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Size and Shape Spaces for Landmark
Data in Two Dimensions

Fred L. Bookstein

Abstract. Biometric studies of the forms of organisms usually consider size
and shape variations in the geometric configuration of landmarks, points
that correspond biologically from form to form. The size variables may be
usefully considered the linear vector space spanned by the set of all distances
between pairs of landmarks. The shape of a single triangle AABC of
landmarks may be reduced to a single pair of shape coordinates locating the
vertex C in the coordinate system with landmark A sent to (0,0) and
landmark B to (1,0). A useful space of shape variables is the span of all
such shape coordinate pairs for various triples of landmarks. On a conven-
ient null model of identical circular normal perturbations at each landmark
independently, one size variable S, which may be taken as the mean square
of all the interlandmark distances, has covariance zero with every shape
variable. Then associations between shape and size may be tested by the F
ratio for multiple regression of S on any basis for shape space. For a single
triangle of landmarks, the existence of any mean difference or mean change
in shape may be tested by Hotelling’s T applied to any pair of shape
coordinates for that triangle. When such a difference is statistically signifi-
cant, it may be interpreted as the ratio of a pair of size variables measured
along directions at an angle averaging 90° in the samples of forms. One size
variable will bear the greatest mean rate or ratio of change between the
forms, the other the least. Analysis of configurations of more than three
landmarks reduces to consideration of size variables involving at most three
landmarks. These techniques are demonstrated in a study of the growth of
the head in 62 normal Ann Arbor youth. Each comparison of interest is
summarized in its own orthogonal coordinate system, the biorthogonal grid
pair.

Key words and phrases: Morphometrics, size variables, shape variables,
allometry, landmark data, tensor biometrics, biorthogonal grids, craniofacial
growth, statistics of deformations.

SUMMARY

Morphometrics, the study of the geometrical form
of organisms, combines themes from biology, geome-
try, and statistics. Data for morphometric study usu-
ally include geometric locations of landmarks, points
that correspond biologically from form to form. In
some applications, one measures configurations of
landmark points by variables that express aspects of
size or shape of single specimens: for instance, dis-
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tances or ratios of distances. In other applications, the
morphometrician directly measures the relation be-
tween one form and another as a deformation, a
smoothly varying rearrangement of the configuration
of landmarks considered as a whole. Either approach
may be turned to the investigation of group differences
in size or shape and of associations, called allometry,
between size and shape or between size change and
shape change.

In this essay I attempt to unify these two ap-
proaches to morphometrics. From a set of landmark
points located on each of a sample of specimens, one
can construct two linear spaces, one for size variables
and the other for shape variables, which together
exhaust all the information about landmark locations.
These variables have a spatial as well as a statistical
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structure. It is possible to pass back and forth between
the deformational and the multivariate forms of
description as follows: A group difference or growth
trend detected by looking at variables from the size
and shape spaces can be interpreted as a deformation
of the whole configuration of landmarks; but also,
every deformation prescribes specific size and shape
variables in terms of which its effect is most clearly
presented.

For purposes of statistical inference, there is an
interesting null model in which every landmark is
distributed about an (unobservable) centroid by in-
dependent, identically distributed normal perturba-
tions in each Cartesian coordinate separately. On this
model, one can use conventional multivariate statis-
tical methods, such as T2 ratios and F ratios, to test
unambiguously for the significance of apparent group
differences in shape or apparent associations of shape
with size. One does not need to have decided in
advance upon particular size and shape variables for
statistical analysis. Rather, using the tie between these
spaces and the deformation model, after an effect has
been detected one can determine the two size variables
per triangle of landmarks which show greatest and
least fractions of increase over the change. In most
forms of the sample, the segments these distances
measure lie at nearly 90°. Along with their ratio, they
are the most suitable variables for reporting the find-
ings and displaying them in optimally legible form.

This essay presents the theorems and algebraic and
geometric derivations underlying this mixed spatial/
statistical method, and demonstrates it in examples
from paleontology and craniofacial biology.

1. INTRODUCTION

Within biometrics there is a subfield, morpho-
metrics, which analyzes the geometric forms of orga-
nisms. Throughout experimental and descriptive
biology it is useful to know when two populations of
organs or organisms have the same typical form; to

indicate size allometry, the typical shape changes .

accompanying size increase over the lifespan of a
single organism or along a graded series of specimens
" or species; and to characterize the typical difference
bétween the sexes, the typical fesponse of form to
therapeutic intervention or environmental variation,
the typical facies of an anomaly, or the most reliable
dimensions of individual difference.

In practical applications, these themes tend to be
interwoven in many ways. For example, many human
birth defects present gross malformations of the bones
of the face. One syndrome, Apert’s Syndrome, involves
an upper jaw and nasal region which appear to have
been “caved in” toward the back of the head. There
are associated serious dental and ophthalmic problems

and many other features clearly visible on x-rays. To
correct the facial deformity, the upper jaw is cut apart
from the rest of the head, moved forward and down-
ward, and wired back in. One set of questions about
the syndrome (Bookstein, 1984b) involves the detailed
loci and origin of the deformity. From a sample of
cases we can learn which quantitative features are of
normal size but incorrectly positioned and which are
always too small. The closer these latter are to the
base of the brain, the more likely they are to have
been initiating sites for the craniofacial manifesta-
tions of the syndrome.

Another set of questions about the same sample
deals with the design of individual surgical treatment.
In planning these operations, one knows the extent of
malformation, but not the extent of feasible surgical
correction. We need statistical summaries of treat-
ment success—maintenance of the altered form—as a
function of both the need for and the extent of repo-
sitioning. In younger patients, we also wish to deter-
mine whether growth following surgery is normal; if
not, the operation must “overcorrect” to anticipate
failure of the jaw to grow normally after it is reposi-
tioned. Populations submitted to different surgical
protocols may average different success rates; more
crucially, different procedures may succeed upon pa-
tients of different starting forms. At every turn in the
clinical management of a single patient, we face sta-
tistical questions about the relations among starting
form, change during surgery, and change after surgery.
A similarly complicated set of questions about the
interaction of condition with treatment arises in di-
agnosing the location and extent of a heart attack,
and then assessing the success of a treatment based
on that diagnosis, by observing changes in the shape
change which is cardiac contraction.

