (resp. ∂p,qE

(α)
S (T ,X) = DS) ,

where DT (resp. DS) stands for a delta distribution on Ray(T LRp,q) (resp. Ray(SLRp,q)).
This means that DT (resp. DS) is a homogeneous distribution acting on timelike (resp. space-
like) test functions ϕ(T ,X) by integration over T LRp,q (resp. SLRp,q ) and that after mult-

plication with the distribution δ(|T |2−|X|2±1), hence restricting the integration toMT (p, q)

(resp. MT (p, q)) we are left with the point evaluation in a point of this manifold.
Let us for a moment focus on the timelike region. In order to find the explicit form for

the distribution DT we choose a timelike unit vector τ ∈ Sp−1 and we put

DT = 〈T , τ 〉α+p+q−2
+ δ(T ∧ τ )δ(X) ,

where 〈·, ·〉 denotes the Euclidean inner product. The distribution DT then clearly represents

a delta distribution on the halfray through τ ∈ Sp−1, with

〈δ(|T |2 − |X|2 − 1)DT , ϕ(T ,X)〉 = ϕ(τ , 0) ,

and has the desired degree of homogeneity (α−1). Without loosing generality we may choose
τ = ε1 such that the timelike ultrahyperbolic Dirac equation onMT (p, q) with singularity at
ε1 reduces to:

∂p,qE
(α)
T (T ,X) = (T1)

α+p+q−2
+ δ(T 1)δ(X) ,
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where T 1 stands for the vector
∑p

i=2 εiTi ∈ Rp−1. Note that the right-hand side does not exist

for α ∈ 1−p−q−N: these values correspond to the poles of the distribution (T1)
α+p+q−2
+ (see

reference [13]). In a completely similar way, the spacelike ultrahyperbolic Dirac equation on

MS(p, q) with singularity at ξ ∈ Sq−1 is given by

∂p,qE
(α)
S (T ,X) = 〈X, ξ 〉α+p+q−2

+ δ(X ∧ ξ)δ(T ) .

5. The dirac equation on Rm,m

In this section we will solve the ultrahyperbolic Dirac equation on MT (m,m) for E(α)T

(T ,X), wherem is an odd integer. As ∂2
m,m = �m,m it suffices to solve the scalar problem

�m,mΦ(T ,X) = (T1)
α+2m−2+ δ(T 1)δ(X) , (2)

and to putE(α)T (T ,X) = ∂m,mΦ(T ,X). For that purpose we will first construct a fundamental
solution Fm,m(T ,X) for �m,m and then convolute it with the distribution at the right-hand
side. In view of the fact that this latter distribution does not exist for α ∈ 1 − 2m − N, we
expect Φ(T ,X) to have poles at the very same values for α.

5.1. The fundamental solution Fm,m(T ,X). To construct the fundamental solution
for the operator �m,m we use a method leading to the ultrahyperbolic analogues of Riesz’
distributions. Let us therefore define the function P−(T ,X) by

P−(T ,X)=
{
(|X|2 − |T |2) 1

2 if |T | < |X|
0 if |T | ≥ |X|

For Re(λ) > −2 the function Pλ− belongs to Lloc1 (Rm,m) and hence defines a regular distribu-

tion. Using the fact that �m,mP
λ− = −λ(λ + 2m− 2)P λ−2− for Re(λ) > −2, the distribution

Pλ− can then for other values of λ be defined by analytic continuation, where the derivatives
have to be understood in distributional sense:

〈Pλ−, ϕ〉 = (−1)k
〈�k

m,mP
λ+2k− , ϕ〉

(λ+ 2) · · · (λ+ 2k)(λ+ 2m) · · · (λ+ 2m+ 2k − 2)
.

From this expression it is clear that Pλ− has poles at λ ∈ −2N0 and at λ ∈ −2m− 2N. In the
following Lemma it is proved how the pole at (2 − 2m) can easily be removed by division by
an appropriate Gamma function, and how this leads to a fundamental solution for the operator
�m,m in case of an odd dimension m.

