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Bootstrap Methods for Standard Errors,

Confidence Intervals, and Other Measures of
Statistical Accuracy

B. Efron and R. Tibshirani

Abstract. This is a review of bootstrap methods, concentrating on basic
ideas and applications rather than theoretical considerations. It begins with
an exposition of the bootstrap estimate of standard error for one-sample
situations. Several examples, some involving quite complicated statistical
procedures, are given. The bootstrap is then extended to other measures of
statistical accuracy such as bias and prediction error, and to complicated
data structures such as time series, censored data, and regression models.
Several more examples are presented illustrating these ideas. The last third

of the paper deals mainly with bootstrap confidence intervals.
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1. INTRODUCTION

A typical problem in applied statistics involves the
estimation of an unknown parameter 6. The two main
questions asked are (1) what estimator ] should be
used? (2) Having chosen to use a particular 6, how
accurate is it as an estimator of #? The bootstrap is a
general methodology for answering the second ques-
tion. It is a computer-based method, which substitutes
considerable amounts of computation in place of the-
oretical analysis. As we shall see, the bootstrap can
routinely answer questions which are far too compli-
cated for traditional statistical analysis. Even for rel-
atively simple problems computer-intensive methods
like the bootstrap are an increasingly good data ana-
lytic bargain in an era of exponentially declining com-
putational costs.

This paper describes the basis of the bootstrap
theory, which is very simple, and gives several exam-
ples of its use. Related ideas like the jackknife, the
delta method, and Fisher’s information bound are also
discussed. Most of the proofs and technical details are
omitted. These can be found in the references given,
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particularly Efron (1982a). Some of the discussion
here is abridged from Efron and Gong (1983) and also
from Efron (1984).

Before beginning the main exposition, we will de-
scribe how the bootstrap works in terms of a problem
where it is not needed, assessing the accuracy of the
sample mean. Suppose that our data consists of a
random sample from an unknown probability distri-
bution F on the real line,

(101) Xl’ X2, ) Xn~F-

Having observed X; = x;, Xo = %3, - - -, Xp = %n, We
compute the sample mean ¥ = Y} x,/n, and wonder
how accurate it is as an estimate of the true mean
0= EF{X }.

If the second central moment of F is us(F) = EpX?
— (ErX)?, then the standard error o(F; n, %), that is
the standard deviation of x for a sample of size n from

-distribution F, is

(1.2) o(F) = [ua(F)/n]"2

The shortened notation ¢(F) = o(F; n, %) is allow-
able because the sample size n and statistic of interest
% are known, only F being unknown. The standard
error is the traditional measure of x’s accuracy. Un-
fortunately, we cannot actually use (1.2) to assess the
accuracy of X, since we do not know u,(F'), but we can
use the estimated standard error

(1.3) & = [@z/n]"2

where g, = Y%, (x; — )?/(n — 1), the unbiased estimate
of pa(F).
There is a more obvious way to estimate o(F). Let
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F indicate the empirical probability distribution,
(1.4) F: probability mass 1/non  x;, xo, - - -, Xp.
Then we can simply replace F by F'in (1.2), obtaining
(1.5) G = o(F) = [ua(F)/n]",

as the estimated standard error for x. This is the
bootstrap estimate. The reason for the name “boot-
strap” will be apparent in Section 2, when we evaluate
o(F) for statistics more complicated than x. Since

i (x; — %)

(1.6) fiz = po(F) =
i=1 n

¢ is not quite the same as &, but the difference is too
small to be important in most applications.

Of course we do not really need an alternative
formula to (1.3) in this case. The trouble begins when
we want a standard error for estimators more compli-
cated than x, for example, a median or a correlation
or a slope coefficient from a robust regression. In most
cases there is no equivalent to formula (1.2), which
expresses the standard error ¢(F) as a simple function
of the sampling distribution F. As a result, formulas
like (1.3) do not exist for most statistics.

This is where the computer comes in. It turns out
that we can always numerically evaluate the bootstrap
estimate ¢ = o(F'), without knowing a simple expres-
sion for o(F'). The evaluation of ¢ is a straightforward
Monte Carlo exercise described in the next section. In
a good computing environment, as described in the
remarks in Section 2, the bootstrap effectively gives
the statistician a simple formula like (1.3) for any
statistic, no matter how complicated.

Standard errors are crude but useful measures of
statistical accuracy. They are frequently used to give
approximate confidence intervals for an unknown
parameter 6

(1.7) 0E€f+ 62,

where 2(“ is the 100 - « percentile point of a standard
normal variate, e.g., 2°® = 1.645. Interval (1.7) is
sometimes good, and sometimes not so good. Sections
7 and 8 discuss a more sophisticated use of the boot-
strap, which gives better approximate confidence in-
tervals than (1.7).

The standard interval (1.7) is based on taking lit-
erally the large sample normal approximation (f —
0)/c ~ N(0, 1). Applied statisticians use a variety of
tricks to improve this approximation. For instance if
§ is the correlation coefficient and # the sample cor-
relation, then the transformation ¢ = tanh™'(9), ¢ =
tanh~'(f) greatly improves the normal approximation,
at least in those cases where the underlying sampling
distribution is bivariate normal. The correct tactic
then is to transform, compute the interval (1.7) for ¢,
and transform this interval back to the 6 scale.

We will see that bootstrap confidence intervals can
automatically incorporate tricks like this, without re-
quiring the data analyst to produce special techniques,
like the tanh™ transformation, for each new situation.
An important theme of what follows is the substitution
of raw computing power for theoretical analysis. This
is not an argument against theory, of course, only
against unnecessary theory. Most common statistical
methods were developed in the 1920s and 1930s, when
computation was slow and expensive. Now that com-
putation is fast and cheap we can hope for and expect
changes in statistical methodology. This paper dis-
cusses one such potential change, Efron (1979b) dis-
cusses several others.

2. THE BOOTSTRAP ESTIMATE OF STANDARD
ERROR

This section presents a more careful description of
the bootstrap estimate of standard error. For now we
will assume that the observed data y = (x1, x5, - - -,
x,) consists of independent and identically distributed
(iid) observations X;, Xs, ..., X, ~iq F, as in (1.1).
Here F represents an unknown probability distribu-
tion on £, the common sample space of the observa-
tions. We have a statistic of interest, say é(y), to
which we wish to assign an estimated standard error.

Fig. 1 shows an example. The sample space 2 is
R**, the positive quadrant of the plane. We have
observed n = 15 bivariate data points, each corre-
sponding to an American law school. Each point x;
consists of two summary statistics for the 1973 enter-
ing class at law school i

2.1) x; = (LSAT;, GPA));

LSAT; is the class’ average score on a nationwide
exam called “LSAT”; GPA,; is the class’ average un-
dergraduate grades. The observed Pearson correlation

3.5
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FI1G. 1. The law school data (Efron, 1979b). The data points, begin-
ning with School 1, are (576, 3.39), (635, 3.30), (558, 2.81),
(578, 3.03), (666, 3.44), (580, 3.07), (555, 3.00), (661, 3.43),
(651, 3.36), (605, 3.13), (653, 3.12), (575, 2.74), (545, 2.76),
(572, 2.88), (594, 2.96).
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coefficient for these 15 points is 6 = .776. We wish to
assign a standard error to this estimate.

Let o(F) indicate the standard error of , as a
function of the unknown sampling distribution F,

(2.2) o(F) = [Varz{(y)}]"2

Of course o(F) is also a function of the sample size n
and the form of the statistic 6(y), but since both of
these are known they need not be indicated in the
notation. The bootstrap estimate of standard error is

(2.3) ¢ = o(F),

where F' is the empirical distribution (1.4), putting
probability 1/n on each observed data point ;. In the
law school example, F'is the distribution putting mass
%5 on each point in Fig. 1, and ¢ is the standard
deviation of the correlation coefficient for 15 iid points
drawn from F.

In most cases, including that of the correlation
coefficient, there is no simple expression for the func-
tion o(F) in (2.2). Nevertheless, it is easy to numeri-
cally evaluate ¢ = o(F) by means of a Monte Carlo
algorithm, which depends on the following notation:
y* = (xf, 2%, -, x) indicates n independent draws
from F, called a bootstrap sample. Because F is the
empirical distribution of the data, a bootstrap sample
turns out to be the same as a random sample of size
n drawn with replacement from the actual sample
{xly Xoy vty xn}'

The Monte Carlo algorithm proceeds in three steps:
(i) using a random number generator, independently
draw a large number of bootstrap samples, say y*(1),
y*(2), - - -, y*(B); (ii) for each bootstrap sample y*(b),
evaluate the statistic of interest, say 6*(b) = 0(y*(b)),
b=1,2, -, B;and (iii) calculate the sample standard
deviation of the 6*(b) values

) ( By {0*(b) — é*(»}?)”
OB = ’

B-1

YE, 6*(b)
==

' It is easy to see that as B — ¢, g5 will approach
6= o(F), the bootstrap estimate of standard error.
All we are doing is evaluating a standard deviation
by Monte Carlo sampling. Later, in Section 9, we
will discuss how large B need be taken. For most
situations B in the range 50 to 200 is quite adequate.
In what follows we will usually ignore the difference
between 65 and g, calling both simply “s.”

Why is each bootstrap sample taken with the same
sample size n as the original data set? Remember that
o(F) is actually o(F, n, ), the standard error for the
statistic 6( ) based on a random sample of size n from
the unknown distribution F. The bootstrap estimate
¢ is actually o(F, n, 6) evaluated at F = F. The Monte

(2.4)
6*(.) =

Carlo algorithm will not converge to ¢ if the bootstrap
sample size differs from the true n. Bickel and Freed-
man (1981) show how to correct the algorithm to give
¢ if in fact the bootstrap sample size is taken different
than n, but so far there does not seem to be any
practical advantage to be gained in this way.

Fig. 2 shows the histogram of B = 1000 bootstrap
replications of the correlation coefficient from the law
school data. For convenient reference the abscissa is
plotted in terms of §* — § = §* — .776. Formula (2.4)
gives ¢ = .127 as the bootstrap estimate of standard
error. This can be compared with the usual normal
theory estimate of standard error for 6,

(2.5)  Gnorm = (1 — 6%)/(n — 3)V2 = 115,
[Johnson and Kotz (1970, p. 229)].

REMARK. The Monte Carlo algorithm leading to
op (2.4) is simple to program. On the Stanford version
of the statistical computing language S, Professor
Arthur Owen has introduced a single command which
bootstraps any statistic in the S catalog. For instance
the bootstrap results in Fig. 2 are obtained simply by

typing
tboot(lawdata, correlation, B = 1000).

The execution time is about a factor of B greater than
that for the original computation.

There is another way to describe the bootstrap
standard error: F is the nonparametric maximum like-
lihood estimate (MLE) of the unknown distribution F
(Kiefer and Wolfowitz, 195§). This means that the
bootstrap estimate ¢ = o(F') is the nonparametric
MLE of ¢(F'), the true standard error.