Morphometric study of questions like these requires
that information be drawn from two sources: biological
homology and geometric location. A biological homol-
ogy is a spatial or developmental correspondence be-
tween individuals, a correspondence among definable
structures or “parts”—separate bones, nerves, mus-
cles, and the like. In the context of morphometrics it
becomes a homology mapping, a correspondence not
of parts to parts but of points to points. For any choice
of point or curve upon or inside any particular form,
the homology map associates well-defined and biolog-
ically acceptable counterparts, the homologues of the
point or curve, on all the other geometric forms in the
data set. Morphometrics studies the empirical geom-
etry of homology—variation in the relative locations
of sets of homologous points over a sample of forms.

One normally samples this map at a small number
of discrete points, called landmarks, defined intrinsi-
cally in terms of the anatomy in their vicinity. Land-
marks are points pointed out by biologists when they
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talk about form whether or not it is quantified: “the
tip of the axis,” “the bridge of the nose.” There are
two general modes of characterizing landmarks. Some
are located by juxtaposition of different identifiable
structures. In fishes, “anterior fin base” and “posterior
fin base” delimit the fin upon the body outline; in the
human skull, Nasion, the bridge of the nose, is at the
intersection of three bony sutures visible upon x-rays.
(In craniometrics, the quantitative analysis of skull
form, landmarks have proper names, usually in a sort
of mock Greek or Latin: for instance, Sella, Nasion,
Menton, and Gonion in Figure 12.) Other landmarks
are located by geometric properties. For instance, the
tip of a tooth may be taken at the point where the
curvature of the edge is greatest. Such a feature, we
must assume, is the relic of a highly positional devel-
opmental process we cannot observe directly. Homol-
ogy maps smoothly extend the spatial correspondence
between forms from landmarks like these into the
regions of anonymous tissue, blood, or air in between
them. The morphometrician and the biologist must
collaborate especially closely at this stage of a project.

Figure 1 exemplifies the decisions involved in work-
ing out these notions in practice. Figure 1a presents
typical raw data: detailed drawings of three primate
skulls, lower jaws removed, in midsagittal section (that
is, cut flat up the middle of the head in a front-to-
back vertical plane). The parts and regions labeled in
the figure are conventionally accepted as homologous
from species to species. In Figure 1b, the same three
forms are abstracted into line in order to characterize
nine landmark points in whose homology we have
some confidence (not only in this little data set but in
most other higher primates as well). There seem to be
no landmarks over the vault of the skull, nor any upon
most of the teeth (as they do not lie in this plane).
Figure 1c shows how seven of the landmarks may be
taken to delimit a region, the splanchnocranium (non-
neural skull), that we may consider as related by
homology mappings among these forms. After the
fashion of D’Arcy Thompson (1961, Figures 178-180),
the homology map may be displayed as a deformation
of Homo into each of the other forms. These maps
were computed by an algorithm described later in this
essay, in conjunction with Figure 15. More on the
analysis of these and other primates may be found in
Chapter VII of Bookstein (1978a).

The statistical analyses put forward in this essay
will implicitly assume that correspondences of land-
mark positions are a discrete sample of paired points
from an extended correspondence of regions such as
those in the figure. In one aspect, however, these
examples are atypical. They are at the limit of “small
shape variation” for which the algebraic methods of
this essay are adapted. For smaller changes the depic-
tion by explicit homology maps, as in Figure 15a, is

peculiarly bland. The viewing eye cannot detect the
patterns of spatial variation embodied in these maps.
Nevertheless patterns are present; they may be made
patent, as in Figure 15c¢, by appropriate morphometric
tactics. :

Topological variations in the assembly of organisms
out of organs often lead to fascinating ambiguities of
biological homology, and biologists may reasonably
argue the facts of the homology map relating sets of
observed landmarks—the very mapping we wish to
study. In particular, points with a perfectly good op-
erational definition, like “the tip of the nose,” may
not correspond from specimen to specimen in any
biologically meaningful or useful way. Such disagree-
ments are beyond the scope of this essay (but see
Bookstein, 1978a, pp. 120-123, or Bookstein et al.,
1985, Section 5.1).

Landmark locations may be augmented by infor-
mation about the curving of external or internal
boundaries between landmarks, but this extension will
not be demonstrated here. All the geometric data
analyzed in this essay will be discrete landmark loca-
tions in the plane of a photograph, diagram, or digitiz-
ing tablet: two-dimensional Cartesian coordinate pairs
of homologous points over a sample of forms.

The Two Main Strategies of Morphometrics

Data bases of landmark locations are usually ana-
lyzed by one of two general strategies: multivariate
morphometrics or deformation analysis. In the prac-
tice of multivariate morphometrics (Reyment et al.,
1984), configurations of landmarks are measured one
at a time in collections of “morphometric variables.”
Some of these measures are size variables which in-
crease exactly as some power, preferably the first, of
geometric scale: for instance, distances between land-
marks in pairs. Other morphometric variables are
shape variables having a value algebraically independ-
ent of geometric scale. Shape variables include ratios
of distances or other pairs of size variables, together

-with various functional transforms of these ratios,

such as angles.

Multivariate morphometrics does not insist that
size or shape measures be based in the locations of
homologous landmarks. The methods are often ap-
plied without modification to distances extracted
without regard for homology, such as maximal or
locally minimal diameters of a form, and to coeffi-
cients from the expansion of a boundary curve as a
series of orthogonal functions. Collections of these
morphometric variables, whatever their provenance,
are submitted to conventional multivariate statistical
analysis—linear modeling, discriminatory analysis,
component extraction—and-any findings are inter-
preted coefficient by coefficient. The geometric origin
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Fi6. 1. Landmarks and the homology map. (a) Careful drawings of
three primate skulls in midsagittal section. Homo (modern European)
and Gorilla (female) after Hofer (1954); Papio sphinx (male mandrill)
after Hofer (1965). The forms are not to the same scale. Parts and
regions with the same names in different figures are homologous in
the usual biological senses. Abbreviations: o., occipital bone; f.m.,
foramen magnum (opening to the spinal column); c.b., cranial base;
D.f., pituitary fossa; e.f., ethmoid fossa; f.s., frontal sinus; n., nasal
bones; a.p., alveolar process or ridge; i., front incisors; p., hard palate.
(b) Abstractions of these figures, with indications of nine landmarks.

of the measured variables is generally not exploited
further. (Along with myself, Charles Oxnard is an
exception to this generalization; see, for example,
Oxnard, 1984.)

