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Comment

David G. Kendall

The reading of this paper gave me great pleasure.
I wish to congratulate the Editor for throwing open
the windows and allowing a welcome draught of fresh
air to enter the hitherto hermetically sealed publica-
tions department of the IMS. I hope this wise policy
will be a pattern for the future.

Of course Bookstein mentions D’Arcy Thompson’s
work in zoology, and to this name I should like to add
that of F. O. Bower (1930), whose book “Size and
Form in Plants” played a similar role in botany. Bower
gave me a copy of this in 1943, and expressed his
conviction that mathematicians would eventually find
it food for thought. We can now see that he was right.

Despite their name, interdisciplinary studies have
to begin within the author’s own discipline, or one
adjacent to it, and so it takes some time for such work
to diffuse into other disciplines in which it has poten-
tial relevance. Thus it is not surprising that most
of Bookstein’s work was new to me, and I do not
think he has even heard of mine, originating as it did
in response to requests from archaeologists and
astronomers. A summary of this therefore seems
in order.

I have been concerned with constructing and adapt-
ing for statistical purposes the natural representation
space for the shape of a labeled set of k points in m
. dimensions. This is only interesting if & = 3, and the
m values of practical importance are 1, 2, and 3,
together with some higher values like 15 for cosmolo-
gists interested in space-time foams and so on. We
exclude the situation in which the points totally co-
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incide. Obviously the points could be Bookstein’s land-
marks, but they could also be archaeological sites or
quasars.

“Shape is what remains when location, size, and
rotational effects are filtered out,” so it is natural to
begin by taking the centroid as origin and changing
the scale to make ¥ ¥ x% = 1 (this is equivalent to
adopting Bookstein’s preferred size measure up to a
constant factor). We now have what I call a preshape,
which we can think of as a generic point on a unit
sphere of dimension m(k — 1) — 1, the “points” of this
sphere being labeled by m X (k — 1) matrices. The
sphere of preshapes comes with a natural metric to-
pology based on geodesic arc length, and a big group
of symmetries generated by a subgroup of the orthog-
onal group acting on the right which includes the
relabeling symmetries, together with the reflexion
symmetry. To get to what I have called the shape space
Y% we quotient out the rotation group acting on the
left. Natural quotient constructions endow this space
with a metric topology and its own rich group of
symmetries. This then is the stage on which shape
statistical transactions are acted out, and we need to
become familiar with it.

The quotient mapping from preshapes (points on
the unit sphere of dimension m(k — 1) — 1) to shapes
(points in %) is what is called a submersion when
m = 1 or 2; that is, it is a smooth mapping “onto”
whose Jacobian has everywhere a rank equal to the
dimension of Y%. When m is greater than or equal to
3, we still have a submersion if we exclude a singular
set in Y% (and its preimage on the sphere). As will be
seen below, the existence of this singular set when
m = 3 adds considerable interest (and difficulty) to
the discussion of these higher dimensional situations.

A great deal of my time in the last 8 years has been
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Fic. 1. Contours for the scalar curvature of Y3 presented via the secondary submersion to S*(1).

devoted to the metrical identification of each Y%.
Some of the results, recently surveyed in more detail
in my Hotelling Memorial Lectures at Chapel Hill,
are as follows.

For m = 1, we have Y% = S*%(1) (the figure in
parentheses being the radius of the sphere). For
m = 2 we have Y5 = CP*"%(4) (the figure in parenthe-
ses being a measure of curvature). Note that C means
complex and P means projective, so this is the
(2k — 4)-dimensional complex projective space much

, used by algebraic geometers. Having already gotten
rid of location and scale, we can code the remain-
ing configuration by & — 1 complex numbers, and
because we do not care about rotations, only the
ratios z,:2,: - - -: 24— are significant, whence the pro-
jective context. The metrical aspects of the identifi-
cation (developed in Kendall, 1984) are somewhat
more technical. In a few simple cases these sophisti-
cations can be bypassed. Thus CP° = pt, and
CPY(4) = S%(%4); I have given an elementary proof
that 33 = S%(%2) (Kendall, 1985).

Of special interest are the spaces ¥ m*'; here each
k-ad is a (perhaps degenerate) simplex, and my friend
Andrew Casson gave a huge boost to the investiga-
tion when he showed that ¥7*! is homeomorphic to
SV2m-1)(m+2) Notice that for m = 3 this is a charac-
terization up to homeomorphy only, and does not iden-
tify the metrical structure. Casson also showed that
if the m + 1 points lie in more (say m + r) dimen-
sions, then ¥™%! is homemorphic to the correspond-
ing hemisphere.