In fact there is nothing which says that the boot-
strap must be carried out nonparametrically. Suppose
for instance that in the law school example we believe
the true sampling distribution F must be bivariate
normal. Then we could estimate F with its parametric
MLE Fnorw, the bivariate normal distribution having
the same mean vector and covariance matrix as the

NORMAL
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FIG. 2. Histogram of B = 1000 bootstrap replications of §° for the
law school data. The normal theory density curve has a similar shape,
but falls off more quickly at the upper tail.
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data. The bootstrap samples at step (i) of the algo-
rithm could then be drawn from Fyory instead of F’,
and steps (ii) and (iii) carried out as before.

The smooth curve in Fig. 2 shows the results of
carrying out this “normal theory bootstrap” on the
law school data. Actually there is no need to do the
bootstrap sampling in this case, because of Fisher’s
formula for the sampling density of a correlation coef-
ficient in the bivariate normal situation (see Chapter
32 of Johnson and Kotz, 1970). This density can be
thought of as the bootstrap distribution for B = oo,
Expression (2.5) is a close approximation to onorm =
o (Fxorm), the parametric bootstrap estimate of stand-
ard error.

In considering the merits or demerits of the boot-
strap, it is worth remembering that all of the usual
formulas for estimating standard errors, like ¥ V2
where .7 is the observed Fisher information, are es-
sentially bootstrap estimates carried out in a para-
metric framework. This point is carefully explained in
Section 5 of Efron (1982¢). The straightforward non-
parametric algorithm (i)-(iii) has the virtues of avoid-
ing all parametric assumptions, all approximations
(such as those involved with the Fisher information

TABLE 1
A sampling experiment comparing the bootstrap and jackknife
estimates of standard error for the 25% trimmed mean,
sample size n = 15

F standard
normal

Ave SD CV Ave SD CV

F negative
exponential

Bootstrap ¢ 287 071 .25 242 078 .32
(B = 200)

Jackknife g, 280 .084 .30 .224 .085 .38

True (minimum CV) .286 (.19) .232 (.27)

expression for the standard error of an MLE), and in
fact all analytic difficulties of any kind. The data
analyst is free to obtain standard errors for enor-
mously complicated estimators, subject only to the
constraints of computer time. Sections 3 and 6 discuss
some interesting applied problems which are far too
complicated for standard analyses.

How well does the bootstrap work? Table 1 shows
the answer in one situation. Here 2 is the real line,
n = 15, and the statistic f of interest is the 25%
trimmed mean. If the true sampling distribution F is
N(0, 1), then the true standard error is ¢(F) = .286.
The bootstrap estimate ¢ is nearly unbiased, averaging
.287 in a large sampling experiment. The standard
deviation of the bootstrap estimate ¢ is itself .071 in
this case, with coefficient of variation .071/.287 = .25.
(Notice that there are two levels of Monte Carlo
involved in Table 1: first drawing the actual samples
y = (x1, X2, + -+, X15) from F, and then drawing boot-
strap samples (x¥, x5, - - -, x35) with y held fixed. The
bootstrap samples evaluate ¢ for a fixed value of y.
The standard deviation .071 refers to the variability
of ¢ due to the random choice of y.)

The jackknife, another common method of assign-
ing nonparametric standard errors, is discussed in
Section 10. The jackknife estimate o, is also nearly
unbiased for o(F'), but has higher coefficient of vari-
ation (CV). The minimum possible CV for a scale-
invariant estimate of o(F), assuming full knowledge
of the parametric model, is shown in brackets. The
nonparametric bootstrap is seen to be moderately
efficient in both cases considered in Table 1.

Table 2 returns to the case of § the correlation
coefficient. Instead of real data we have a sampling
experiment in which the true F is bivariate normal,
true correlation § = .50, sample size n = 14. Table 2
is abstracted from a larger table in Efron (1981b), in

TABLE 2
Estimates of standard error for the correlation coefficient 6 and for ¢ = tanh™'4; sample size n = 14, distribution F bivariate normal with true
correlation p = .5 (from a larger table in Efron, 1981b)

Summary statistics for 200 trials

Standard error estimates for 6

Standard error estimates for ¢

Ave SD CvV vMSE Ave SD CV vMSE
1. Bootstrap B = 128 .206 .066 .32 .067 .301 .065 22 .065
2. Bootstrap B = 512 .206 .063 31 .064 .301 .062 21 .062
3. Normal smoothed bootstrap B = 128 .200 .060 .30 .063 .296 .041 14 .041
4. Uniform smoothed bootstrap B = 128 205 .061 .30 .062 298 .068 .19 .058
5. Uniform smoothed bootstrap B = 512 .205 .059 29 .060 .296 .052 .18 .052
6. Jackknife .223 .085 .38 .085 314 .090 .29 .091
7. Delta method 175 .058 .33 .072 244 .052 21 .076
(Infinitesimal jackknife)
8. Normal theory 217 .056 .26 .056 .302 0 0 .003

True standard error 218

299
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which some of the methods for estimating a standard
error required the sample size to be even.

The left side of Table 2 refers to 6, while the right
side refers to ¢ = tanh™(d) = .5 log(1 + 6)/(1 — 6).
For each estimator of standard error, the root mean
squared error of estimation [E(é — ¢)?]"/? is given in
the column headed vMSE.

The bootstrap was run with B = 128 and also with
B = 512, the latter value yielding only slightly better
estimates in accordance with the results of Section 9.
Further increasing B would be pointless. It can be
shown that B = o gives VMSE = .063 for 6, only .001
less than B = 512. The normal theory estimate (2.5),
which we know to be ideal for this sampling experi-
ment, has vVMSE = .056.

We can compromise between the totally nonpara-
metric bootstrap estimate ¢ and the totally parametric
bootstrap estimate dnorm. This is done in lines 3, 4,
and 5 of Table 2. Let 2 = Y%, (x; — x)(x; — x)’/n be
the sample covariance matrix of the observed data.
The normal smoothed bootstrap draws the bootstrap
sample from F @ N,(0, .25%), ® indicating convolu-
tion. This amounts to estimating F by an equal mix-
ture of the n distributions Ny(x;, .25%), that is by a
normal window estimate. Each point x¥ in a smoothed
bootstrap sample is the sum of a randomly selected
original data point x;, plus an independent bivariate
normal point z; ~ N»(0, .25%). Smoothing makes little
difference on the left side of the table, but is spectac-
ularly effective in the ¢ case. The latter result is
suspect since the true sampling distribution is bivar-
iate normal, and the function ¢ = tanh™4 is specifi-
cally chosen to have nearly constant standard error in
the bivariate normal family. The uniform smoothed
bootstrap samples from F & A0, .25%), where
A(0, .25%) is the uniform distribution on a rhombus
selected so A has mean vector 0 and covariance matrix
.25%. It yields moderate reductions in vMSE for both
sides of the table.

Line 6 of Table 2 refers to the delta method, which
is the most common method of assigning nonpara-
metric standard error. Surprisingly enough, it is badly
biased downward on both sides of the table. The delta
method, also known as the method of statistical dif-
ferentials, the Taylor series method, and the infinites-
imal jackknife, is discussed in Section 10.

3. EXAMPLES

Example 1. Cox’s Proportional Hazards Model

In this section we apply bootstrap standard error
estimation to some complicated statistics.

The data for this example come from a study of
leukemia remission times in mice, taken from Cox
(1972). They consist of measurements of remission

time (y) in weeks for two groups, treatment (x = 0)
and control (x = 1), and a 0-1 variable (5;) indicating
whether or not the remission time is censored (0) or
complete (1). There are 21 mice in each group.

The standard regression model for censored data is
Cox’s proportional hazards model (Cox, 1972). It as-
sumes that the hazard function h(t | x), the probability
of going into remission in next instant given no re-
mission up to time ¢ for a mouse with covariate x, is
of the form

(3.1 h(t| x) = ho(t)e™

Here ho(t) is an arbitrary unspecified function. Since
x here is a group indicator, this means simply that the
hazard for the control group is e” times the hazard for
the treatment group. The regression parameter 3 is
estimated independently of hy(t) through maximiza-
tion of the so called “partial likelihood”

eﬁxi
(3.2) PL i£ID ZjeRi e,BxJ ’
where D is the set of indices of the failure times and
R; is the set of indices of those at risk at time y;. This
maximization requires an iterative computer search.
The estimate 3 for these data turns out to be 1.51.
Taken literally, this says that the hazard rate is e'*!
= 4.33 times higher in the control group than in the
treatment group, so the treatment is very effective.
What is the standard error of 3? The usual asymptotic
maximum likelihood theory, one over the square root
of the observed Fisher information, gives an estimate
of .41. Despite the complicated nature of the estima-
tion procedure, we can also estimate the standard error
using the bootstrap. We sample with replacement
from the triples {(yi1, x1, 61), - - -, (Y12, X42, 042)}. For
eaCh bOOtStrap Sample {(yik, xik’ 6;‘)9 ) (yikz, x:1k2’
0%)} we form the partial likelihood and numerically
maximize it to produce the bootstrap estimate §*. A
histogram of 1000 bootstrap values is shown in Fig. 3.
The bootstrap estimate of the standard error of 3

" based on these 1000 numbers is .42. Although the

bootstrap and standard estimates agree, it is interest-
ing to note that the bootstrap distribution is skewed
to the right. This leads us to ask: is there other
information that we can extract from the bootstrap
distribution other than a standard error estimate? The
answer is yes—in particular, the bootstrap distribu-
tion can be used to form a confidence interval for g,
as we will see in Section 9. The shape of the bootstrap
distributiion will help determine the shape of the
confidence interval.

In this example our resampling unit was the triple
(yi, i, 6;), and we ignored the unique elements of the
problem, i.e., the censoring, and the particular model
being used. In fact, there are other ways to bootstrap
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FiG. 3. Histogram of 1000 bootstrap replications for the. mouse
leukemia data.

this problem. We will see this when we discuss boot-
strapping censored data in Section 5.

Example 2: Linear and Projection Pursuit
Regression

We illustrate an application of the bootstrap to
standard linear least squares regression as well as to
a nonparametric regression technique.

Consider the standard regression setup. We have n
observations on a response Y and covariates (X;, X,,
-+, Xp). Denote the ith observed vector of covariates
by x; = (%1, %i2, - - -, %;p)’. The usual linear regression
model assumes

; p
(3.3) E(Y) = a+ Y Bix;.
j=1
Friedman and Stuetzle (1981) introduced a more gen-
eral model, the projection pursuit regression model

(3.4) E(Y) = '21 si(aj - x).

=
The p vectors a; are unit vectors (“directions”), and
the functions s;(-) are unspecified.

Estimation of {a;, si(-)}, ---, {@m, sm(-)} is per-
formed in a forward stepwise manner as follows. Con-
sider {a,, s,(-)}. Given a direction a, s,(-) is estimated
by a nonparametric smoother (e.g., running mean) of
y on a; - x. The projection pursuit regression algo-
rithm searches over all unit directions to find the
direction @, and associated function $;(-) that mini-
mize Y7 (y; — (@ - x;))®. Then residuals are taken
and the next direction and function are determined.
This process is continued until no additional term
significantly reduces the residual sum of squares.

