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of the estimate (at normal means) is optimal for
Wi=1+ Vntl.

For n = 8, obtain an efficient estimate from subsam-
ples (1234), (1256), (1278), (1357), (1368), (1458),
(1467); use as many as you need, and if n > 8 divide
the sample into 8 groups as evenly as possible. I think
it must be rare that the various approximations needed
to connect the resampled computation to the compu-
tation of interest will be satisfied well enough to justify

Rejoinder

B. Efron and R. Tibshirani

Professor Hartigan, who is one of the pioneers of
resampling theory, raises the question of higher order
accuracy. This question has bothered resamplers since
the early days of the jackknife. Sections 7 and 8 of
our paper show that the bootstrap can indeed achieve
higher levels of accuracy, going the next step beyond
simple estimates of standard error. The bootstrap
confidence intervals we discuss are not of the crude
(although useful) first-order form § + 52“). They
explicitly incorporate the higher order corrections
about which Hartigan is legitimately concerned.

In particular the “z,” term (7.8) is a correction for
bias, and the acceleration constant “a,” (7.16), is a
correction for skewness. These correspond to Harti-
gan’s b(F) and s3(F), respectively. The reader who
follows through Tables 5 and 7 will see these correc-
tions in action. The fact that they produce highly
accurate confidence intervals is no accident. The the-
ory in Efron (1984a, 1984b) demonstrates higher order
accuracy of the BC, intervals in a wide class of situa-
tions. This demonstration does not yet apply to fully
general problems, but current research indicates that
it soon will. (The impressive higher order asymptotic
results of Beran, Singh, Bickel, and Freedman, re-
ferred to in the paper, underpin these conclusions.)

It is worth mentioning that the bias and skewness
corrections of the bootstrap confidence intervals are
not of the simple “plug into an approximate pivotal”
form suggested in Hartigan’s remarks. The theory is
phrased in a way which automatically corrects for
arbitrary nonlinear transformations, even of the vio-
lent sort encountered in the correlation example of
Table 5. In this sense the bootstrap theory does handle
“non-normal situations.”

Since this paper was written, research by several
workers, including T. Hesterberg, R. Tibshirani, and
T. DiCiccio, has substantially improved the compu-
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more than a few resamples. Perhaps this method
might be called the shoestring.
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tational outlook for bootstrap confidence intervals. It
now appears possible that bootstrap sample sizes
closer to B = 100 than B = 1000 may be sufficient for
the task. However, these improvements are still in the
process of development.

Professor Hartigan’s last remarks, on the compar-
ative efficiency of different resampling methods, need
careful interpretation. There are two concepts of ef-
ficiency involved: the efficiency of the numerical al-
gorithm in producing an estimate of variance, and the
statistical efficiency of the estimate produced. There
is no question that other resampling techniques, for
example, the jackknife, can produce variance esti-
mates more economically than does the bootstrap. We
have argued, both by example and theory, that the
bootstrap variance is generally more efficient as a
statistical estimator of the unknown true variance.

This is not surprising given that methods like the
jackknife are Taylor series approximations to the
bootstrap (see Section 10). The simple idea in (2.3),
substituting F for F, lies at the heart of all nonpara-
metric estimates of accuracy. The bootstrap is the
crudest of these methods in that it computes o (F)
directly by Monte Carlo. For this reason it is also the

“ method that involves the least amount of analytic

approximation. It is perhaps surprising, and certainly
gratifying, that a method based on such a simple form
of inference is capable of producing quite accurate
confidence intervals.

To say that the bootstrap is good, as we have been
blatantly doing, doesn’t imply that other methods are
bad. Professor Hartigan’s own work shows that for
some problems, for example, forming a confidence
interval for the center of a symmetric distribution,
other methods are better. We hope that resampling
methods in general will continue to be a lively research
topic.
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