We are left with the problem of describing the
spaces Y¥, when

(1) m=3, k=m+ 2.

I have recently been able to show that (i) each of these
spaces is a finite CW complex, i.e., it can be regarded
as a finite collection of cells of various dimensions,
the boundary of each cell being appropriately identi-
fied with a subset of the union of the cells of lower
dimension; (ii) no one of them is even a topological
manifold, i.e., each one contains some points with
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FIG. 2. The shapes of 1001 random gaussian tetrahedra presented via the secondary submersion to S%(1).

topologically non-Euclidean neighborhoods; (ii1) each
of them has torsion in its integral homology; and (iv)
for (k, m) # (k’, m’), and m, m’, k, and k’ satisfying
the above inequalities (1), the spaces Y% and Y5, are
distinct even at the homology level, i.e., even in the
coarsest topological classification.

Notice that the bad behavior sets in as soon as the
k points lie in a space of dimension m = 3, yet m = 3
is obviously a situation of great practical importance.

Notice also that either one of (ii) and (iii) above is
. enough to show that none of the shape spaces for
which (1) holds can be even remotely like a sphere, so
that there can be no question of an extension of
Casson’s theorem.

Turning now to metrical considerations, we have
quite generally a dense open subset of % which has
a natural smooth riemannian structure. The comple-
mentary (singular) set is void for m = 1 and 2. This
situation can best be investigated by exploiting
O’Neill’s theory of riemannian submersions. I have
investigated Y4 (which is homeomorphic to S%) in
especial detail; the scalar curvature explodes to +o as

we approach any point on the singular set (which can
here be characterised as the seat of the collinear
tetrads in I®%). This is a startling confirmation of the
metrical asphericity of 3.

Collinearity studies first become interesting when
k = 3, and for m = 2 we then have a nice planar
representation for Y3 if we are content to omit one
shape point (say P, = P, # P3), which we can think
of as lying at infinity. This planar representation is
very useful for displaying real or simulated data. If the
points (P;, P,, P3) form an independent and identi-
cally distributed sample from a two-dimensional gen-
erating law u, we get an induced shape measure p* on
33, and the density du*/dy* (where v is the symmet-
rical gaussian generator) can be displayed by plotting
contours on the planar representation. Many illustra-
tions of this technique can be found (Kendall, 1984).

Multiple collinearities for plane configurations must
be studied on the complex manifold 3% = CP*%(4)
with 2k — 4 real dimensions. The links with Book-
stein’s work are now very close; mostly his calculations
appear to take place in a tangent space of Y%, The
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F1G. 3. The shapes of all 1001 tetrads drawn from the 14 major objects in the solar system on 1 January 1980 presented via the secondary

submersion to S%(1).

exact multiple collinearities here constitute a (k — 2)-
dimensional subspace which can be identified with
real projective space RP*~2 If ¢ is an arbitrary point
of Y%, then we write L(s) for the shortest geodesic
distance from o to this RP*% this is an attractive
test statistic for assessing near collinearity, and I have
found its law of distribution for all gaussian genera-
tors, so in the null and also in the non-null situation.
This result illustrates the rewards which follow natu-
rally from such global studies.

~ With increasing k and m the dimension of the shape
space increases, and data presentation is less easy. We
can however make use of a secondary submersion from
the nonsingular part of Y% onto a spherical triangle
of the unit sphere S™(1) by a singular values decom-
position argument, and this is especially attractive
when m = 3.

To illustrate this, Figure 1 shows contours for the
scalar curvature of Y5, emphasising the fact that in
metrical terms this topological sphere loses its spher-
icity. Were it metrically spherical, the scalar curvature
would be constant! The secondary submersion has

here been extended by symmetry to all of S%(1); in
data analytic studies it is better to work with the exact
range of the submersion, a spherical triangle. Thus
Figure 2 shows in that-manner the shapes of 1001
random tetrads in R? with independent and identically
distributed gaussian vertices. To read this picture note
that all co-planar tetrads map onto the median vertical
line, all collinear tetrads map onto the vertex at the

‘top, and equilateral tetrads of righthanded and left-

handed symmetry map to the two vertices at the
bottom.