_as

Notice the relation of the projection pursuit regres-
sion model to the standard linear regression model.
When the function s,(-) is forced to be linear and is
estimated by the usual least squares method, a one-
term projection pursuit model is exactly the same as
the standard linear regression model. That is to say,
the fitted model §1(&1A' x;) exactly equals the least
squares fit & + Y%, Bjx;. This is because the least
squares fit, by definition, finds the best direction and
the best linear function of that direction. Note also
that adding another linear term $y(a; - x2) would not
change the fitted model since the sum of two linear
functions is another linear function.

Hastie and Tibshirani (1984) applied the bootstrap
to the linear and projection pursuit regression models
to assess the variability of the coefficients in each.
The data they considered are taken from Breiman and
Friedman (1985). The response Y is Upland atmos-
pheric ozone concentration (ppm); the covariates X;
= Sandburg Air Force base temperature (C°), X, =
inversion base height (ft), X; = Daggot pressure gra-
dient (mm Hg), X, = visibility (miles), and X5 = day
of the year. There are 330 observations. The number
of terms (m) in the model (3.4) is taken to be two. The
projection pursuit algorithm chose directions a, = (.80,
—.38, .37, —.24, —.14)’ and a, = (.07, .16, .04, —.05,
—.98)’. These directions consist mostly of Sandburg
Air Force temperature and day of the year, respec-

as

az

1 L L
-1 —0.5 0 0.5 1
bootstrapped coefficients

Fi1G. 4. Smoothed histograms of the bootstrapped coefficients for the
first term in the projection pursuit regression model. Solid histograms
are for the usual projection pursuit model; the dotted histograms are
for linear §(-).
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F16.5. Smoothed histograms of the bootstrapped coefficients for the
second term in the projection pursuit model.

tively. (We do not show graphs of the estimated func-
tions $;(-) and $,(-) although in a full analysis of the
data they would also be of interest.) Forcing $,(-) to
be linear results in the direction @, = (.90, —.37, .03,
—.14, —.19)’. These are just the usual least squares
estimates B, - - -, B, scaled so that ¥ 82 = 1.

To assess the variability of the directions, a boot-
strap sample is drawn with replacement from (y,, x11,
sy, x15), ey, (y;;g(), X3301, ** x3305) and the projection
pursuit algorithm is applied. Figs. 4 and 5 show his-
tograms of the directions d¥ and a$ for 200 bootstrap
replications. Also shown in Fig. 4 (broken histogram)
are the bootstrap replications of a, with §;(-) forced
to be linear.

The first direction of the projection pursuit model
is quite stable and only slightly more variable than
the corresponding linear regression direction. But the
second direction is extremely unstable! It is clearly
unwise to put any faith in the second direction of the
original projection pursuit model.

Example 3: Cox’s Model and Local Likelihood
Estimation

In this example, we return to Cox’s proportional
hazards model described in Example 1, but with a few
added twists.

The data that we will discuss come from the Stan-
ford heart transplant program and are given in Miller
and Halpern (1982). The response y is survival time
in weeks after a heart transplant, the covariate x is
age at transplant, and the 0-1 variable 6 indicates
whether the survival time is censored (0) or complete

1
-1 —0.5 0 0.5 1

(1). There are measurements on 157 patients. A pro-
portional hazards model was fit to these data, with a
quadratic term, i.e, h(t | x) = ho(t)e®**#**. Both B, and
B, are highly significant; the broken curve in Fig. 6 is
Bix + Box? as a function of x.

For comparison, Fig. 6 shows (solid line) another
estimate. This was computed using local likelihood
estimation (Tibshirani and Hastie, 1984). Given a
general proportional hazards model of the form A(t | x)
= ho(t)e’™, the local likelihood technique assumes
nothing about the parametric form of s(x); instead it
estimates s(x) nonparametrically using a kind of local
averaging. The algorithm is very computationally in-
tensive, and standard maximum likelihood theory can-
not be applied.

A comparison of the two functions reveals an im-
portant qualitative difference: the parametric estimate
suggests that the hazard decreases sharply up to age
34, then rises; the local likelihood estimate stays ap-
proximately constant up to age 45 then rises. Has the
forced fitting of a quadratic function produced a mis-
leading result? To answer this question, we can boot-
strap the local likelihood estimate. We sample with
replacement from the triples {(y:, x1, 61) --- (ys7,
X157, 6157)} and apply the local likelihood algorithm to
each bootstrap sample. Fig. 7 shows estimated curves
from 20 bootstrap samples.

Some of the curves are flat up to age 45, others are
decreasing. Hence the original local likelihood esti-
mate is highly variable in this region and on the basis
of these data we cannot determine the true behavior
of the function there. A look back at the original data
shows that while half of the patients were under 45,
only 13% of the patients were under 30. Fig. 7 also
shows that the estimate is stable near the middle ages
but unstable for the older patients.

3

-1
10 20 30 40 50 60

age

F16. 6. Estimates of log relative risk for the Stanford heart trans-
plant data. Broken curve: parametric estimate. Solid curve: local
likelihood estimate.
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F1G.7. 20 bootstraps of the local likelihood estimate for the Stanford
heart transplant data.

4. OTHER MEASURES OF STATISTICAL ERROR

So far we have discussed statistical error, or accu-
racy, in terms of the standard error. It is easy to assess
other measures of statistical error, such as bias or
prediction error, using the bootstrap.

_ Consider the estimation of bias. For a given statistic
0(y), and a given parameter u(F), let

(4.1) R(y, F) = b(y) — u(F).

(It will help keep our notation clear to call the param-
eter of interest u rather than 6.) For example, u might
be the mean of the distribution F, assuming the sample
space X is the real line, and 0 the 25% trimmed mean.
The bias of § for estimating u is

(4.2) B(F) = ErR(y, F) = Ep{(y)} — u(F).

The notation Er indicates expectation with respect to

the probability mechanism appropriate to F, in this

case y = (x1, xo, - - -, X,) a random sample from F.
The bootstrap estimate of bias is

(43) § = B(P) = BrR(y*, P) = Esli(y™)} — u®).

As in Section 2, y* denotes a random sample (x¥, x3,

x¥) from F, i.e., a bootstrap sample. To numeri-
cally evaluate ﬁ, all we do is change step (iii) of the
bootstrap algorithm in Section 2 to

Bs =% 2 R(y*(b), F).

B ;=3
B 6*(b .
(4.4) - ”—B—(—’ — u().

= 0*(-) — i(F).
As B — o, g goes to B (4.3).

TABLE 3
BHCG blood serum levels for 54 patients having metasticized breast
cancer in ascending order

0.1, 0.1, 0.2, 0.4, 0.4, 0.6, 0.8, 0.8, 0.9, 0.9, 1.3, 1.3, 1.4, 1.5, 1.6,
1.6, 1.7, 1.7, 1.7, 1.8, 2.0, 2.0, 2.2, 2.2, 2.2, 2.3, 2.3, 2.4, 2.4, 2.4,
2.4, 24, 2.4, 2.5, 2.5, 2.5, 2.7, 2.7, 2.8, 2.9, 2.9, 2.9, 3.0, 3.1, 3.1,
3.2,3.2,3.3,33,35,4.4,45,6.4,94

As an example consider the blood serum data of
Table 3. Suppose we wish to estimate the true mean
u= Er{X} of this population using 4, the 256% trimmed
mean. We calculate 1 = u(lf: ) = 2.32, the sample mean
of the 54 observations, and 6= 2.24, the trimmed mean.
The trimmed mean is lower because it discounts the
effect of the large observations 6.4 and 9.4. It looks
like the trimmed mean might be more robust for this
type of data, and as a matter of fact a bootstrap
analysis, B = 1000, gave estimated standard error
¢ = .16 for 6, compared to .21 for the sample mean.
But what about bias?

The same 1000 bootstrap replications which gave
¢ = .16 also gave 0*(-) = 2.29, so

(4.5) B =229 — 232 = —0.03.

according to (4.4). (The estimated standard deviation
of s — B due to the limitations of having B = 1000
bootstraps is only 0.005 in this case, so we can ignore
the difference between 35 and .) Whether or not a
bias of magnitude —0.03 is too large depends on the
context of the problem. If we attempt to remove the
bias by subtraction, we get § — 8 = 2.24 — (—0.03) =
2.27. Removing bias in this way is frequently a bad
idea (see Hinkley, 1978), but at least the bootstrap
analysis has given us a reasonable picture of the bias
and standard error of 6.

Here is another measure of statistical accuracy,
different from either bias or standard error. Let ﬁ(y)
be the 25% trimmed mean and u(F) be the mean of
F, as in the serum example, and also let i(y) be the

.interquartile range, the distance between the 25th and

75th percentiles of the sample y = (x1, xo, - - -, xp).
Define

i(y) — uw(F)

iy)
R is like a Student’s ¢ statistic, except that we have
substituted the 25% trimmed mean for the sample

mean and the interquartile range for the standard
deviation.

Suppose we know the 5th and 95th percentiles of
R(y, F), say p*®(F) and p**®(F), where the definition
of p(.os)(F) is

(4.7)  Probe{R(y, F) < p*“®\(F)} = .05,

and similarly for p*°(F). The relationship Probz{p*®
< R < p"*} = .90 combines with definition (4.6) to

(4.6) R(y, F) =
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give a central 90% “t interval” for the mean u(F),
(4.8) p €0 — ip'®, § — ipto9].

Of course we do not know p‘®(F) and p“*?(F),
but we can approximate them by their bootstrap
estimates p'®(F) and p“*®(F). A bootstrap sample
y* gives a bootstrap value of (4.6), R(y* F) =
O(y*) — w(F))/i(y*), where i(y*) is the interquartile
range of the bootstrap data x¥, x3, ..., x¥. For
any fixed number p, the bootstrap estimate of
Probr{R < p} based on B bootstrap samples is

(4.9) #HR(y*(b), F) < p}/B.

By keeping track of the empirical distribution of
R(y*(b), F'), we can pick off the values of p which
make (4.9) equal .05 and .95. These approach P (F)
and p“*(F') as B — .

For the serum data, B = 1000 bootstrap replications
gave p“(F') = —.303 and p“*®(F') = .078. Substituting
these values into (4.9), and using the observed esti-
mates 6 = 2.24, i = 1.40, gives

(4.10)

as a central 90% “bootstrap t interval” for the true
mean u(F). This is considerably shorter than the
standard ¢ interval for u based on 53 degrees of free-
dom, ¥ + 1.675 = [1.97, 2.67]. Here ¢ = .21 is the usual
estimate of standard error (1.3).

Bootstrap confidence intervals are discussed further
in Sections 7 and 8. They require more bootstrap
replications than do bootstrap standard errors, on the
order of B = 1000 rather than B = 50 or 100. This
point is discussed briefly in Section 9.