LEMMA 1. In case m ∈ 2N + 1, we have:

�m,m

(
(−1)

m+1
2

4πm−1

P 2−2m−
Γ (2 −m)

)
= δ(T )δ(X) .
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PROOF. First of all note that the expression above must be understood in the sense

lim
λ→2−2m

(−1)
m+1

2

4πm−1

Pλ−
Γ (1 + λ

2 )
.

Since �m,mP
λ− = −λ(λ+ 2m− 2)P λ−2− it suffices to prove that

lim
µ→−2m

(−1)
m+1

2

4πm−1

−2(µ+ 2m)〈Pµ− , ϕ〉
Γ (1 + µ

2 )
= ϕ(0, 0) .

By definition we have

〈Pµ− , ϕ〉 =
∫∫

|X|>|T |
(|X|2 − |T |2) µ2 ϕ(T ,X)dT dX

=
∫ ∞

0
|X|µ+2m−1Φ(|X|, µ)d|X| ,

where we have put

Φ(|X|, µ) =
∫ 1

0
tm−1(1 − t2)

µ
2 ψ(t|X|, |X|)dt ,

with

ψ(|T |, |X|) =
∫
Sm−1

∫
Sm−1

ϕ(|T |ε, |X|e)dεde .

Recalling the fact that Res{xλ+, λ = −1} = δ(x) the Lemma easily follows by elementary
calculations, hereby invoking the relation Γ (z)Γ (1 − z) = π

sin(πz) . Note that the result only

holds in case m ∈ 2N + 1. �

5.2. Calculation of Φ(T ,X). Once this fundamental solution for the ultrahyperbolic
wave-operator is found, the solution for equation (2) in case of oddm immediately follows:

Φ(T ,X) = Fm,m(T ,X) ∗ (T1)
α+2m−2+ δ(T 1)δ(X) .

Recalling the explicit expression for the definition of the fundamental solution, the convolu-
tion reduces to

(−1)
m+1

2

4πm−1
lim

λ→2−2m

∫
Rm

H(|X − Y | − |T − S|)(S1)
α+2m−2+ δ(S1)δ(Y )

Γ (1 + λ
2 )(|X − Y |2 − |T − S|2)− λ

2

dSdY

= (−1)
m+1

2

4πm−1 lim
λ→2−2m

∫ ∞

0

H(|X − Y | − |T − S|)Sα+2m−2
1

Γ (1 + λ
2 )(|X|2 − |T − S1ε1|2)− λ

2

dS1 .

The factor in the denominator is given by e−iλ π2 [(S+ − S1)(S1 − S−)]− λ
2 , where we have put

S± = |T |θ ± (|T |2θ2 − |T |2 + |X|2) 1
2 ,
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with θ = 〈ε, ε1〉 the classical Euclidean inner product. Due to the Heaviside distribution, it is

immediately clear that supp(Φ(T ,X)) = {(T ,X) ∈ TLRm,m : |X|2 ≥ (1 − 〈ε, ε1〉2)|T |2},
which is also equal to (SLRm−1,m×Rε1)∩TLRm,m. This latter expression has a very simple
geometrical interpretation, as it is the region in T LRm,m obtained by letting the support of
Fm,m(T ,X) move along the half ray containing the singularities. We thus get that

Φ(T ,X) = (−1)
m+1

2

4πm−1
lim

λ→2−2m

∫ S+

S−

ei(1−m)πSα+2m−2
1

Γ (1 + λ
2 )[(S+ − S1)(S1 − S−)]− λ

2

dS1 .

The evaluation of this integral is the subject of the following Lemma:

LEMMA 2. For a, b in R+ and γ in C with Re(γ ) < 1, one has∫ b

a

tβ

[(t − a)(b − t)]γ dt =
aβ

(b − a)2γ−1

Γ (1 − γ )2

Γ (2 − 2γ )
F

(
− β, 1 − γ ; 2 − 2γ ; a − b

a

)
.