In multivariate morphometrics, the relation of anal-
ysis by size variables to analysis by shape variables or
by a combined list of size and shape variables is
presently obscure (Sprent, 1972). The one solid result
in the area is a theorem of Mosimann (1970). It deals
with the case of a fixed list of size variables Xj, - - -,
X, and a list of shape variables generated by dividing
all the X’s by a size variable that is an algebraic
combination of the X’s: for instance, the lengths of
subdivisions of a vertebral column as proportions of
the length of the whole. Mosimann’s theorem states
that at most one size variable can be stochastically
independent from the space of shape variables
spanned by a list constructed in this way. In other
words, although “size” and “shape” are verbally or-
thogonal, computationally and conceptually they are
inextricably entangled.

1, external occipital protuberance (“Inion”); 2, posteriormost point of
the foramen magnum (“Opisthion”); 3, anteriormost point of the
foramen magnum (“Basion”); 4, deepest point of pituitary fossa; 5,
deepest point of ethmoid fossa; 6, deepest point of curvature of nasal
bones (“Nasion”); 1, terminus of internasal suture (“Rhinion”); 8, tip
of alveolar bone between the upper central incisors (“Prosthion”); 9,
posterior end of the hard palate (“Staphylion”). (¢) Computed ho-
mology maps corresponding to the region delimited by landmarks
3-9. The computation is by the algorithm of Bookstein (1978a); cf.
Fig. 15.

The other main morphometric tradition concen-
trates on the theme of deformation introduced into
descriptive biology by D’Arcy Thompson (1961) under
the label of “Cartesian transformation.” A deforma-
tion is a mapping which takes neighboring points to
neighboring points and which alters lengths of little
segments by factors which never get too large or too

" small. The notion is an informal version of what the

mathematician calls a diffeomorphism, a one-to-one
transformation which, along with its inverse, has a
derivative at every point of a region and its image.
Thompson argued that a comparison of biological
forms ought to be observed directly, as a geometric
object of measurement in its own right, rather than as
the mere numerical difference of measures made upon
forms separately. He suggested that the form change
be construed as a deformation of the picture plane
corresponding closely to what biologists already knew
as homology: the smooth mapping of one form onto
the other sending landmarks onto their homologues
and interpolated suitably in between. The object of
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study thereby becomes the mapping relating the pair
of forms, rather than the configuration of either form
separately.

I have reviewed the history of Thompson’s sugges-
tion in prior publications (Bookstein, 1978a, 1982a).
In spite of the visual attractiveness of Thompson’s
own transformation diagrams and those following
later, they have proved surprisingly resistant to sta-
tistical consideration in groups. I think this is princi-
pally because statistical techniques suited for dealing
with the requisite richness of parameters, nearly twice
the number of landmarks, have hitherto had difficulty
incorporating the spatial context in which the meas-
urements originated. Instead, most techniques for the
geometric study of mappings choose to model the
reconfiguration of landmarks by a map from some
algebraically simple family, and then interpret either
the few coefficients of the fitted map or else its dis-
tributed “error” of fit.

A typical approach of this sort is that of Sneath
(1967). He expresses each Cartesian coordinate of the
landmarks of one form by a cubic bivariate polynomial
(estimated by multiple regression) in the x and y
coordinates of the same landmarks in another form.
The resulting coefficients are apparently impossible
to interpret directly. Sneath’s purpose is instead to
summarize them in a single net measure of dissimilar-
ity between forms, a measure which might be proc-
essed afterward by a clustering algorithm.

A more specialized model in the same spirit (Siegel
and Benson, 1982; Benson et al., 1982) postulates
a conserved subset of at least half the landmarks:
a region of the form in which the mapping is nearly
a pure change of scale or isometry. “Errors” in the fit
of this simple model are represented as little vectors
of displacement tying “expected” location to observed
location for each landmark separately. But the fitted
mapping cannot recognize differences 'in change of
scale, however slight, as a function of either position
or direction. Hence the shape changes observed, which
are the features of greatest interest to Benson and his
co-authors, are estimated as a sort of mis-specification
term for the isometric model actually fitted. An ap-
propriate analysis of these “residuals” requires instead
the regional quantification of shape differences by the
methods of this essay.

Another technique (Tobler, 1978) computes a shape
change that is constant throughout the form. His
model admits directional differences in rates of change
of length, but cannot detect regional gradients in those
rates.

In applications to biological data these models all
bear, in my view, too few parameters to properly
measure most of the phenomena of shape change
to which they are likely to be applied. In contrast,
Goodall (1983) shares with me a willingness to deal

with the spatial complexity inherent in describing
reconfigurations of many individual points. From a
botanical data base detailing the tessellation of a
growing shoot’s surface by its cells, Goodall computes
parameters of shape change separately cell by cell.
The dependence of growth rate upon position and
direction throughout the form is displayed directly.
Goodall also keeps track of relative rotations between
the different regions of the shoot. As of this writing,
his machinery has not yet been extended to the sum-
mary of many specimens at once by way of reliably
located landmarks.

Deformations and Factors

Between the two styles of morphometric analysis,
the multivariate and the deformational, there is a
profound tie. A deformation moves landmarks around.
In so doing, it changes all distances that one might
consider measuring upon a configuration of land-
marks; it changes them whether or not they are meas-
ured. In this action the deformation behaves very
much like a factor in the classic psychometric sense:
an “underlying” construct which accounts for simul-
taneous changes in a large number of conceivable
variables, only some of which are actually observed
(Bookstein, 1986). When a number of variables ap-
pear to change simultaneously with each other, we
attempt to model each one as varying according to a
regression upon the factor score which estimates their
common trend. The regression coefficients are called
loadings. When two variables both load upon the same
factor, their observed covariance includes a term for
the product of their separate loadings; in a good factor
model, these products of loadings will closely match
the covariances actually observed (Bookstein et al.,
1985, Section 4.2). The systematic patterns of mean
deformation commonly encountered in biology have
exactly this sort of effect on distance measures: they
account for most of the observed covariation.