By now it should be clear that we can use any
random variable R(y, F) to measure accuracy, not just
(4.1) or (4.6), and then estimate Er{R(y, F)} by its
bootstrap value Ez{R(y*, F)} = Y2, R(y*(b), F)/B.
Similarly we can estimate ErR(y, F)? by EzR(y*, F)?,
etc. Efron (1983) considers the prediction problem, in
which a training set of data is used to construct a
prediction rule. A naive estimate of the prediction
» rule’s accuracy is the proportion of correct guesses it
makes on its own training set, but this can be greatly
over optimistic since the prediction rule is explicitly
constructed to minimize errors on the training set. In
this case, a natural choice of R(y, F) is the over
optimism, the difference between the naive estimate
and the actual success rate of the prediction rule for
new data. Efron (1983) gives the bootstrap estimate
of over optimism, and shows that it is closely related
to cross-validation, the usual method of estimating
over optimism. The paper goes on to show that some
modifications of the bootstrap estimate greatly out
perform both cross-validation and the bootstrap.

u € [2.13, 2.66]

5. MORE COMPLICATED DATA SETS

The bootstrap is not restricted to situations where
the data is a simple random sample from a single
distribution. Suppose for instance that the data con-
sists of two independent random samples,

(5.1) Ul’ U2’ ] Um ~F and
Vl’ V2, ct Vn ~ G,

where F and G are possibly different distributions on
the real line. Suppose also that the statistic of interest
is the Hodges-Lehmann shift estimate

A

[/
(5.2)
median{V, - U;,1=1,2, ---,m,j=1,2, .--, n}.

Having observed U, = w;, Uy = uy, ---, V, = vy,
we Adesire an estimate for ¢(F, GG), the standard error
of 0.

The bootstrap estimate of ¢(F, G) is ¢ = o(F, G),
where F is the empirical distribution of u,, us, ---,
Um, and G is the empirical distribution of v;, v,, - - -,
U,. It is easy to modify the Monte Carlo algorithm of
Section 2 to numerically evaluate ¢. Let y = (u;, us,

-+, U,) be the observed data vector. A bootstrap
sample y* = (uf, uf, - - -, un, vf, v¥, - - -, v}) consists
of a random sample U¥Y, ---, Uy from F and an
independent random sample V¥, - - -, V¥ from G. With
only this modification, steps (i) through (iii) of the
Monte Carlo algorithm produce 73, (2.4), approaching
gas B— .

Table 4 reports on a simulation experiment inves-
tigating how well the bootstrap works on this problem.
100 trials of situation (5.1) were run, with m = 6,
n =9, F and G both Uniform [0, 1]. For each trial,
both B = 100 and B = 200 bootstrap replications were
generated. The bootstrap estimate 5 was nearly un-
biased for the true standard error ¢(F, G) = .167 for
either B = 100 or B = 200, with a quite small standard
deviation from trial to trial. The improvement in going
from B = 100 to B = 200 is too small to show up in
this experiment.

In practice, statisticians must often consider quite
complicated data structures: time series models, mul-

TABLE 4
Bootstrap estimate of standard error for the Hodges-Lehmann
two-sample shift estimate; 100 trials

Summary statistics for a5

Ave SD (A%
B =100 .165 .030 .18
B =200 .166 .031 .19
True o .167

Note: m = 6, n = 9; true distributions F and G both uniform [0, 1].
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tifactor layouts, sequential sampling, censored and
missing data, etc. Fig. 8 illustrates how the bootstrap
estimation process proceeds in a general situation.
The actual probability mechanism P which generates
the observed data y belongs to some family P of
possible probability mechanism. In the Hodges-Leh-
mann example, P = (F, G), a pair of distributions on
the real line, P equals the family of all such pairs, and

= (U, U, *++, Um, U1, Vg, -+, Uy) is generated
by random sampling m times from F and n times
from G.

We have a random variable of interest R(y, P),
which depends on both y and the unknown model P,
and we wish to estimate some aspect of the dis-
tribution of R. In the Hodges-Lehmann example,
R(y, P) = 6(y) — Ep{f}, and we estimated o(P) =
{EpR(y, P)%}"/2, the standard error of f. As before, the
notation Ep indicates expectation when y is generated
according to mechanism P.

We assume that we have some way of estimating
the entire probability model P from the data y, pro-
ducing the estimate called P in Fig. 8. (In the two-
sample problem, P = (F, @), the pair of empirical
distributions.) This is the crucial step for the bootstrap.
It can be carried out either parametrically or nonpar-
ametrically, by maximum likelihood or by some other
estimation technique.

Once we have P, we can use Monte Carlo methods
to generate bootstrap data sets y*, according to the
same rules by which y is generated from P. The
bootstrap random variable R(y*, P) is observable,
since we know P as well as y*, so the distribution of
R(y*, P) can be found by Monte Carlo sampling. The
bootstrap estimate of EpR(y, P) is then EsR(y*, P),
and likewise for estimating any other aspect of
R(y, P)’s distribution.

A regression model is a familiar example of a com-
plicated data structure. We observe y = (1, ¥z, - -+,
¥n), where

(5~3) yz=g(ﬁ, ti)+8i l=1’ 27 e, N

Here 3 is a vector of unknown parameters we wish to
estimate; for each i, t; is an observed vector of covar-

FAMILY OF

POSSIBLE ACTUAL ESTIMATED
PROBABILITY PROBABILITY OBSERVED PROBABILITY BOOTSTRAP
MODELS MODEL DATA MODEL DATA

N/ N/

R(y,P) R(y*P)

RANDOM VARIABLE OF INTEREST BOOTSTRAP RANDOM VARIABLE

FIG. 8. A schematic illustration of the bootstrap process for a general
probability model P. The expectatwn of R(y, P) is estimated by the
bootstrap expectation of R(y*, P). The double arrow indicates the
crucial step in applying the bootstrap.

iates; and g is a known function of 3 and ¢;, for instance
e The ¢ are an iid sample from some unknown
distribution F on the real line,

(5'4) €1, €2, ""cn~F’

where F is usually assumed to be centered at 0 in some
sense, perhaps E{e} = 0 or Probfe < 0} = .5. The
probability model is P = (3, F); (5.3) and (5.4) describe
the step P — y in Fig. 8. The covariates t;, t5, - - -, tn,
like the sample size n in the simple problem (1.1), are
considered fixed at their observed values.

For every choice of 3 we have a vector g(8) =
(g(ﬁ’ tl), g(ﬁ’ t2)’ Sty g(67 tn)) of prediCted values for
y. Having observed y, we estimate 8 by minimizing
some measure of distance between g(8) and y,

(5.5) B: min D(y, &(8)).

The most common choice of D is D(y, g =

21—1 {yl g(ﬁ, t)}2

How accurate is § as an estimate of 37 Let R(y, P)
equal the vector B 8. A familiar measure of accuracy
is the mean square error matrix

Z(P) = Ep(8 — 8)(B — B)’
(5.6)
= EpR(y, P)R(y, P)’.
The bootstrap estimate of accuracy % = %(P) is ob-
tained by following through Fig. 8.

There is an obv1ous choice for P = (B, F) in this
case. The estimate ﬁ is obtained from (5.5). Then Fis
the empirical distribution of the residuals,

- g(éy ti)’

i = 1, sy, n
A bootstrap sample y* is obtained by following rules
(5.3) and (5.4),
(58) y;k=g(:é’tl)+8:k’ i=1727"'7n

where ¢¥, &, ---, ¢} is an iid sample from F. Notice
that the ¢* are independent bootstrap variates, even

F: mass(1/n) on &=y
(5.7)

“though the ¢; are not independent variates in the usual

sense.
Each bootstrap sample y*(b) gives a bootstrap value

B*(b),
(5.9) B*(b): min D(y*(b), &(8)),

as in (5.5). The estimate

B {8*(b) — B*()IB*B) — B*C)Y

B

approaches the bootstrap estimate ¥ as B — . (We
could just as well divide by B — 1 in (5.10).)

In the case of ordinary least squares regression,
where g(B, tl) = 6,ti and D(y, g) = 2?=1 (.’)’z - gi)za

(5.10) Zz=



64 B. EFRON AND R. TIBSHIRANI

Section 7 of Efron (1979a) shows that the bootstrap
estimate, B = o, can be calculated without Monte
Carlo sampling, and is

n 5'21

? n]'

n -1
G.11)  Z= &2(2 t,-t,-'> [&2

1=1
This is the usual Gauss—-Markov answer, except for
the divisor n in the definition of ¢°.

There is another, simpler way to bootstrap a regres-
sion problem. We can consider each covariate-re-
sponse pair x; = (f;, ¥;) to be a single data point
obtained by simple random sampling from a distribu-
tion F. If the covariate vector t; is p-dimensional, F is
a distribution on p + 1 dimensions. Then we apply
the bootstrap as described originally in Section 2 to
the data set x1, x2, -+ -, Xn ~iia F-

The two bootstrap methods for the regression prob-
lem are asymptotically equivalent, but can perform
quite differently in small sample situations. The class
of possible probability models P is different for the
two methods. The simple method, described last, takes
less advantage of the special structure of the regres-
sion problem. It does not give answer (5.11) in the
case of ordinary least squares. On the other hand the

~ simple method gives a trustworthy estimate of B’s
variability even if the regression model (5.3) is not
correct. The bootstrap, as outlined in Fig. 5, is very
general, but because of this generality there will often
be more than one bootstrap solution for a given prob-
Jem.

As the final example of this section, we discuss
censored data. The ages of 97 men at a California
retirement center, Channing House, were observed
either at death (an uncensored observation) or at the
time the study ended (a censored observation). The
data set y = {(x1, d1), (x2, d2), - - -, (%97, do7)}, Where x;
was the age of the ith man observed, and

d = 1 if =x; uncensored
' 0 if x; censored.

Thus (777, 1) represents a Channing House man ob-
served to die at age 777 months, while (843, 0) repre-
sents a man 843 months old when the study ended.
His observation could be written as “843+,” and in
fact d; is just an indicator for the absence or presence
of “+.” A full description of the Channing House data
appears in Hyde (1980).

A typical data point (X;, D;) can be thought of as
generated in the following way: a real lifetime X? is
selected randomly according to a survival curve

(5.12) S°(t) = Prob{X} > t},

and a censoring time W; is independently selected
according to another survival curve

(5.13) R(t) = Prob{W,; > t},

(0 <t<x)

0 <t<wm).

The statistician gets to observe

(5.14) X; = min{X?, W}
and

i X =X?
(5.15) b= ‘{0 it X, = Wi

Note: 1 — S°¢t) and 1 — R(t) are the cumulative
distribution functions (cdf) for X? and W,, respec-
tively; with censored data it is more convenient to
consider survival curves than cdf.