PROOF. The substitution (b − a)u = t − a leads to∫ b

a

tβ

[(t − a)(b − t)]γ dt = aβ(b − a)1−2γ
∫ 1

0

(1 − a−b
a
u)β

uγ (1 − u)γ
du .

Using Euler’s integral representation formula for the hypergeometric function, we get for all
γ such that Re(γ ) < 1:∫ 1

0

(1 − a−b
a
u)β

uγ (1 − u)γ
du= Γ (1 − γ )2

Γ (2 − 2γ )
F

(
− β, 1 − γ ; 2 − 2γ ; a − b

a

)
.

This proves the Lemma. �

REMARK. For our purposes, the condition on γ may be ignored. This can easily be seen
as follows: in the expression for Φ(T ,X) that needs to be determined, there is an additional

factor Γ (1 + λ
2 ) = Γ (1 − γ ) in the denominator, such that the last formula of the Lemma

reduces to

Γ (1 − γ )

Γ (2 − 2γ )
F

(
− β, 1 − γ ; 2 − 2γ ; a − b

a

)
.

This expression is defined for all γ ∈ C, whence the expression

1

Γ (1 − γ )

∫ b

a

tβ

[(t − a)(b − t)]γ dt

is defined for all odd dimensions m by analytic continuation.
We therefore find the following expression forΦ(T ,X):

(−1)
m−3

2

25−2mπm− 3
2

(S−)α+2m−2

(S+ − S−)2m−3

F(2 − 2m− α, 2 −m; 4 − 2m; S−−S+
S− )

Γ ( 5
2 −m)

.
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By analogy with the hyperbolic case, see e.g. [11], we would like to write the expression for
Φ(T ,X) in terms of Gegenbauer functions of the second kind. This is also motivated by the
fact that Gegenbauer functions are fundamentally related to the orthogonal group. So, in what
follows we will use some basic results from the theory on special functions (in particular on
the hypergeometric function and the Gegenbauer function of the second kind, for which we
resp. refer to [12] and [8]) to put Φ(T ,X) into another form.

Recalling one of Kummer’s relations,

F(a, c − b; 1 + a − b; 1 − z) = z−aF (a, 1 + a − c; 1 + a − b; 1 − z−1) ,

and one of Goursat’s quadratic transformations,

F

(
a, a + 1

2
; c; z2

)
= (1 + z)−2aF

(
2a, c− 1

2
; 2c− 1; 2z

1 + z

)
,

elementary calculations yield:

Φ(T ,X) = (−1)
m−3

2

4πm− 3
2Γ ( 5

2 −m)
T α+1

1

(
1 − |T |2 − |X|2

T 2
1

) 3
2 −m

F

(
2 − 2m− α

2
,

3 − 2m− α

2
; 5

2
−m; 1 − |T |2 − |X|2

T 2
1

)
.

Because the singular behaviour of Φ(T ,X) does not change when a nullsolution for �m,m is
added, we will add the particular solution constructed in the following Lemma:

LEMMA 3. For all (T ,X) ∈ TLRm,m we have

�m,m

{
T α+1

1 F

(
− α

2
,−α + 1

2
;m− 1

2
; 1 − |T |2 − |X|2

T 2
1

)}
= 0 .

PROOF. Putting �m,m = ∂2
T1

+ �m−1,m and ρ2 = |X|2 − (|T |2 − T 2
1 ), it suffices to

prove that (
∂2
T1

− ∂2
ρ − 2m− 1

ρ
∂ρ

)
T α+1

1 F

(
− α

2
,−α + 1

2
;m− 1

2
; ρ

2

T 2
1

)
= 0 ,

because for functions on Rm,m−1 depending on ρ only we have that �m−1,m = (∂2
ρ+ 2m−1

ρ
∂ρ).

Putting T1 = λ and ρ2

T 2
1

= u, the differential operator between brackets acting on T α+1
1 f (u)

reduces to (
u(1 − u)

d2

du2
+
[(
m− 1

2

)
+
(
α − 1

2

)
u

]
d

du
− α(α + 1)

4

)
f (u) .