Prediction of a variable by a factor upon which it
loads is not by multiple regression upon the factor’s
indicators, but instead by simple regression of the
dependent variable upon a suitable estimate of the
factor score. Factor scores are usually estimated as
appropriately weighted sums of the variables which
are supposed to load on them, the variables whose
observed correlations are sufficiently high. But factors
need not be estimated so. Deformations have a great
advantage over the sort of factors one normally en-
counters in multivariate analysis: they are explicitly
observable in the same planes in which the data lie,
so that their loadings have a spatial as well as a
statistical structure. We can compute the loading of
any distance upon any deformation, to great accuracy,
without measuring the distance at all. Up to effects of
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curvature, the loading is just the net increase in length
the deformation engenders over the straight line path
followed by the length measure. To control for starting
length, we usually measure this change upon a loga-
rithmic scale—change per original unit length, in
dimensionless units such as mm/mm—whereupon the
loading of any distance is identified with the derivative
of the deformation in its direction.

By using factor notions rather than notions of mul-
tiple regression, we are freed from having to measure
the deformation on any particular scale or by any
particular set of variables, and we need not be con-
cerned that the distance being accounted for is in-
volved in specifying the precise nature of the defor-
mation under study. We simply observe a deformation
as a single construct, the relative reconfiguration of a
set of landmarks. Ultimately, the reason for recourse
to this indirect language of factors is the infinite
variety of shape variables available for describing any
configuration of landmarks. A deformation represents
a simultaneous change in all these variables, each with
its own loading computable from the mean geometry.

Because the derivatives of deformations may be
studied analytically, we may use their geometry to
select particular size and shape variables customized
for the description of particular comparisons of form.
The size variables that most interest us are those with
the largest or smallest loadings on the deformation.
Any such pair generates a shape variable, namely their
ratio, which changes fastest (on the logarithmic scale)
of all shape variables across a comparison or along a
trend. We will see in Section 5 that the pairs of
distances so selected have the happy property of re-
maining at 90° over the course of the deformation;
this invariance considerably simplifies the reports and
diagrams of findings.

Thus deformations may be usefully interpreted as
factors. Can we manage the reverse of this tactic,
representing multivariate factors of size and shape as
deformations? Like the computation of loadings from
the derivatives of a deformation, this step is made
possible by the two-dimensional geometry of the plane
in which our data lie and by the finite dimension of
the landmark configuration itself. A deformation of a
triangle of landmarks, for instance, is determined by
the loadings it induces upon any three distance
measures. These effects, in turn, may be represented
by the deformation’s effect upon any two shape
measures together with just one size measure shared
by all the triangles of a configuration. In this way, we
may read statistical analyses of suitable spaces of size
and shape variables as pertaining directly to defor-
mations, and thereby we generate novel size and shape
variables that best report the deformation.

It is the purpose of this essay to exploit this com-
bination of spatial and statistical analysis for the

comparison of samples of forms and the description
of samples of form change.

Symbols and Assumptions

The algebra of the models introduced here inter-
prets size and shape as functions of many complex
variables. Therefore, the raised horizontal rule —
(e.g., “dz”) is used to indicate not a sample mean
but the operation of complex conjugation, reflection
in the real axis. The absolute value operator (e.g.,
“| Z; — Z;|”) represents the modulus of its argument,
its distance from (0, 0) in the complex plane. The op-
erator Re returns the real part of a complex number,
Im the imaginary part. When we need an expected
value, we will write it using a boldface E; thus,
E | Z; — Z;| denotes the expected value of the distance
between landmarks Z; and Z;. As i (and also the
engineers’ j) are ubiquitous as statistical subscripts,
the quantity s/:—l, whenever it needs to be explicitly
mentioned, will be written out in full. The symbol A,
when followed by a list of three landmarks, should be
read as “triangle” (e.g., “AABC”).

Sets of K landmarks observed upon a single form
will be modeled as lists of K complex numbers
Z, -+ -, Zx. Bach Z; corresponds to one landmark; in
the sample, it is assumed to vary around a centroid
W; by displacements dz; the algebraic treatment of
which is like that of the differentials of classic complex
analysis. The variation of any of these locations Z;
about its own centroid W, is assumed considerably
smaller than the distance between any pair of cen-
troids:

|dz:| = | Zi — Wi| < | W; — Wy,
L,j=1, -, K, i#].

This variation includes both measurement error (from
tracing and from digitizing) and true differences be-
tween individual configurations.

The symbol d for differential, already used in refer-
ring to small displacements dz; of the landmark loca-
tions Z;, will also serve for the changes in value
introduced in functions of the Z’s and for summaries
of differences in those functions observed between
groups or over the extent of a trend. Thus d | Z; — Z; |,
subject of the first Lemma, is the differential of the
function |Z; — Z;|, the difference |(Z; + dz) —
(Z;j + dz)) | — | Z; — Z;| through terms of first order in
the dz’s. We rely upon the differential notation pri-
marily for the linear algebra of deviations of the Z’s,
and functions of them, from their mean values.

We postulate, formally, a null model for analysis of
these configurations. In this model, the Z; are inde-
pendently and identically distributed about their cen-
troids W; as circular normal deviates of a common
variance o2, as indicated schematically in Figure 2.
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(By “circular normal” is meant “bivariate normal with
covariance matrix a multiple of the identity.” The
sense related to distributions upon a circle is not used
in this essay.) This variance subsumes all measure-
ment error, biological noise, and the like. By the
assumption about | Z; — W;| preceding, we may con-
clude that the expected value of the distance between
landmarks i and j, E|Z; — Z;|, is almost exactly
| W; — W;|. For expressions in which the coeffi-
cients of linear forms in the differentials dz are
replaced by their expected values in terms of the
W’s, and which are therefore accurate through terms
of first order in o, we reserve the symbol =, thus:
E|Z - Z;| = |Wi— W;l.

The assumptions of this model are most directly
verifiable by considering the circularity of certain
derived scatters representing perturbations of land-
mark positions taken three at a time, in triangles.
There will be a comment about this matter in
Section 3.