Under assumptions (5.12)-(5.15) there is a simple
formula for the nonparametric MLE of S°(¢), called
the Kaplan-Meier estimator (Kaplan and Meier,
1958). For convenience suppose x; < xo < x3 < -+ <

%, n = 97. Then the Kaplan—Meier estimate is
d:

k, — 7 t
S = 11 (—n—i—> ,

5.1 ;
( 6) j=1 n—1+1

where k, is the value of k sgch that t € [x, Xk+1). In
the case of no censoring, S°¢) is equivalent to the
observed empirical distribution of x;, xz, - - -, X., but
otherwise (5.16) corrects the empirical distribution to
account for censoring. Likewise

ky — 7
R =11 (—n—i—>

j=1 n—i1+1

1-d;

(5.17)

is the Kaplan-Meier estimate of the censoring curve
R(t).

Fig 9 shows S%1) for the Chapping House men. It
crosses the 50% survival level at § = 1044 months.
Call this value the observed median lifetime. We can
use the bootstrap to assign a standard error to the
observed median.

The probability mechanism is P = (S°, R); P
produces (X?, D;) according to (5.12)-(5.15), and y =
{(x1, dy), -+, (x, dn)} by n = 97 independent repeti-
tjons of this process. An obvious choice of the estimate
P in Fig. 8 is (S° R), (5.14), (5.15). The rest of

$* (1)

\ P " I N 4
800 900

" 1 " "
1000 1044 1100

FiG. 9. Kaplan-Meier estimated survival curve for the Channing
House men; t = age in months. The median survival age is estimated
to be 1044 months (87 years).
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bootstrap process is automatic: S° and R replace S°
and R in (5.12) and (5.13); n pairs (X}, D¥) are
independently generated according to rules (5.12)-
(5.15), giving the bootstrap data set y* = {x¥, d¥, - - -,
(x}¥, d¥)}; and finally the bootstrap Kaplan-Meier
curve S% is constructed according to formula (5.16),
and the bootstrap observed median §* calculated. For
the Channing House data, B = 1600 bootstrap repli-
cations of §* gave estimated standard error ¢ = 14.0
months for . An estimated bias of 4.1 months was
calculated as at (4.4). Efron (1981b) gives a fuller
description.

Once again there is a simpler way to apply to boot-
strap. Consider each pair y; = (x;, d;) as an observed
point obtained by simple random sampling from a
bivariate distribution F, and apply the bootstrap as
described in Section 2 to the data set yi, ¥s, - -+, ¥n
~iiqa F. This method makes no use of the special struc-
ture (5.12)-(5.15). Surprisingly, it gives exactly the
same answers as the more complicated bootstrap
method described earlier (Efron, 1981a). This leads to
a surprising conclusion: bootstrap estimates of varia-
bility for the Kaplan—-Meier curve give correct stand-
ard errors even when the usual assumptions about the
censoring mechanism, (5.12)—(5.15), fail.

6. EXAMPLES WITH MORE COMPLICATED
DATA STRUCTURES

Example 1: Autoregressive Time Series Model

This example illustrates an application of the
bootstrap to a famous time series.

The data are the Wolfer annual sunspot numbers
for the years 1770-1889 (taken from Anderson, 1975).
Let the count for the ith year be z;. After centering
the data (replacing z; by z; — Z;), we fit a first-order
autoregressive model

(6.1) zZi=¢zi1t e

where ¢; ~ iid N(0, ¢2). The estimate ¢ turned out to
be .815 with an estimated standard error, one over the
square root of the Fisher information, of .053.

A bootstrap estimate of the standard error of ¢ can
be obtained as follows. Define the residuals ¢; = z; —
$zi_1 for i =2, 3, ..., 120. A bootstrap sample z¥, 2%,
-+, 2¥y0 is created by sampling &%, &%, - .., £ with
replacement from the residuals, then letting 2} = 2z,
and 2} = ¢zX, + &F,i=2, ..., 120. Finally, after
centering the time series z¥, 2%, -- -, 2}y, d?* is the
estimate of the autoregressive parameter for this new
time series. (We could, if we wished, sample the &}
from a fitted normal distribution.)

A histogram of 1000 such bootstrap values ¢, ¢3,
-+, ¢To00 1s shown in Fig. 10.

The bootstrap estimate of standard error was .055,
agreeing nicely with the usual formula. Note however
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Fi1G. 10. Bootstrap histogram of qgi‘, ceey, qg’{m for the Wolfer sun-

spot data, model (6.1).

that the distribution is skewed to the left, so a
confidence interval for ¢ might be asymmetric about
é as discussed in Sections 8 and 9.

In bootstrapping the residuals, we have assumed
that the first-order autoregressive model is correct.
(Recall the discussion of regression models in Section
5.) In fact, the first-order autoregressive model is far
from adequate for this data. A fit of second-order
autoregressive model

(6.2) zZi=azit0zi o+ e

gave estimates a = 1.37, § = —.677, both with an
estimated standard error of .067, based on Fisher
information calculations. We applied the bootstrap to
this model, producing the histograms for af, ---,
atwo and 0F, ..., 0%00 shown in Figs. 11 and 12,
respectively.

The bootstrap standard errors were .070 and .068,
respectively, both close to the usual value. Note that
the additional term has reduced the skewness of the
first coefficient.

Example 2: Estimating a Response Transformation
in Regression

Box and Cox (1964) introduced a parametric family
for estimating a transformation of the response in

a regression. Given regression data {(x;, y1), ---,
(x, y.)}, their model takes the form
(6.3) z(M)=x - f+e

where z;(\) = (¥} — 1)/X for A # 0 and log y; for
A =0, and ¢ ~ iid N(0, ¢?). Estimates of A and 3 are
found by minimizing Y7 (z; — x; - 8)%

Breiman and Friedman (1985) proposed a nonpara-
metric solution for this problem. Their so called ACE
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F1G. 11. Bootstrap histogram of a*, - - -, afoo for the Wolfer sun-

spot data, model (6.2).
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FiG. 12. Bootstrap histogram of 6*, - -, 6%x0 for the Wolfer sun-

spot data, model (6.2).

(alternating conditional expectation) model general-
izes (6.3) to

(6.4) s(y)=x-B+e,

where s(-) is an unspecified smooth function. (In its
most general form, ACE allows for transformations of
the covariates as well.) The function s(-) and param-
eter 3 are estimated in an alternating fashion, utilizing
a nonparametric smoother to estimate s(-).

In the following example, taken from Friedman and
Tibshirani (1984), we compare the Box and Cox pro-
cedure to ACE and use the bootstrap to assess the
variability of ACE.

The data from Box and Cox (1964) consist of a 3 X
3 X 3 experiment on the strength of yarns, the re-

sponse Y being number of cycles to failure, and the
factors length of test specimen (X;) (250, 300, and 350
mm), amplitude of loading cycle (X5) (8,9, or 10 mm),
and load (X;) (40, 45, or 50 g). As in Box and Cox, we
treat the factors as quantitive and allow only a linear
term for each. Box and Cox found that a logarithmic
transformation was appropriate, with their procedure
producing a value of —.06 for A with an estimated 95%
confidence interval of (—.18, .06).

Fig. 13 shows the transformation selected by the
ACE algorithm. For comparison, the log function is
plotted (normalized) on the same figure.

The similarity is truly remarkable! In order to assess
the variability of the ACE curve, we can apply the
bootstrap. Since the X matrix in this problem is fixed
by design, we resampled from the residuals instead of
from the (x;, y;) pairs. The bootstrap procedure was
the following:

Calculate residuals & =35§(y) —x;- 8, i=1,2,---,n.
Repeat B times
Choose a sample &f, - .-, &}
with replacement from ¢, ---, &,
Calculate y¥=3§"(x; - B +é¥), i=1,2---,n
Compute §*(-) = result of ACE algorithm
applied to  (x1, 1), - -+, (x5, ¥%)
End

The number of bootstrap replications B was 20.
Note that the residuals are computed on the s(.) scale,
not the y scale, because it is on the s(-) scale that the
true residuals are assumed to be approximately iid.
The 20 estimated transformations, §¥(-), - -, §%(.)
are shown in Fig. 14.

The tight clustering of the smooths indicates that
the original estimate §(- ) has low variability, especially
for smaller values of Y. This agrees qualitatively with

h|||rln‘rl‘rl||||—rrvvl
2.—.
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F1G. 13. Estimated transformation from ACE and the log function
for Box and Cox example.
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F1G. 14. Bootstrap replications of ACE transformations for Box and
Cox example.

the short confidence interval for A in the Box and Cox
analysis.

7. BOOTSTRAP CONFIDENCE INTERVALS

This section presents three closely related methods
of using the bootstrap to set confidence intervals. The
discussion is in terms of simple parametric models,
where the logical basis of the bootstrap methods is
easiest to see. Section 8 extends the methods to mul-
tiparameter and nonparametric models.

We have discussed obtainjng g, the estimpted stand-
ard error of an estimator 4. In practice, § and ¢ are
usually used together to form the approximate confi-
dence interval 6 € § + 6z, (1.7), where 2@ is the
100 - « percentile point of a standard normal distri-
bution. The interval (1.7) is claimed to have approxi-
mate coverage probability 1 — 2«. For the law school
example of Section 2, the values § = .776, ¢ = .115,
2% = —1.645, give § € [.587, .965] as an approximate
90% central interval for the true correlation coeffi-
cient.

We will call (1.7) the standard interval for 6. When
working within parametric families like the bivariate
‘normal, ¢ in (1.7) is usually obtained by differentiating
the log likelihood function, see Section 5a of Rao
(1973), although in the context of this paper we might
prefer to use the parametric bootstrap estimate of o,
e.g., dnorm 1n Section 2.

The standard intervals are an immensely useful
statistical tool. They have the great virtue of being
automatic: a computer program can be written which
produces (1.7) directly from the data y and the form
of the density function for y, with no further input
required from the statistician. Nevertheless the stand-
ard intervals can be quite inaccurate as Table 5 shows.
The standard interval (1.7), using onorm, (2.5), is

TABLE 5
Exact and approximate central 90% confidence intervals for 0, the
true correlation coefficient, from the law schodl data of Fig. 1

1. Exact (normal theory) [.496, .898] R/L= .44
2. Standard (1.7) [.587,.965] R/L =1.00
3. Transformed standard [.508,.907] R/L= .49
4. Parametric bootstrap (BC) [.488,.900] R/L = .43

5. Nonparametric bootstrap (BC,) [.43, .92] R/L= .42

Note: R/L = ratio of right side of interval, measured from 6 = .776,
to left side. The exact interval is strikingly asymmetric about .
Section 8 discusses the nonparametric method of line 5.

strikingly different from the exact normal theory in-
terval based on the assumption of a bivariate normal
sampling distribution F.

In this case, it is well known that it is better to
make the transformation ¢ = tanh™'(4), ¢ = tanh™!(9),
apply (1.7) on the ¢ scale, and then transform back to
the 6 scale. The resulting interval, line 3 of Table 5, is
moved closer to the exact interval. However, there is
nothing automatic about the tanh™ transformation.
For a different statistic from the correlation coeffi-
cient or a different distributional family from the
bivariate normal, we might very well need other tricks
to make (1.7) perform satisfactorily.