For a contrasting scene we may look at Figure 3,
which shows the shapes of the 1001 tetrahedra deter-
mined by all the subsets of size 4 drawn from the 14
principal objects in the solar system as they were at
the outset of 1980. We know that the solar system
consists of nearly co-planar objects, and this fact is
illustrated here by the concentration along the median
line. But there is a much stronger concentration near
the vertex at the top, and that illustrates the peculiar
event in 1980 when most of these objects appeared to
us to be located in the same corner of the sky.
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(Astrologers were interested in this phenomenon!) All
of these are shape theoretic features, and give exam-
ples of the way in which such presentations of the
shape space can be instructive.

I hope that these remarks will help to fill out the
fascinating paper by Bookstein, and will at the same
time indicate the additional advantages which can be
gained from global geometrical studies, in supplemen-

Comment

Noel Cressie

Professor Bookstein has ably presented a synthesis
of the “size or shape variables” approach and the
“deformation” approach within the field of morpho-
metrics. He has developed a number of results which
can be used to test for association between shape and
size, and for shape differences between groups. These
results exploit the relative spatial locations of land-
marks (well defined “summary” points that are bio-
logically apparent in each specimen under study),
whence one is able to summarize the geometry of the
specimen. This is clearly a desirable direction to take.
Professor Bookstein has shown us the inadequacy of
the first approach, which uses very little spatial infor-
mation, and has given us a way of making statistical
inferences within the second approach, which up to
now has been essentially descriptive.

There are other ways to analyze size and shape; the
approach of the so-called “mathematical morphology”
school of Matheron and Serra (Serra, 1982) in France,
is trying to solve a different problem. Automated
cytological examinations of a smear enable rapid ob-
jective detection of deformed cells, whose frequency
of occurrence is typically only a minute fraction of the
total number of cells examined. The use of landmark
techniques here is clearly not appropriate, although

one is still interested in (perhaps more gross) defor- .

mations of cells. Here the geometry of the specimen
(represented as a set) is of paramount importance;
morphological transformations that take set into set
do not destroy the spatial nature of the problem. After
a suitable series of transformations (e.g., smoothing,
convexifying, etc.) on the set, the final stage is to
calculate real valued summaries (e.g., volume, surface
area, connectivity number, etc.).

The great advantage of mathematical morphology
is that it is applicable in R", n = 1, whereas Bookstein
is not yet able to make the jump from R? to R?, With

Noel Cressie is Professor of Statistics, Department of
Statistics, Snedecor Hall, Iowa State University, Ames,
ITowa 50011.

tation of the less exacting but equally relevant local
ones. '

ADDITIONAL REFERENCES

BOWER, F. O. (1930). Size and Form in Plants. Macmillan, London.

KENDALL, D. G. (1984). Shape manifolds, procrustean metrics, and
complex projective spaces. Bull. London Math. Soc. 16 81-121.

KENDALL, D. G. (1985). Exact distributions for shapes of random
triangles in convex sets. Adv. Appl. Probab. 17 308-329.

this in mind, there is the notion of “the skeleton” (see
Serra, 1982, Chapter XI) of an object, which may be
useful in the analysis of landmark data. It can essen-
tially be obtained (in R?) in the following graphic way.
Imagine the object to be a bounded field of grass, and
a fire is started at the same instant at every point on
the boundary. The fire burns inward at constant
speed, so that there is a line in the field where the fire
is reached simultaneously from at least two different
points on the boundary. When applying this idea to
jawbones for example, it may suggest landmarks (the
various “junctions” of the skeleton) and curvatures
(the part of the skeleton linking the “junctions”). This
may be an answer to the question of the statistical
sufficiency of landmarks to describe the specimen, and
at the same time of the generalizability to IR".

There is another possibility for generalization to
higher dimensions contained in the article by Kendall
(1984). He considers k-ads in m dimensions (e.g., here
we have k = 3, m = 2), and constructs shape spaces
and shape measures on these spaces. The mathematics
is formidable, but there is the formalism for dealing
with higher dimensional landmark data.

I would like to join Professor Bookstein in his
concern that the null statistical model of identical
uncorrelated normal perturbations at each landmark,
is unrealistic. Would he comment on what happens
when the bivariate Gaussian distribution is correlated,
perhaps differently from landmark to landmark, and
also when another distribution is controlling the per-
turbations? (Kendall’s shape measures would generate
a very general type of model.) I am worried about the
robustness of the approach, and I think finding ex-
ploratory ways of checking the assumptions made
about these spatial data is an open and interesting
problem.
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