The Lemma then follows trivially. �



DIRAC OPERATOR ON ULTRAHYPERBOLIC MANIFOLDS 55

Adding this regular solution, multiplied by

C = eiπ
m−1

2

22m−1πm− 1
2

Γ ( 3
2 −m)Γ (α +m− 1)

Γ (α + 2)
,

to the expression for Φ(T ,X) that was found earlier, using the definition of the Gegenbauer
function of the second kind in terms of the Legendre function of the second kind

Dνµ(z) = eiπ(2ν− 1
2 )

π
1
2 2ν− 1

2

Γ (µ+ 2ν)

Γ (ν)Γ (1 + µ)
(z2 − 1)

1
4 − ν

2Q
1
2 −ν
µ+ν− 1

2
(z)

and the following expansion for the Legendre function of the second kind,

Q
µ
ν (z)= Γ (µ)

21−µ
eiµπzν+µ

(z2 − 1)
µ
2
F

(
− ν + µ

2
,

1 − ν − µ

2
; 1 − µ; 1 − 1

z2

)

+Γ (−µ)Γ (1 + µ+ ν)

2µ+1Γ (1 + ν − µ)

eiµπzν−µ

(z2 − 1)−
µ
2
F

(
µ− ν

2
,

1 + µ− ν

2
; 1 + µ; 1 − 1

z2

)
,

we eventually get the following solution for equation (2):

Φ(T ,X)′ = eiπ
m−1

2

2πm−1Γ (m− 1)(|T |2 − |X|2) α+1
2 Dm−1

α+1

(
T1

(|T |2 − |X|2) 1
2

)
.

REMARK. As the function Dµν (z) has poles at ν + 2µ ∈ −N, this fundamental solution
Φ(T ,X)′ has indeed poles at the values for which the delta distribution DT on Ray(T LRm,m)
does not exist.

A last simplification makes use of the fact that the argument of the Gegenbauer function
can also be written as (τ , ξ )T · ε1, where (τ , ξ )T denotes the timelike unit vector inMT (p, q)

associated to (T ,X) ∈ T LRm,m. Recalling the decomposition (1) of the operator ∂p,q we
thus conclude:

E
(α)
T (T ,X)= ∂p,qΦ(T ,X)

′

= eiπ
m−1

2

2πm−1
Γ (m− 1)(|T |2 − |X|2) α2 (τ , ξ )T

(Γp,q + (α + 1))Dm−1
α+1 ((τ , ξ )T · ε1) ,

which by means of the fact that d
dz
D
µ
ν (z) = 2µDµ+1

ν−1 (z) reduces to

E
(α)
T (T ,X) = e

iπ m−1
2

2πm−1Γ (m− 1)(|T |2 − |X|2) α2 (τ , ξ)T
((2m− 2)(τ, ξ )T ∧ ε1D

m
α ((τ , ξ)T · ε1)+ (α + 1)Dm−1

α+1 ((τ , ξ )T · ε1)) .



56 DAVID EELBODE AND FRANK SOMMEN

Using the fact that (τ , ξ )T [(τ, ξ )T ∧ ε1] = ε1 − (τ , ξ)T
[
(τ , ξ )T · ε1

]
and an elementary

recurrence relation for the Gegenbauer functions, we eventually find that

E
(α)
T (T ,X)= eiπ

m+1
2

πm−1 Γ (m)(|T |2 − |X|2) α2
((τ , ξ )T D

m
α−1((τ , ξ )T · ε1)− ε1D

m
α ((τ , ξ)T · ε1)) .

For the spacelike equation, it suffices to switch T ↔ X and to note that the argument of the
Gegenbauer function can be written as −(τ , ξ)S · e1. A similar calculation then yields:

E
(α)
S (T ,X)= eiπ

m+1
2

πm−1 Γ (m)(|X|2 − |T |2) α2
((τ , ξ )SD

m
α−1(−(τ, ξ )S · e1)+ e1D

m
α (−(τ, ξ )S · e1)) .

