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Bayes, Jeffreys, Prior Distributions and
the Philosophy of Statistics1

Andrew Gelman

I actually own a copy of Harold Jeffreys’s Theory
of Probability but have only read small bits of it, most
recently over a decade ago to confirm that, indeed, Jef-
freys was not too proud to use a classical chi-squared
p-value when he wanted to check the misfit of a model
to data (Gelman, Meng and Stern, 2006). I do, how-
ever, feel that it is important to understand where our
probability models come from, and I welcome the op-
portunity to use the present article by Robert, Chopin
and Rousseau as a platform for further discussion of
foundational issues.2

In this brief discussion I will argue the following:
(1) in thinking about prior distributions, we should go
beyond Jeffreys’s principles and move toward weakly
informative priors; (2) it is natural for those of us who
work in social and computational sciences to favor
complex models, contra Jeffreys’s preference for sim-
plicity; and (3) a key generalization of Jeffreys’s ideas
is to explicitly include model checking in the process
of data analysis.

THE ROLE OF THE PRIOR DISTRIBUTION IN
BAYESIAN DATA ANALYSIS

At least in the field of statistics, Jeffreys is best
known for his eponymous prior distribution and, more
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1Discussion of “Harold Jeffreys’s Theory of Probability revis-
ited,” by Christian Robert, Nicolas Chopin, and Judith Rousseau,
for Statistical Science.

2On the topic of other books on the foundations of Bayesian sta-
tistics, I confess to having found Savage (1954) to be nearly un-
readable, a book too much of a product of its time in its enthusiasm
for game theory as a solution to all problems, an attitude which I
find charming in the classic work of Luce and Raiffa (1957) but
more of annoyance in a book of statistical methods. When it comes
to Cold War-era foundational work on Bayesian statistics, I much
prefer the work of Lindley, in his 1965 book and elsewhere.

Also, I would be disloyal to my coauthors if I did not report
that, despite what is said in the second footnote in the article under
discussion, there is at least one other foundational Bayesian text of
1990s vintage that continues to receive more citations than Jeffreys.

generally, for the principle of constructing noninfor-
mative, or minimally informative, or objective, or
reference prior distributions from the likelihood (see,
for example, Kass and Wasserman, 1996). But it can
notoriously difficult to choose among noninformative
priors; and, even more importantly, seemingly nonin-
formative distributions can sometimes have strong and
undesirable implications, as I have found in my own
experience (Gelman, 1996, 2006). As a result I have
become a convert to the cause of weakly informative
priors, which attempt to let the data speak while being
strong enough to exclude various “unphysical” possi-
bilities which, if not blocked, can take over a posterior
distribution in settings with sparse data—a situation
which is increasingly present as we continue to develop
the techniques of working with complex hierarchical
and nonparametric models.

HOW THE SOCIAL AND COMPUTATIONAL
SCIENCES DIFFER FROM PHYSICS

Robert, Chopin and Rousseau trace the application
of Ockham’s razor (the preference for simpler mod-
els) from Jeffreys’s discussion of the law of gravity
through later work of a mathematical statistician (Jim
Berger), an astronomer (Bill Jefferys) and a physicist
(David MacKay). From their perspective, Ockham’s
razor seems unquestionably reasonable, with the only
point of debate being the extent to which Bayesian in-
ference automatically encompasses it.

My own perspective as a social scientist is com-
pletely different. I’ve just about never heard someone
in social science object to the inclusion of a variable
or an interaction in a model; rather, the most serious
criticisms of a model involve worries that certain po-
tentially important factors have not been included. In
the social science problems I’ve seen, Ockham’s razor
is at best an irrelevance and at worse can lead to accep-
tance of models that are missing key features that the
data could actually provide information on. As such,
I am no fan of methods such as BIC that attempt to jus-
tify the use of simple models that do not fit observed
data. Don’t get me wrong—all the time I use simple
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models that don’t fit the data—but no amount of BIC
will make me feel good about it!3

I much prefer Radford Neal’s line from his Ph.D.
thesis:

Sometimes a simple model will outperform
a more complex model. . . Nevertheless, I
[Neal] believe that deliberately limiting the
complexity of the model is not fruitful when
the problem is evidently complex. Instead,
if a simple model is found that outperforms
some particular complex model, the appro-
priate response is to define a different com-
plex model that captures whatever aspect of
the problem led to the simple model per-
forming well.