Other models to be tested against this null model
would have certain aspects of the joint distribution of
the Z’s depend on other circumstances: upon a biolog-
ical grouping variable, perhaps, or a size measure
(likewise defined in terms of the Z’s).

*Z

The Variables of the Null Model Are Not Directly
Observable

The coordinate pairs Z; of our model are not defined
absolutely, only with respect to each other, and so
cannot be observed. (This is analogous to the notion
of the hypothetical “open” or “parent” array of geo-
mathematical variables from which covariances ob-
served among empirical proportions of components in
mineral ores are presumed to derive. See Chayes,
1971.) We cannot detect net translations or rotations
that replace each Z; by Z; + Z or by aZ;, where Z is
any complex number and « is a complex number of
unit modulus; for there is no reference coordinate
frame with respect to which to detect these changes.
We can observe only an equivalence class of sets of
these coordinates.

Likewise, the centroids W; are unobservable; they
have only relative locations. Furthermore, they are
“fuzzy points” that cannot, in general, be located
properly with respect to one another in a Cartesian
plane. In the course of proving Lemma 2 in the Ap-
pendix, for instance, we will note that lines such as
W, W,, W3 W, are usually skew: no linear combination
of one pair of landmarks is ever at mean square

.ZZ

24
!o’z‘,
Wq

FIG. 2. The unit of morphometric analysis is a configuration of K landmarks. These are modelled as sets of K complex numbers Z,, ---, Zx

varying by displacements dz,, - - -, dzx around centroids W, - -

., Wx. The radius of the circles in the figure represents the standard deviation o

assumed for each component, real or imaginary, of each independent and identically distributed displacement dz;.
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distance zero from any linear combination of another
pair.

Six edge lengths among four points determine a
tetrahedron. Whenever these lengths are averaged
separately over a sample of forms, whether as root
mean square expectations or otherwise, for any four
centroids W the resulting tetrahedron is usually not
quite planar. The centroids W; of the null model will
not lie exactly in a plane unless these sample statistics
are relaxed very slightly. For an algorithm suited to
this purpose, see Strauss and Bookstein (1982).

Nevertheless, we must draw the points W, some-
where upon the printed page. For this purpose and
this purpose only, it is reasonable to average Cartesian
coordinates in a system registered upon (that is, placed
and oriented with respect to) certain landmarks. For
instance, one might assign landmark Z, to the Carte-
sian origin (0,0) and constrain the x axis to pass
through another landmark Z,, so that the line Z,Z, is
the x axis of the Cartesian system and the perpendic-
ular to this line through Z; is the y axis. But the
statistical properties of these coordinates separately
are highly misleading. On the null model, the two
Cartesian coordinates of any landmark so registered
no longer have a joint distribution that is circular
normal; more seriously, measurement variance in the
points of registration is propagated to all other land-
marks as covariance of coordinates between all land-
marks in pairs. Although we will use particular coor-
dinate pairs from conventional registrations to display
mean configurations, we cannot execute morpho-
metric statistical analysis upon them directly.

What we may observe of our set of points Z; is in
fact the rigid triangulation of their configuration, a
specification, case by case, of every distance | Z; — Z; |
and every inner product (Z; — Z;)(Zy — Z,). The
algebraic development of the next three sections will
deduce aspects of the distributions of these observa-
bles from the assumptions of the null model. What we
observe of the W; are statistics upon observables re-
garding the Z;. The distances | W; — W;| are taken as
VE(| Z; — Z;]?), root mean squares of the correspond-
ing distances as observed in the sample, and the inner
products (W; — W;) (W, — Wﬁ) are the corresponding
‘expected values E[(Z; — Z,)(Z), — Zn)].

Prospectus. This essay explores spaces of size and
shape descriptors for comparisons of such configura-
tions, relating them to the ordinary algebraic machin-
ery of statistical hypothesis testing and linear model-
ing and also to the geometrical machinery of plane
mappings. Relying on the algebra of the W’s and dz’s,
Section 2 introduces a linear space of size variables
spanned by the set of interlandmark distances. Section
3 introduces a different linear space of shape variables,

a space that can be analyzed without any reference to
size variables, and identifies a convenient basis in
certain complex ratios embodying the shapes of single
triangles.

These two spaces, defined on:the same configura-
tions of landmarks, must be closely linked. Sections 4
and 5 explore the ties between them, which permit the
geometric interpretation of familiar multivariate ma-
neuvers and the multivariate interpretation and test-
ing of geometrical extrema. Theorem 1 demonstrates
that, under the null model, one particular size variable
is independent of all shape variables. This inde-
pendence makes possible a single unambiguous F test
for size allometry, demonstrated in an application
from micropaleontology. It is then shown how Hotel-
ling’s T may be used to test for the presence of any
shape difference between two populations of triangles.
Any difference found will be measured afterward by
the ratio of two distances along directions at 90° to
one another, one distance bearing the greatest loading
(ratio of change) over the change and the other one
the least. Theorem 2 indicates how the search for
distances bearing extrema of loading in configurations
of more than three landmarks reduces to the consid-
eration of triangles, for which the necessary extrema
can be computed in closed form.

Section 6 is devoted to an extended example of all
these procedures using a data set of four cephalometric
landmarks observed in two groups at two ages. The
example exploits the method of biorthogonal grids for
geometric visualization of shape differences and shape
factors that vary smoothly over a polygon of land-
marks. Several shape differences are displayed, tested
for significance, and reported by optimal computed
geometric proportions. The example goes on to depict
the nature of size allometry in this data set, and then,
passing from consideration of difference to the consid-
eration of invariance, uses the grid transformation
diagram to interpret a factor for shape stability com-
puted by ordinary canonical analysis of the shape
space at two ages. Section 7 suggests some further
methodological developments that would extend the
efficient exploitation of geometric data throughout the
biological and biomedical sciences.