Note that these solutions have indeed the same structure as the fundamental solution for the
hyperbolic Dirac operator as obtained in e.g. [11].

6. The Dirac Equation on Rp,q

In this section we will use the fundamental solution for the Dirac equation onMT (m,m)

(resp. MS(m,m)) to construct the fundamental solution for the Dirac equation on MT (m, q)

(resp. MS(m, q)). We hereby use the method of descent, based on the following argument:

�m,mΦ(T ,X)= (T1)
α+2m−2+ δ(T 1)δ(X)

⇓∫ ρm

−ρm
�m,mΦ(T ,X)dXm = (T1)

α+2m−2+ δ(T 1)δ(Xm) ,

where we have put Xm = ∑m−1
j=1 Xjej and ρm = (|T |2 − |Xm|2) 1

2 . Note that for (T ,X) in

the spacelike region, the factor ρm remains positive ifXm ∈ [−ρm, ρm]. The integral sign can
be switched with the operator �m,m−1 and for the remaining term we have:∫ ρm

−ρm
∂2
Xm
Φ(T ,X)dXm = ∂XmΦ(T ,X)|+ρm−ρm .

Using the following expansion for the Legendre function of the second kind,

e−iµπQµν (z) = π
1
2Γ (µ+ ν + 1)

2ν+1Γ (ν + 3
2 )

(z2 − 1)
1
2µ

zµ+ν+1 F

(
µ+ ν + 1

2
,
µ+ ν

2
+ 1; ν + 3

2
; 1

z2

)
,

for which we refer to e.g. [12], it is easily verified that

Φ(T ,X) = 21−α−2mΓ (α + 2m− 1)

Γ (m− 1)Γ (α +m+ 1)

(|T |2 − |X|2)α+m

T α+2m−1
1
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F

(
m+ α − 1

2
,m+ α

2
; α +m+ 1; |T |2 − |X|2

T 2
1

)
. (3)

such that ∂XmΦ(T ,X)|+ρm−ρm vanishes for Re(α) > 1 −m. The fundamental solution obtained
by means of the method of descent will however be defined for all α ∈ C such that α /∈
1 − 2m− N, these latter values being the ones for which the distribution (T1)

α+2m−2+ does not
exist, by means of analytic continuation.

The (α + 2)-homogeneous solution for the equation

�m,m−1Φ(T ,Xm) = (T1)
α+2m−2+ δ(T 1)δ(Xm)

is thus given by

Φ(T ,Xm) =
∫ ρm

−ρm
Φ(T ,X)dXm .

In order to perform this integration, we recall expression (3). Writing the hypergeometric
function as a series

∞∑
k=0

(m+ α−1
2 )k(m+ α

2 )k

k!(α +m+ 1)k

(|T |2 − |X|2)k
T 2k

1

=
∞∑
k=0

ck
(|T |2 − |X|2)k

T 2k
1

,

the integral reduces, up to a constant, to:

Φ(T ,Xm) ∼
∞∑
k=0

ck

T α+2m+2k−1
1

∫ ρm

−ρm
(|T |2 − |X|2)α+m+kdXm .

Since

|T |2 − |X|2 = (|T |2 − |Xm|2)
(

1 − X2
m

|T |2 − |Xm|2
)
,

we get the following expression for Φ(T ,Xm):

2
∞∑
k=0

ck(|T |2 − |Xm|2)α+m+k

T α+2m+2k−1
1

∫ ρm

0

(
1 − X2

m

|T |2 − |Xm|2
)α+m+k

dXm .

Under the conditions on α stated above, the integral can for all k ∈ N be reduced to a Beta
integral so that we find:

Φ(T ,Xm) ∼
∞∑
k=0

ck(|T |2 − |Xm|2)α+m+k+ 1
2

T α+2m+2k−1
1

B

(
1

2
, α +m+ k + 1

)
.