The bootstrap can be used to produce approximate
confidence intervals in an automatic way. The follow-
ing discussion is abridged from Efron (1984 and
1985) and Efron (1982a, Chapter 10). Line 4 of Table
5 shows that the parametric bootstrap interval for the
correlation coefficient ¢ is nearly identical with the
exact interval. “Parametric” in this case means that
the bootstrap algorithm begins from the bivariate
normal MLE Fnogrum, as for the normal theory curve
of Fig. 2. This good performance is no accident. The
bootstrap method used in line 4 in effect transforms
d to the best (most normal) scale, finds the appropriate
interval, and transforms this interval back to the 6
scale. All of this is done automatically by the bootstrap
algorithm, without requiring special intervention from

- the statistician. The price paid is a large amount of

computing, perhaps B = 1000 bootstrap replications,
as discussegl in Section 10.

Define G(s) to be the parametric bootstrap cdf
of 9%,

(7.1) G(s) = Prob*{é* <s},

where Prob, indicates probability computed according
to the bootstrap distribution of 6*. In Fig. 2 G(s) is
obtained by integrating the normal theory curve. We
will present three different kinds of bootstrap confi-
dence intervals in order of increasing generality. All
three methods use percentiles of G to define the con-
fidence interval. They differ in which percentiles are
used.
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The simplest method is to take 8 € [G Y (a),
G7'(1 — @)] as an approximate 1 — 2« central interval
for 6. This is called the percentile method in Section
10.4 of Efron (1982a). The percentile method inter-
val is just the interval between the 100 - « and 100 -
(1 — a) percentiles of the bootstrap distribution of
0*.

We will use the notation 6[a] for the « level end-
point of an approximate confidence interval for 6, so
0 € [0[e], 0[1 — «]] is the central 1 — 2« interval.
Subscripts will be used to indicate the various different
methods. The percentile interval has endpoints

(7.2) fp[a] = G Y(a).
This compares with the standard interval,
(7.3) Osla] = 6 + 62,

Lines 1 and 2 of Table 6 summarize these definitions.
Suppose the bootstrap cdf G is perfectly normal, say

(7.4) G(s) = ®((s — 0)/6),

where ®(s) = [*.. (27) V%" dt, the standard normal
cdf. In other words, suppose that 6* has bootstrap
distribution N(6, 2). In this case the standard method
and the percentile method agree, 6s[a] = 6p[a]. In
situations like that of Fig. 2, where G is markedly non-
normal, the standard interval is quite different from
(7.2). Which is better?

To answer this question, consider the simplest pos-
sible situation, where for all 6

(7.5) 6 ~ N@, °).

That is, we have a single unknown parameter § with
no nuisance parameters, and a single summary statis-
tic 6 normally distributed about 6 with constant stand-
ard error ¢. In this case the parametric bootstrap cdf
is given by (7.4), so Os[a] = 6p[a]. (The bootstrap
estimate ¢ equals ¢.)

Suppose though that instead of (7.5) we have, for
all 0,

(7.6) é ~ N(¢, 72,

for some monotone transformation ¢ = g(é), ¢ =g(6),
where 7 is a constant. In the correlation coefficient
example the function ¢ was tanh™'. The standard
limits (7.2) can now be grossly inaccurate. However it
is easy to verify that the percentile limits (7.2) are
still correct. “Correct” here means that (7.2) is the
mapping of the obvious interval for ¢, é + 72@, back
to the 0 scale, 0p[a] = g7 (¢ + 72'“). It is also correct
in the sense of having exactly the claimed converge
probability 1 — 2a.

Another way to state things is that the percentile
intervals are transformation invariant,

(1.7 orla] = g(0p[a])

for any monotone transformation g. This implies that
if the percentile intervals are correct on some trans-
formed scale ¢ = g(6), then they must also be correct
on the original scale 6. The statistician does not need
to know the normalizing transformation g, only that
it exists. Definition (7.2) automatically takes care of
the bookkeeping involved in the use of normalizing
transformations for confidence intervals.

Fisher’s theory of maximum likelihood estimation
says that we are always in situation (7.5) to a first
order of asymptotic approximation. However, we are
also in situation (7.6), for any choice of g, to the same
order of approximation. Efron (1984 and 1985) uses
higher order asymptotic theory to differentiate be-
tween the standard and bootstrap intervals. It is the
higher order asymptotic terms which often make exact
intervals strongly asymmetric about the MLE 4 as in
Table 5. The bootstrap intervals are effective at cap-
turing this asymmetry.

The percentile method automatically incorporates
normalizing transformations, as in going from (7.5)-
(7.6). It turns out that there are two other important
ways that assumption (7.5) can be misleading, the first
of which relates to possible bias in 6. For example
consider f,(6), the family of densities for the observed
correlation coefficient § when sampling n = 15 times
from a bivariate normal distribution with true corre-

TABLE 6
Four methods of setting approximate confidence intervals for a real valued parameter 0

Method Abbreviation « level endpoint Correct if
1. Standard Os[a] 0+ Gz 6 ~ N(@, o) ¢ constant
The{e exisAts monotone transformation
¢ =g(0), ¢=g(@) such that:
2. Percentile 0p[c] G Ya) é ~ N(o, 72 7 constant
3. Bias-corrected Ocla] G ({220 + 2)) é ~ N(¢ — zo7, 72) 20,7 constant
A (20 + 2'9) (1;~N(¢—Z Ty T3)
[/ e I 3 —_—— 0Tg, T
4. BC, Bc,la] G ( {20 1 — a(z + 2'9) where 7,=1+a¢ 2,a constant

Note: Each method is correct under more general assumptions than its predecessor. Methods 2, 3, and 4 are defined in terms of the percentiles

of G, the bootstrap distribution (7.1).
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lation 6. In fact it is easy to see that no monotone
mapping ¢ = gd), ¢ = g(0) transforms this family
to ¢ ~ N(¢, 7, as in (7.6). If there were such a g,
then Proby{f < 8} = Prob,{é¢ < ¢} = .50, but for
§ = .776 integrating the density function frre(0)
gives Proby_ 16{0 < 0} = .431.

The bias-corrected percentile method (BC method),
line 3 of Table 6, makes an adjustment for this type
of bias. Let

(7.8) 20 = ®HG(H)},

where ®! is the inverse function of the standard
normal cdf. The BC method has « level endpoint

(7.9) Osclal = G7H(®{22 + 2}).

Note: if G(§) = .50, that is if half of the bootstrap
distribution of 6* is less than the observed value 6,
then 2 = 0 and fgc[a] = 0p[a]. Otherwise definition
(7.9) makes a bias correction.

Section 10.7 of Efron (1982a) shows that the BC
interval for 6 is exactly correct if

(7.10) é ~ N(¢p — zo1, 7%

for some monotone transformation ¢ = g(d), ¢ = g(0)
and some constant z,. It does not look like (7.10) is
much more general than (7.6), but in fact the bias
correction is often important.

In the example of Table 5, the percentile method
(7.2) gives central 90% interval [.536, .911] compared
to the BC interval [.488, .900] and the exact interval
[.496, .898]. By definition the endpoints of the exact
interval satisfy

Pr0b0=.496{§ > .776} =

(7.11) «
= Pr0b9='898{0 < .776}.

The corresponding quantities for the BC endpoints
are

Proby— 4ss{f > .776} = .0465,

(7.12) .
Pr0b9=.900{0 < .776} = 0475,

compared to
Proby_s36{f > 776} = .0725,
Proby_on{f < .776} = .0293.

for the percentile endpoints. The bias correction is
quite important in equalizing the error probabilities
at the two endpoints. If z, can be approximated accu-
rately (as mentioned in Section 9), then it is preferable
to use the BC intervals.

Table 7 shows a simple example where the BC
method is less successful. The data consists of the
single observation 6 ~ 0(X19/ 19), the notation indicat-
ing an unknown scale parameter 6 times a random
variable with distribution x%,/19. (This definition

" (7.13)

TABLE 7
Central 90% confideqce intervals for 6 having observed
0~ 0( X?s/ 19)

1. Exact [631-6,1.88-6] R/L=238
2. Standard (1.7) (466 - 6,153 - 6] R/L=1.00
3. BC (7.9) [.580 - §,1.69 - 8] R/L =164
4. BC, (7.15) [.630 - §,1.88 - 4] R/L =237
5. Nonparametric BC, [.640 - 6,1.68 - §] R/L =1.88

Note: The exact interval is sharply skewed to the right of 4. The
BC method is only a partial improvement over the standard interval.
The BC, interval, a = .108, agrees almost perfectly with the exact
interval.

makes # unbiased for 0.) A confidence interval is
desired for the scale parameter 6. In this case the BC
interval based on 0 is a definite improvement over the
standard interval (1.7), but goes only about half as far
as it should toward achieving the asymmetry of the
exact interval.

It turns out that the parametric family § ~
0(x%5/19) cannot be transformed into (7.10), not even
approximately. The results of Efron (1982b) show that
there Adoes egiist a monotone transformation g such
that ¢ = g(d), » = g(0) satisfy to a high degree of
approximation

(7.14) ¢ ~ N(p — 2074, 72) (74 =1 + ad).

The constants in (7.14) are z, = .1082, a = .1077.
The BC, method (Efron, 1984), line 4 of Table 6,
is a method of assigning bootstrap confidence intervals
which are exactly right for problems which can be
mapped into form (7.14). This method has « level

endpoint
20 + 2@
GYPi20+ ————¢ -
< {zo 1—a(z + z(“))})

If @ = 0 then Ogc [a] = Opc[a], but otherwise the BC,
intervals can be a substantial improvement over the
BC method as shown in Table 7.

The constant 2, in (7.15) is given by 2z, =
& YG(6)}, (7.8), and so can be computed directly from
the bootstrap distribution. How do we know a? It
turns out that in one-parameter families f:(0), a good
approximation is

. SKEW,-i(s(2))
a= ———6—— R

(7.15)  Ogcla] =

(7.16)

where SKEW,- #(l(t)) is the skewness at parameter
value 8 = 6§ of the score statistic ls(t) = (3/d0)log
fo(t). For 6 ~ 6(x2/19) this gives a = .1081, compared
to the actual value a = .1077 derived in Efron (1984).
For the normal theory correlation family of Table 5
a = 0 which explains why the BC method, which takes
a = 0, words so well there.
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The advantage of formula (7.18) is that we need not
know the transformation g leading to (7.14) in order
to approximate a. In fact fgc [a], like fsc[a] and Op[a],
is transformation invariant, as in (7.7). Like the boot-
strap methods, the BC, intervals are computed di-
rectly from the form of the density function f;(-), for
9 near 6.

Formula (7.16) applies to the case where 0 is the
only parameter. Section 8 briefly discusses the more
challenging problem of setting confidence intervals for
a parameter 6 in a multiparameter family, and also in
nonparametric situations where the number of nui-
sance parameters is effectively infinite.

To summarize this section, the progression from the
standard intervals to the BC, method is based on a
series of increasingly less restrictive assumptions, as
shown in Table 6. Each successive method in Table 6
requires the statistician to do a greater amount of
computation; first the bootstrap distribution G, then
the bias correction constant z,, and finally the con-
stant a. However, all of these computations are algo-
rithmic in character, and can be carried out in an
automatic fashion.