2. A LINEAR SPACE FOR SIZE VARIATION

Summary

The simplest size variable is the distance between a
pair of landmarks. In addition to the landmarks pres-
ent in the data, we consider “constructed landmarks,”
arbitrarily weighted centroids of sets of landmarks,
and the set of all distances measured between pairs of
these: the real numbers | Y ¢;Z;| with ¥ ¢; = 0. For
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shapes constrained to a sufficiently modest range, this
set of distances generates a linear vector space, here
called the space of size variables. The set of differen-
tials of all distances between landmarks in pairs forms
a (redundant) basis for this space. Of special interest
is the size variable S which is the sum of all squared
distances between the landmarks in pairs. S is sta-
tistically equivalent to the sum of distances from
each landmark to their joint centroid, each distance
weighted by its own sample mean.

Distances between Landmarks and the Space
They Span

Suppose we have a data set of configurations of K
landmarks Z,, - - -, Zg. The simplest sort of size vari-
able is the distance | Z; — Z;| between two of these
landmarks, as measured in each landmark configura-
tion of the sample. So that we may rely upon linear
machinery for statistical purposes, we will make use
of the quantity | Z; — Z;| by way of its differential
d|Z; — Z;|, the deviation from its mean | W; — W;|,
under small displacements dz;, dz; of the landmarks
from their (unobservable) mean positions.

LEMMA 1. If f(Z;, Z;) = | Z; — Z;|, a real-valued
function of two complex arguments, then

Zi—7 — —
df = Re —'—’-(dzi—dz-)}.
J [lz,-—z,w s

PrROOF. The change in the distance | Z; — Z;| is
the sum of the projections of dz; and —dz; separately
upon the segment (Z; — Z;). Rotate that segment to
lie along the real axis—a multiplication by the unit
complex number (Z; — Zj)/ | Z; — Z;|. The projection
we seek is effected by taking the real part of the
product by (dz; — dz;):

Z;— Z;
df = Re[| 7= 7] (dz; dz,)].

The assertion of the Lemma follows from the invari-
ance of the real part of a complex number under
complex conjugation.

It follows that if f (Z;, Z;) = | Z: — Z; %, then
df=2|Z:—Z;|d| Zi— Z;| = 2 Re[(Z: - Z;)(dz: — dz;)].

To convert one of these differentials d | Z; — Z;| or
d|Z; — Z;|? into a variable suitable for linear statis-
tical analysis, we evaluate it in the vicinity of the
sample mean form. This involves replacing the data-
dependent coefficient Z; — Z; by its expected value
W; — W;, the same function of the W’s. Once this is
done, to variation in either the distance | Z; — Z;| or
its square there corresponds, up to a scale factor
irrelevant for the linear statistical manipulations to

follow, the linear form
Re[(W; — W,)(dz; — dz)].

Consider now a real-weighted average of landmark
locations: a new point Y%, a;Z; for which all a; are
real and Y a; = 1. Because

K K K K
Ya(Zi+Z)=YaZi+ Y aZ=Y aZ+Z,
i=1 i=1 i=1 i=1 ‘
and
K K
Y alaZ) =a ¥ alZ;,
i=1 i=1
the quantity Y, a;Z; moves precisely in accordance with
rigid motions of the landmarks used to compute it, so
that it may fairly be called a constructed landmark.
(For instance, the midpoint of the segment between
two landmarks Z; and Z, is YK, a;Z; with a; = a, = %
and all other a; equal to zero.) The distance between
two constructed landmarks, itself a valid measure
of size, is | Y a;Z; — Y biZ;| = | Y ¢iZ;| with } ¢; =
2 a; — 2 b,' =0.

The differential of this variable, its difference from
its mean for small deviations dz; of the Z; from their
centroids W, is

> W, -
d|Y cZ;| = Re[I S Wil < ¢ dz,)].
Is this a linear combination of the differentials
Re[(W; — W;)(dz; — dz;)] corresponding to the sim-
ple interlandmark distances |Z; — Z;|? In view of
the constraint Y ¢; = 0, we may rewrite Y c¢;Z; as
Y ei(Z;— Z,). Then d | Y ¢;Z;| is proportional to

Re{[Y c:/(W; — WX ci(dzi — dz))]}.

This expression may be expanded into (K — 1)? terms:
K K

d|YaZi| = Y Y Re[cici(W;— Wy)(dz— dz))],
i=2 j=2
where all the ¢’s are real. The terms for ¢ = j are
elements of the basis already. All the remaining terms
may be collected in pairs

Re{[cicj[(VVi - Wl)(d—zj - El) + (W] - Wl)(%i - ﬁl)]}

But the real part of the term in inner brackets may
be rewritten as the sum of three elements of our basis:
Re[(W; — Wy)(dz; — dz1)], Rel(W; — W1)(dz; — da1)],
and Re[(W; — W;)(dz; — dz;)]. Hence the set of differ-
entials d| Z; — Z;| spans the set of all homologously
defined size measures d | Y, ¢;Z;| and Y ¢; = 0—all the
homologous distance measurements that might be
made upon our configuration of landmarks.

This, then, will be our space of size variables: the
differentials of distances between landmarks, and all
of their linear combinations, as shown in Figure 3a.
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FIG. 3. Size variables. (a) In this essay, size variables are distances between weighted averages of landmark locations. Their linearized space is
spanned by the set of all distances between landmarks. (b) The special size variable S is the sum of all squared distances between pairs of
landmarks. It is geometrically equivalent to the sum of squared distances of each landmark from their centroid.

For configurations of more than three landmarks, this
basis is redundant: it contains K(K — 1)/2 distance
measures, whereas the set of equivalence classes of
landmarks Z,, ---, Zx has only 2K — 3 geometric
degrees of freedom.

Most familiar size measures may be located in this
space. For instance, the area of a triangle of landmarks
is spanned by this basis. By the formula of Heron, the
area of a triangle with edge lengths a, b, c is

A = Vs(s— a)(s — b)(s — ¢),

where s = (a + b + ¢)/2. The differential dA of
area may thereby be expanded as a sum of products
of da, db, dc by real coefficients that are functions
of E(a), E(b), E(c); but da, db, dc are themselves basis
elements of this size variable space.

Every size variable | Y c¢;Z;| is a multiple of an
actual observable distance between two constructed
landmarks. For by renumbering the landmarks we
may reorder the sum into a run of the positive terms
followed by a run of its negative terms

YeZi= Y aZi— Y —clZ;.