This is not really a Bayesian or a non-Bayesian is-
sue: complicated models with virtually unlimited non-
linearity and interactions are being developed using
Bayesian principles. See, for example, Dunson (2006)
and Chipman, George and McCulloch (2008). To put
it another way, you can be a practicing Bayesian and
prefer simpler models, or be a practicing Bayesian and
prefer complicated models. Or you can follow similar
inclinations toward simplicity or complexity from var-
ious non-Bayesian perspectives.

My point here is only that the Ockhamite tenden-
cies of Jeffreys and his followers up to and including
MacKay may derive, to some extent, from the simplic-
ity of the best models of physics, the sense that good
science moves from the particular to the general—an
attitude that does not fit in so well with modern social
and computational science.

BAYESIAN INFERENCE VS. BAYESIAN DATA
ANALYSIS

One of my own epiphanies—actually stimulated by
the writings of E. T. Jaynes, yet another Bayesian
physicist—and incorporated into the title of my own
book on Bayesian statistics, is that sometimes the most
important thing to come out of an inference is the re-
jection of the model on which it is based. Data analysis
includes model building and criticism, not merely in-
ference. Only through careful model building is such
definitive rejection possible. This idea—the compar-
ison of predictive inferences to data—was forcefully

3See Gelman and Rubin (1995) for a fuller expression of this
position, and Raftery (1995) for a defense of BIC in general and in
the context of two applications in sociology.

put into Bayesian terms nearly thirty years ago by Box
(1980) and Rubin (1984) but is even now still only
gradually becoming standard in Bayesian practice.

A famous empiricist once said, “With great power
comes great responsibility.” In Bayesian terms, the
stronger we make our model—following the excellent
precepts of Jeffreys and Jaynes—the more able we will
be to find the model’s flaws and thus perform scientific
learning.

To roughly translate into philosophy-of-science jar-
gon: Bayesian inference within a model is “normal
science,” and “scientific revolution” is the process of
checking a model, seeing its mismatches with reality,
and coming up with a replacement. The revolution is
the glamour boy in this scenario, but, as Kuhn (1962)
emphasized, it is only the careful work of normal sci-
ence that makes the revolution possible: the better we
can work out the implications of a theory, the more
effectively we can find its flaws and thus learn about
nature.4 In this chicken-and-egg process, both normal
science (Bayesian inference) and revolution (Bayesian
model revision) are useful, and they feed upon each
other. It is in this sense that graphical methods and
exploratory data analysis can be viewed as explicitly
Bayesian, as tools for comparing posterior predictions
to data (Gelman, 2003).

To get back to the Robert, Chopin, and Rousseau
article: I am suggesting that their identification (and
Jeffreys’s) of Bayesian data analysis with Bayesian
inference is limiting and, in practice, puts an unreal-
istic burden on any model.

CONCLUSION

If you wanted to do foundational research in statis-
tics in the mid-twentieth century, you had to be bit of
a mathematician, whether you wanted to or not. As
Robert, Chopin, and Rousseau’s own work reveals, if
you want to do statistical research at the turn of the
twenty-first century, you have to be a computer pro-
grammer.

The present discussion is fascinating in the way it re-
veals how many of our currently unresolved issues in
Bayesian statistics were considered with sophistication
by Jeffreys. It is certainly no criticism of his pioneer-
ing work that it has been a springboard for decades of

4As Kuhn may very well have written had he lived long enough,
scientific progress is fractal, with episodes of normal science and
mini-revolutions happening over the period of minutes, hours, days,
and years, as well as the more familiar examples of paradigms last-
ing over decades or centuries.
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development, most notably (in my opinion) involving
the routine use of hierarchical models of potentially un-
limited complexity, and with the recognition that much
can be learned by both the successes and the failures
of a statistical model’s attempt to capture reality. The
Bayesian ideas of Jeffreys, de Finetti, Lindley, and oth-
ers have been central to the shift in focus away from
simply modeling data collection and toward the mod-
eling of underlying processes of interest—“prior distri-
butions,” one might say.
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