Chapter 10 of Efron (1982a) discusses several other
ways of using the bootstrap to construct approximate
confidence intervals, which will not be presented here.
One of these methods, the “bootstrap t,” was used in
the blood serum example of Section 4.

8. NONPARAMETRIC AND MULTIPARAMETER
CONFIDENCE INTERVALS

Section 7 focused on the simple case 6 ~ fo, where
we have only a real valued parameter 6 and a real
valued summary statistic § from which we are trying
to construct a confidence interval for . Various fa-
vorable properties of the bootstrap confidence inter-
vals were demonstrated in the simple case, but of
course the simple case is where we least need a general
method like the bootstrap.

Now we will discuss the more common situation
where there are nuisance parameters besides the pa-
rameter of interest 6; or even more generally the
nonparametric case, where the number of nuisance
parameters is effectively infinite. The discussion is
limited to a few brief examples. Efron (1984 and 1985)
develops the theoretical basis of bootstrap approxi-
mate confidence intervals for complicated situations,
and gives many more examples. The word “approxi-
mate” is important here since exact nonparametric
confidence intervals do not exist for most parameters
(see Bahadur and Savage, 1956).

Example 1. Ratio Estimation

The data consists of y = (y;, ¥2), assumed to come
from a bivariate normal distribution with unknown

TABLE 8
Central 90% confidence intervals for § = 7./, and for ¢ = 1/6
having observed (y,, y2) = (8, 4) from a bivariate normal
distribution 'y ~ Ny(q, I)

Forf For ¢
1. Exact (Fieller) [.29, .76] [1.32, 3.50]
2. Parametric boot (BC) [.29, .76] [1.32, 3.50]
3. Standard (1.7) [.27, .73] [1.08, 2.92]
MLE 6=15 6=2

Note: The BC intervals, line 2, are based on the parametric boot-
strap distribution of § = y/y;.

mean vector 7 and covariance matrix the identity,
(8.1) y ~ Na(n, ).

The parameter of interest, for which we desire a
confidence interval, is the ratio

(8.2) 0 = no/m.

Fieller (1954) provided well known exact intervals for
0 in this case. The Fieller intervals are based on a
clever trick, which seems very special to situation
(8.1), (8.2).

Table 8 shows Fieller’s central 90% interval for 6
having observed y = (8, 4). Also shown is the Fieller
interval for ¢ = 1/0 = 5,/n2, which equals [.767}, .2971],
the obvious transformation of the interval for 6. The
standard interval (1.7) is satisfactory for 4, but not for
¢. Notice that the standard interval does not trans-
form correctly from 6 to ¢.

Line 2 shows the BC intervals based on applying
definitions (7 .8)Aand (7.9) to thp parametric bootstrap
distribution of § = y,/y; (or ¢ = yi/y2). This is the
distribution of 6* = y%/y¥ when sampling y* =
(y%, y%) from FNORM ~ No((y1, y2), I). The bootstrap
intervals transform correctly, and in this case they
agree with the exact interval to three decimal places.

Example 2. Product of Normal Means

For most multiparameter situations, there do not
exist exact confidence intervals for a single parameter
of interest. Suppose for instance that (8.2) is changed
to

(8.3) 0 = mmne,

still assuming (8.1). Table 9 shows approximate inter-
vals for 6, and also for ¢ = 62, having observed y =
(2, 4). The “almost exact” intervals are based on an
analog of Fieller’s argument (Efron, 1985), which with
suitable care can be carried through to a high degree
of accuracy. Once again, the parametric BC intervals
are a close match to line 1. The fact that the standard
intervals do not transform correctly is particularly
obvious here.
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TABLE 9
Central 90% confidence intervals for § = gm; and ¢ = 6% having
observed y = (2, 4), where y ~ Ni(n, I)

For 6 For ¢
1. Almost exact [1.77, 17.03] [3.1, 290.0]
2. Parametric boot*(BC) [1.77,17.12] [3.1, 239.1]
3. Standard (1.7) [0.64, 15.36] [—53.7, 181.7]
MLE 6=8 ¢ =64

Note: The almost exact intervals are based on the high order
approximation theory of Efron (1985). The BC intervals of line 2
are based on the parametric bootstrap distribution of § = y, ys.

The good performance of the parametric BC inter-
vals is not accidental. The theory developed in Efron
(1985) shows that thg BC intervals, based on boot-
strapping the MLE 6, agree to high order with the
almost exact intervals in the following class of prob-
lems: the data y comes from a multiparameter family
of densities £,(y), both y and 5 k-dimensional vectors;
the real valued parameter of interest 6 is a smooth
function of #n, § = t(n); and the family f,(y) can be
transformed to multivariate normality, say

(8.4) &(y) ~ Ni(h(n), I),

by some one-to-one transformations g and h.

Just as in Section 7, it is not necessary for the
statistician to know the normalizing transformations
g and h, only that they exist. The BC intervals are
obtained directly from the original densities f,: we find
7 = 1(y), the MLE of n; sample y* ~ f;; compute 6%,
the bootstrap MLE of §; calculate G, the bootstrap cdf
of 6*, usually by Monte Carlo sampling, and finally
apply definitions (7.8) and (7.9). This process gives
the same interval for § whether or not the transfor-
mation to form (8.4) has been made.

Not all problems can be transformed as in (8.4) to
a normal distribution with constant covariance. The
case considered in Table 7 is a one-dimensional
counter example. As a result the BC intervals do not
always work as well as in Tables 8 and 9, although
they usually improve on the standard method. How-
ever, in order to take advantage of the BC, method,

"which is based on more general assumptions, we need
to be able to calculate the constant a.

Efron (1984) gives expressions for “a” generalizing
(7.16) to multiparameter families, and also to non-
parametric situations. If (8.4) holds, then “a” will have
value zero, and the BC, method reduces to the BC
case. Otherwise the two intervals differ.

Here we will discuss only the nonparametric situa-
tion: the observed data y = (x4, xo, - - -, x,,) consists of
iid observations X;, Xs, - - -, X, ~ F, where F can be
any distribution on the sample space #°; we want a
confidence interval for § = t(F), some real valued
functional of F'; and the bootstrap interval are based

on bootstrapping = t(F'), which is the nonparametric
MLE of 6. In this case a good approximation to the
constant a is given in terms of the empirical influence
function U?, defined in Section 10 at (10.11),

L 1S (U
6 (X, (UDH*
This is a convenient formula, since it is easy to nu-

merically evaluate the U} by simply substituting a
small value of 6 into (10.11).

(8.5) a

Example 3. The Law School Data

For § the correlation coefficient, the values of U?
corresponding to the 15 data points shown in Fig. 1
are —1.507, .168, .273, .004, .525, —.049, —.100, .477,
.310, .004, —.526, —.091, .434, .125, —.048. (Notice
how influential law school 1 is.) Formula (8.5) gives
a = —.0817. B = 100,000 bootstrap replications,
about 100 times more than was actually necessary
(see Section 10), gave zg = —.0927, and the central
90% interval 8 € [.43, .92] shown in Table 5. The
nonparametric BC, interval is quite reasonable in this
example, particularly considering that there is no
guarantee that the true law school distribution F is
anywhere near bivariate normal.

Example 4. Mouse Leukemia Data
(the First Example in Section 3)

The standard central 90% interval for 8 in formula
(3.1) is [.835, 2.18]. The bias correction constant z, =
.0275, giving BC interval [1.00, 2.39]. This is shifted
far right of the standard interval, reflecting the long
right tail of the bootstrap histogram seen in Fig. 3.
We can calculate “a” from (8.5), considering each of
the n = 42 data points to be a triple (y;, x;, 6;): a =
—.152. Because a is negative, the BC, interval is
shifted back to the left, equaling [.788, 2.10]. This
contrasts with the law school example, where a, 2,
and the skewness of the bootstrap distribution added
to each other rather than cancelling out, resulting in
a BC, interval much different from the standard in-
terval.

Efron (1984) provides some theoretical support for
the nonparametric BC, method. However the problem
of setting approximate nonparametric confidence in-
tervals is still far from well understood, and all meth-
ods should be interpreted with some caution. We end
this section with a cautionary example.

Example 5. The Variance

Suppose X is the real line, and § = VarpX, the
variance. Line 5 of Table 2 shows the result of applying
the nonparametric BC, method to data sets x;, x,
-+ -, X20 which were actually iid samples from a N(0,
1) distribution. The number .640 for example is the
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average of OBCG[.O5]/0A over 40 such data sets, B = 4000
bootstrap replications per data set. The upper limit
1.68 - § is noticeably small, as pointed out by Schenker
(1985). The reason is simple: the nonparametric boot-
strap distribution of §* has a short upper tail; com-
pared to the parametric bootstrap distribution which
is a scaled x %, random variable. The results of Beran
(1984), Bickel and Freedman (1981), and Singh (1981)
show that the nonparametric bootstrap distribution is
highly accurate asymptotically, but of course that is
not a guarantee of good small sample behavior. Boot-
strapping from a smoothed version of F, as in lines 3,
4, and 5 of Table 2 alleviates the problem in this
particular example.

9. BOOTSTRAP SAMPLE SIZES

How many bootstrap replications must we take?
Consider the standard error estimate ¢z based on B
bootstrap replications, (2.4). As B — o, 65 approaches
&, the bootstrap estimate of standard error as origi-
nally defined in (2.3). Because F does not estimate F
perfectly, ¢ = o(F) will have a non-zero coefficient of
variation for estimating the true standard error o =
o(F); 6 will have a larger CV because of the random-
ness added by the Monte Carlo bootstrap sampling.

It is easy to derive the following approximation,

Q 1/2
©.1) CV(a) = {CV(&)Z + M’—z} ,

4B
where § is the kurtosis of the bootstrap distribution of
6*, given the data y, and E{8} its expected value
averaged over y. For typical situations, CV(s) lies
between .10 and .30. For example, if § = %, n = 20,
Xi ~iid N(O, 1), then CV(&) = .16.

Table 10 shows CV(ég) for various values of B and
CV(5), assuming E{8} = 0 in (9.1). For values of
CV(6) > .10, there is little improvement past B = 100.
In fact B as small as 25 gives reasonable results. Even
smaller values of B can be quite informative, as we
saw in the Stanford Heart Transplant Data (Fig. 7 of
Section 3).

TABLE 10
Coefficient of variation of g, the bootstrap estimate of standard
error based on B Monte Carlo replications, as a function of B and
CV(0), the limiting CV as B —

B—

25 50 100 200" 0
CV(s) .25 .29 27 .26 .25 .25
l .20 24 .22 21 21 .20
.15 21 18 17 .16 .16
.10 17 .14 12 11 .10
.05 .16 A1 .09 .07 .05

0 .14 .10 .07 .05 0

Note: Based on (9.1), assuming E{é} = 0.