;>0 ;<0

The coefficients of the two partial sums must have
the same total (as their difference is the sum of all the
original ¢’s, namely, zero). Rescaling through by this
constant, we may arrange that the coefficients of each
sum separately total 1. Then each term is a con-
structed landmark, the weighted average location of
the landmarks in its run.

This class of size variables, although algebraically
very tractable, includes a subset which proves to be of
no morphometric use. The two components Y. ¢;Z;,
Ye<o —¢iZ; may have the same expected location in
the complex plane specimen by specimen: for instance,
they may be the midpoints of the two diagonals for
four landmarks arranged approximately in a square.
In this case, the squared distance between the con-
structed landmarks has a positive expected value
Y c¢%?% but the distance between the comparable
expressions replacing the Z’s by their centroids is zero.
So large a relative error is unacceptable. We are more
than sufficiently protected against this possibility if
we restrict our attention in practice (specifically, in
Theorem 2) to those size measures | Y, ¢;Z;| for which
the landmarks involved in the two partial sums have

* nonoverlapping convex hulls. We call these size vari-

ables admissible. In the case of the square, this class
includes (but is not limited to) distances between
constructed landmarks defined on opposite edges, and
excludes those which are distances between points on
different internal diagonals.

Cartesian coordinates locating one landmark in a
system registered upon some other landmarks are
suited for computed averaged forms as mentioned in
Section 1. But they are not members of the size
variable space specified here. One Cartesian coordi-
nate of Zs, for instance, might be the distance of Z3
from the line connecting Z; and Z, (or from the line
through Z, perpendicular to the segment Z;Z,). Being
the distance from a point to a line, the coordinate is
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properly the distance from Zs to the foot of the per-
pendicular from Z; dropped onto the line Z,Z,. But
the location of the foot of this perpendicular is not
homologous from configuration to configuration in a
sample—it will divide the segment between Z, and Z,
in varying proportion. Thus the x coordinate of Z3 is
not expressible as the distance between Z3; and any
constructed landmark a,Z; + a.,Z,. That is, it is not a
member of the space of size variables.

A Preferred Size Variable

One particular linear combination of these size
measures will be the subject of a theorem in Section
4. Consider the function S which is the sum of all (¥)
squared interlandmark distances upon the configura-
tion:

(1) S(Zy, -+, Zx) = Z<Z | Zi — Z;|*
i<j
(The letter S stands for “size.”) For small variations
of the Z; about their mean positions W; we have
dS=2Y3 12~ 21 d|Z - 2|

i<j

=3¥ |W:i— W;| d|Z: - Z;],

i<j

to first order. Thus S behaves like a weighted sum of
edge length measures, each edge weighted by its own
population mean length.

We may expand the expression (1) for S term by
term according to the comment following the preced-
ing Lemma:

i<j

dsS =2 Re[zz (W; — W))(dzi — Ej)}

Because the terms for i = Jj are identically zero, twice
the sum for i < j is equivalent to a single repeated
summation Y%, ¥%,. Hence

dS = Re[SY (W; — W;)(dz — dz))].

Collecting the 2K terms in each differential separately,
this becomes

K K
dS ~ 2 Re[z dz,-(KW,- - 2 Wm):l
) m=1

i=1

(2)
K 1 K
=2K Re[E dz,‘<W,' - ? 2 Wm):|

i=1 m=1

To the right-hand side of this equation we may add
the term

m=1

which is identically zero. There results, finally, the

expression
ds = 2KRe[§ (W,. 1 § W,,,)(d_z,- 1 § E,,,)]
i=1 K m=1 K m=1
K 1 K 2
=Kd[i§1 Zi—EmZﬂZ,,, ]

Hence S is statistically equivalent to a simpler size
variable, the sum of squared distances of each land-
mark from their centroid case by case, as shown in
Figure 3b.

For triangles of landmarks, the net size measures
one most commonly finds in the biometric literature
are perimeter and area. The variable S is statistically
equivalent to either of these only when the mean
triangular shape is equilateral; in that case, perimeter,
area, and S are multiples of each other up to terms of
first order in the dz’s.

3. A LINEAR SPACE FOR SHAPE VARIATION

Summary

The shape of a single triangle of landmarks may be
reduced to a single pair of shape coordinates, the
complex number @ = (C — A)/(B — A) locating any
vertex C in the coordinate system with landmark A at
(0,0) and landmark B at (1,0). Any conventional
shape variable is linearly equivalent to the projected
coordinate of this point in an appropriate direction.
Permutation of the landmarks A, B, Cin this construc-
tion results, to first order, in mere rotation and res-
caling of empirical shape scatters. If A, B, and C are
multivariate normal about their centroids, so is §. The
set of all such shape coordinate pairs @ for vari-
ous triples of landmarks spans the (linearized) space
of all ratios of size variables as defined in the pre-
ceding section. This will be called the space of shape
variables.

A Geometric Construction

Generally one arrives at shape data by scaling ob-
served forms inversely to some distance, or other net
size measure, explicitly measured upon the forms
(Mosimann, 1970). The morphometric analysis of
shape variables generated in this way is sound only
insofar as it is ultimately independent of this arbitrary
decision taken at the outset. In studies based on
landmark locations, surely the most convenient size
measures are the distances between landmarks. Let
us temporarily select one pair of landmarks—say, A
and B—as a standard of length, and consider the shape
that they make up in combination with a third land-
mark C: that is, the shape of the triangle AABC. We
will scale the triangle so that the length of the edge
AB is constant at 1 unit.
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After scaling so, we may “register on edge AB,”
placing landmark A at the Cartesian point (0,0) and
landmark B at the point (1,0) as in Figure 4. If
landmark A were originally at (x4, y4), B at (x3, yg),
and C at (xc, yc), then this registration assigns land-
mark C the Cartesian coordinates (5;, 75) where

(xp — x4)(%c — x4) + (yB — ¥a)(Yc — Ya)
(xg — xa)* + (y8 — ya)®

m= ’
(x8 — x4)(yc — ¥a) — (yB — ya)(xc — x4)
(xp — x4)> + (y8 — ¥a)? ’

All the shape information there is to be had about
AABC must be encoded in these two coordinates of
the normalized point C.