Since

B

(
1

2
, α +m+ k + 1

)
ck = π

1
2
Γ (α +m+ 1)

Γ (α +m+ 3
2 )

(m+ α−1
2 )k(m+ α

2 )k

k!(α +m+ 3
2 )k

,
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we thus get:

Φ(T ,Xm)= π
1
2

21−α−2mΓ (α + 2m− 1)

Γ (m− 1)Γ (α +m+ 3
2 )

(|T |2 − |Xm|2)α+m+ 1
2

T α+2m−1
1

F

(
m+ α − 1

2
,m+ α

2
; α +m+ 3

2
; |T |2 − |Xm|2

T 2
1

)
.

From this, it immediately follows that the (α + 1)-homogeneous solution for the ultrahyper-
bolic Dirac equation

∂m,m−1E
(α+1)
T (T ,Xm) = (T1)

α+2m−2+ δ(T 1)δ(Xm)

with support in (SLRm−1,m−1 × Rε1) ∩ T LRm,m−1 is given by

E
(α+1)
T (T ,Xm)=

eiπ
m
2

πm− 3
2

Γ

(
m− 1

2

)
(|T |2 − |Xm|2) α+1

2

((τ , ξ
m
)T D

m− 1
2

α ((τ , ξ
m
)T · ε1)− ε1D

m− 1
2

α+1 ((τ , ξm
)T · ε1)) .

The very same argument can then be repeated, and in this way an expression is obtained
for the fundamental solution of the ultrahyperbolic Dirac equation on the timelike manifold
MT (m, q) for q < m or, by substituting T ↔ X, on the spacelike manifold MT (p,m) for
p < m. It should however be noted that the method of descent only allows us to lower the
amount of spatial (resp. temporal) dimensions in the timelike (resp. spacelike) region. This
leads to the following:

• Consider the ultrahyperbolic Dirac equation onMT (m, q) ⊂ Rm,q with singularities on

the ray through σ ∈ Sm−1:

∂m,qE
(α)
T (T ,X) = (〈T , σ 〉)α+m+q−2

+ δ(T ∧ σ)δ(X) .

The fundamental solution E(α)T (T ,X), whose support is given by

supp(E(α)T (T ,X)) = (SLRm−1,q × Rσ) ∩ T LRm,q ,
is defined as

E
(α)
T (T ,X)= eiπ

q+1
2

π
m+q

2 −1
Γ

(
m+ q

2

)
(|T |2 − |Xm|2) α2

((τ , ξ )T D
m+q

2
α−1 ((τ , ξ)T · σ )− σD

m+q
2

α ((τ , ξ )T · σ)) ,

where (τ , ξ )T denotes the vector (|T |2 − |X|2)− 1
2 (T ,X) with (T ,X) an element of

T LRm,q .
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• Consider the ultrahyperbolic Dirac equation onMS(p,m) ⊂ Rp,m with singularities on

the ray through η ∈ Sm−1:

∂p,mE
(α)
S (T ,X) = (〈X, η〉)α+m+p−2

+ δ(X ∧ η)δ(T ) .

The fundamental solution E(α)S (T ,X), whose support is given by

supp(E(α)S (T ,X)) = (T LRp,m−1 × Rη) ∩ SLRp,m ,
is defined as

E
(α)
S (T ,X)= eiπ

p+1
2

π
m+p

2 −1
Γ

(
m+ p

2

)
(|X|2 − |T |2) α2

((τ , ξ )SD
m+p

2
α−1 ((τ , ξ )S · η)− ηD

m+p
2

α ((τ, ξ )S · η)) ,

where (τ , ξ )S denotes the vector (|X|2 − |T |2)− 1
2 (T ,X) with (T ,X) an element of

SLRp,m.

We conclude this section by noting that the fundamental solution for the conformal Dirac
operator on the timelike (resp. spacelike) ultrahyperbolic manifold can easily be found by

putting α = −m+q
2 (resp. α = −p+m

2 ). This follows from the fact that the Dirac operator on
the nullcone in Rp,q , which is only defined for these respective values for α, gives rise to the

conformally invariant Dirac operator on Rp−1,q−1, as was explained in [21].
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