The situation is quite different for setting bootstrap
confidence intervals. The calculations of Efron (1984),
Section 8, show that B = 1000 is a rough minimum
for the number of Monte Carlo bootstraps necessary
to compute the BC or BC, intervals. Somewhat
smaller values, say B = 250, can give a useful percen-
tile interval, the difference being that then the con-
stant z, need not be computed. Confidence intervals
are a fundamentally more ambitious measure of sta-
tistical accuracy than standard errors, so it is not
surprising that they require more computational ef-
fort.

10. THE JACKKNIFE AND THE DELTA METHOD

This section returns to the simple case of assigning
a standard error to 6(y), where y = (x;, - -, %) is
obtained by random sampling from a single unknown
distribution, X, - - -, X, ~ja F. We will give another
description of the bootstrap estimate ¢, which illus-
trates the bootstrap’s relationship to older techniques
of assigning standard errors, like the jackknife and
the delta method.

For a given bootstrap sample y* = («¥, ---, x}), as
described in step (i) of the algorithm in Section 2, let™
p¥ indicate the proportion of the bootstrap sample
equal to x;,

* —
(10.1) p;.*=#{inlx—‘} i=1,2 -,n,
p* = (p%, p%, - -, p¥). The vector p* has a rescaled
multinomial distribution

p* ~ Mult,(n, p°)/n
(p0 = (1/n7 l/n, M) l/n)),

where the notation indicates the proportions observed
from n random draws on n categories, each with
probability 1/n.

For n = 3 there are 10 possible bootstrap vectors

(10.2)

p*. These are indicated in Fig. 15 along with their

multinomial probabilities from (10.2). For example,
p* = (¥, 0, 23), corresponding to x* = (xi, x3, x3) or
any permutation of these values has bootstrap proba-
bility Y.

To make our discussion easier suppose Athat the
statistic of interest @ is of functional form: 6 = 6(F),
where 8(F) is a functional assigning a real number to
any distribution F on the sample space X. The mean,
the correlation coefficient, and the trimmed mean are
all of functional form. Statistics of functional form
have the same value as a function of F, no matter
what the sample size n may be, which is convenient
for discussing the jackknife and delta method.

For any vector p = (pi, P2, -+, D») having non-
negative weights summing to 1, define the weighted
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p*=(1/3,0, 2/3)

d ~7
1127 119 p 119 127
X ~(3) X2

F16. 15. The bootstrap and jackknife sampling points in the case
n = 3. The bootstrap points (-) are shown with their probabilities.

empirical distribution
(10.3) F(p): probability p;onx; i=1, ---, n.

Forp =Ap0 = 1/n, the weighted empirical distribution
equals F, (1.4). )
Corresponding to p is a resampled value of 6,

(10.4) b(p) = 0(F(p)).

The shortened notation é(p) assumes that the data
(%1, %2, -+ -, %,) is considered fixed. Notice that 6(p°
= §(F') is the observed value of the statistic of interest.
The bootstrap estimate o, (2.3), can then be written

(10.5) & = [var,d(p*)]"?,

where var, indicates variance with respect to distri-
bution (10.2). In terms of Fig. 15, ¢ is the standard
deviation of the ten possible bootstrap values 6(p*)
weighted as shown.

It looks like we could always calculate ¢ simply by
doing a finite sum. Unfortunately, the number of
bootstrap points is (**7'), 77,558,710 for n = 15 so
straightforward calculation of ¢ is usually impractical.
" That is why we have emphasized Monte Carlo ap-
proximations to ¢. Therneau (1983) considers the
question of methods more efficient than pure Monte
Carlo, but at present there is no generally better
method available.

However, there is another approach to approximat-
ing (10.5). We can replace the usually complicated
function 5(p) by an approximation linear in p, and
then use the well known formula for the multinomial
variance of a linear function. The jackknife approxi-
mation éJ(p) is the linear function of p which matches
6(p), (10.4), at the n points corresponding to the
deletion of a single x; from the observed data set

X1, X2, ) xn,
1 :
(106) py=—7(@1,1,---,1,0,1, ---, 1)
n—1

1=1,2, ---, n. Fig. 15 indicates the jackknife points
for n = 3; because 6 is the functional form, (10.4), it
does not matter that the jackknife points correspond
to sample size n — 1 rather than n.

The linear function 6,(p) is calculated to be

(10.7) 0,p) = b6+ @ —D°) - U
where, in terms of é(i) = é(p(i)), é(.) = Z?_—_l 5(i)/n, and
U is the vector with ith coordinate
(10.8) Ui = (n— 1)@ — be).
The jackknife estimate of standard error (Tukey, 1958;
Miller, 1974) is

A_n—l" ) ) 21/2_ E?Uzz 1/2
(109) O'J—[ n ,‘gl {0(,) 0(.)} ] = n(n — 1) .

A standard multinomial calculation gives the follow-
ing theorem (Efron, 1982a),

THEOREM. The jackknife estimate of standard er-
ror equals [n/(n — })]l/ 2 times the bootstrap estimate of
standard error for 0,

n 1/2
&J = l:n 1 var*0J(p*)] .

(10.10)

In other words, the jackknife estimate is itself almost
a bootstrap estimate applied to a linear approximation
of 6. The factor [n/(n — 1)]'2 in (10.10) makes o5
unbiased for o2 in the case where § = %, the sample
mean. We could multiply the bootstrap estimate ¢ by
this same factor, and achieve the same unbiasedness,
but there does not seem to be any consistent advantage
to doing so. The jackknife requires n, rather than B =
50 to 200 resamples, at the expense of adding a linear
approximation to the standard error estimate. Tables
1 and 2 indicate that there is some estimating effi-
ciency lost in making this approximation. For statis-
tics like the sample median which are difficult to
approximate linearly, the jackknife is useless (see
Section 3.4 of Efron, 1982a).

There isAa more obvious linear approximation to
6(p) than 6,(p). Why not use the first-order Taylor
series expansion for §(p) about the point p = p°? This
is the idea of Jaeckel’s infinitesimal jackknife (1972).
The Taylor series approximation turns out to be

fr(p) = 6(p°) + (p — p°)’U°

where

(1 — 0 N — A(n0
U9 = i 0L = 20" + 08) = )

e—0 &

(10.11)

§; being the ith coordinate vector. This suggests the
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infinitesimal jackknife estimate of standard error
(10.12) 61y = [var,f7(p*)]"? = [ZUP/n?]/2

with var, still indicating variance under (10.2). The
ordinary jackknife can be thought of as taking ¢ =
—1/(n — 1) in the definition of U?, while the infini-
tesimal jackknife lets ¢ — 0, thereby earning the name.

The U? are values of what Mallows (1974) calls the
empirical influence function. Their definition is a
nonparametric estimate of the true influence function

[F(x) = lim 0((1 — &)F + &6,) — 0(F) ,

—0 €

6, being the degenerate distribution putting mass 1
on x. The right side of (10.12) is then the obvious
estimate of the influence function approximation
to the standard error of 4 (Hampel, 1974), o(F) =
[[ IF?(x) dF(x)/n]"/% The empirical influence function
method and the infinitesimal jackknife give identical
estimates of standard error.

How have statisticians gotten along for so many
years without methods like the jackknife and the
bootstrap? The answer is the delta method, which is
still the most commonly used device for approximating
standard errors. The method applies to statistics of
the form t(Ql, QZ’ Tty QA)’ where t(" Ty "7y ) isa
known function and each @, is an observed average,
Q. = Y1 Qu(X;)/n. For example, the correlation b is
a function of A = 5 such averages; the average of the
first coordinate values, the second coordinates, the
first coordinates squared, the second coordinates
squared, and the cross-products.

In its nonparametric formulation, the delta method
works by (a) expanding ¢ in a linear Taylor series
about the expectations of the @,; (b) evaluating the
standard error of the Taylor series using the usual
expressions for variances and covariances of averages;
and (c) substituting 'y(F ) for any unknown quantity
v(F) occurring in (b). For example, the nonparametric
delta method estimates the standard error of the cor-
relation 4 by

{ 6 [;m fios | 2z | 4ine A | s ]}”2
ettt
4n{pzo Koz  MooMoz K11 HMiiMoz  Hi1ko2

where, in terms of x; = (y;, 2;),
figh = Z(yi — )%z — 2)"/n
(Crameér (1946), p. 359).
THEOREM. For statistics of the form 6 = t@., - - -,
Q.), the nonparametric delta method and the infinites-

“imal jackknife give the same estimate of standard error
(Efron, 1982c¢). '

The infinitesimal jackknife, the delta method, and
the empirical influence function approach are three

names for the same method. Notice that the results
reported in line 7 of Table 2 show a'severe downward
bias. Efron and Stein (1981) show that the ordinary
jackknife is always biased upward, in a sense made
precise in that paper. In the authors’ opinion the
ordinary jackknife is the method of choice if one does
not want to do the bootstrap computations.
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Comment

J. A. Hartigan

Efron and Tibshirani are to be congratulated on a
wide-ranging persuasive survey of the many uses of
the boostrap technology. They are a bit cagey on what
is or is not a bootstrap, but the description at the end
of Section 4 seems to cover all the cases; some data y
comes from an unknown probability distribution F; it
is desired to estimate the distribution of some function
R(y, F) given F; and this is done by estimating the
distribution of R (y*, F ) given Fwhere F'is an estlmate
of F based on y, and y* is sampled from the known F.

There will be three problems in any application of
the bootstrap: (1) how to choose the estimate F?
(2) how much sampling of y* from F? and (3) how
close is the distribution of R( y* F) given F to
R(y, F) given F?

Efron and Tibshirani suggest a variety of estimates
F for simple random sampling, regression, and auto-
regression; their remarks about (3) are confined
mainly to empirical demonstrations of the bootstrap
in specific situations.

I have some general reservations about the boot-
strap based on my experiences with subsampling tech-
niques (Hartigan, 1969, 1975). Let X;, ..., X, be a
random sample from a distribution F, let F, be the
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empirical distribution, and suppose that ¢(F,) is an
estimate of some population parameter ¢ (¥). The sta-
tistic ¢(F,,) is computed for several random subsamples
(each observation appearing inAthe subsample with
probability ¥2), and the set of t(F,) values obtained is
regarded as a sample from the posterior distribution
of t(F). For example, the standard deviation of the
t(F,) is an estimate of the standard error of t(F,)
from t(F); however, the procedure is not restricted to
real valued ¢.

The procedure seems to work not too badly in
getting at the first- and second-order behaviors of

" t(F,) when t(F,) is near normal, but it not effective

in handling third-order behavior, bias, and skewness.
Thus there is not much point in taking huge samples
t(F',) since the third-order behavior is not relevant;
and if the procedure works only for ¢(F},) near normal,
there are less fancy procedures for estimating standard
error such as dividing the sample up into 10 subsam-
ples of equal size and computing their standard devia-
tion. (True, this introduces more bias than having
random subsamples each containing about half the
observations.) Indeed, even if ¢(F,) is not normal, we
can obtain exact confidence intervals for the median
of t(F,/0) using the 10 subsamples. Even five sub-
samples will give a respectable idea of the standard
error.

Transferring back to the bootstrap: (A) is the boot-