Consider any familiar sort of shape variable that
can be computed from a triangle of landmarks. Figure
5a, for instance, illustrates the angle ZACB. Consid-
ering A and B now to be fixed in position at (0,0) and
(1,0), and shape variable is constant on some curve
through C; the variable ZACB happens to be constant
as C varies along circles through A and B. Neighbor-
ing, equally spaced curves, in this case adjacent circles
through A and B, correspond to neighboring, nearly
equally spaced values of the shape measure.
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F1G. 4. One set of shape coordinates of triangle AABC: the coordi-
nates of point C in a Cartesian system with A at (0,0) and B at
(1,0).
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F1G6.5. The geometry of shape variables in small regions of the shape
coordinate plot. (a) Example: isopleths of the shape variable ZACB
are circles through A and B. (b) Approximating a shape variable by
a Cartesian coordinate. The variable is represented by D, the direction
of its gradient. (¢) All shape variables with the same gradient near a
mean form are statistically equivalent. Dashed lines, isopleths of the
angle LAQC; solid curves, isopleths of distance to the midpoint of
AB.

In a small region of this plot, such as corresponds
to observed cranial shape variation of human beings
of school age and beyond, this set of curves can be

_ approximated by a family of parallel, equally spaced

straight lines (Figure 5b). The shape variable serves
as a coordinate indexing the lines of this family and
varying along the gradient D perpendicular to them.
In a population of shapes resembling AABC, up to
this first order approximation any shape variable may
be identified with a bundle of Cartesian coordinate
lines perpendicular to some gradient direction through
C. For linear statistical purposes, their spacing is
immaterial.

Then there is one family of linearly equivalent shape
variables for every direction through the point C. For
instance, the direction D in Figure 5c¢ is the gradient
of the angle ZAQC, where Q is the point at 1.5 on the
x axis (in the coordinate system with A at 0 and B at
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1). This is a perfectly reasonable shape measure, al-
though unfamiliar. Another measure with the same
gradient is the ratio to AB of the distance from C to
the midpoint of AB. These two shape measures are
linearly equivalent at C, as are all others bearing the
same gradient there.

Since there is a semicircle’s worth of directions
around any point C, there is only a semicircle’s worth
of linearly different shape variables in the vicinity of
a typical shape AABC. For any two distinct shape
gradients D;, D, at C, every other shape variable D is
linearly equivalent to (i.e., has the same gradient near
C as) some linear combination a,D; + a»D, of D, and
D,, or any multiple of this linear combination. Any
shape variable would be perfectly predicted as a linear
combination of any other two shape variables of dis-
tinct gradient were it not for the nonlinearities ignored
in this shape space formalism.

Analytical Representation of the Shape
of a Triangle

For a single triangle of landmarks, the construction
just introduced has a simple expression in terms of
the complex variables Z;, Z;, Z;: the point (51, 7.) is
just the complex affine ratio

Iy
Z -7’

as can be verified directly from the formulas for
(n1, n2) preceding. The ratio Q is real if Z;, Z;, Z, are
in a straight line, and it lies between 0 and 1 if Z, lies
between Z; and Z; on that line. If the angle /Z,Z;Z; is
+90°, Q is purely imaginary. The effect of the assump-
tion | Z; — W;| < | W; — W;|, part of the null model,
is to ensure that the scatter of these points @ is
bounded away from the origin.

This shape function is most useful in differential
form. We have

Zh—Z]

dQ=d[—Zj_ 7

QZ;, ij Zy) =

_(Z;—Z))(d2w—d2z) — (Zp— Zi)(dz;— dz:)
- (Zi—Z)?
(Zi—Z) deit+ (Zi— Z:) e+ (Zi— Z;) dza
Z;- 7,7

(W;— Wi) dzi+ (Wi — Wi) dzj+ (Wi — W) dzs
(W;— W)

(3)

to first order terms.

There is considerable symmetry to this form, owing
to the cycling of subscripts in the numerator. When
the arguments Z;, Z;, Z,, are permuted, all that changes
of dQ is its denominator and (for odd permutations)
its sign. Under change of baseline for the (31,72)
construction, the space of shape variables merely

counter-rotates twice as fast as the baseline, possibly
with an additional half-turn, and changes its scale.
This invariance is demonstrated in Figure 6 for some
data to be analyzed later. The invariance remains
when the baseline involves a point dividing one side
in fixed fraction—for instance, a baseline chosen from
Z,' to (Z] + Zk)/2.

This Euclidean invariance of d@ space is very im-
portant for the multivariate statistical analysis to
follow. Whenever a statistical method is invariant
under Euclidean transformations of variable space, its
application to distributions of these d@ will result in
nearly the same findings regardless of the pair of
landmarks Z; and Z; chosen for the baseline, the
denominator in the definition of Q. Standard multi-
variate statistics like F ratios and T2 are invariant
under rotation and rescaling in the appropriate way.
Thus, findings of group difference or growth allometry
based on any particular form for d@ will apply to the
whole triangle of landmarks. In this way we execute a
multivariate analysis for which the choice of baseline,
although required for computations to proceed, is ir-
relevant to the findings, just as multivariate analysis
of size measures is the same whether one measures in
centimers or millimeters.

Note from equation (3) that whenever the individual
displacements dz are independent circular normals,
dQ is likewise circular normal. If the variance of each
component of each dz is ¢% the variance of either
component of dQ is o?p?/| W; — W;|*, where p? is the
sum of squares of the sides of the mean triangle
AW, W;W,. This is as closely as one can approach to
a direct visual verification of the null distribution
assumptions. We cannot observe any single dz;, and
the observable combinations d | Z; — Z;| of two dz’s
are only scalars; but the combination of three dz’s
into d@ gives rise to an observable scatter in the
complex plane, as exemplified in Figure 6. If these
scatters are not approximately circular (cf. Figure 7b),
the null model is untenable. More detailed verifica-
tions of the model will not be considered here.

We are free to use as an ordinary shape variable the
projection of dQ on any direction in its plane: that is,
any linear combination of the real and imaginary parts
of dQ. One useful projection is along the direction
through (W, — W,)/(W; — W;) from (0,0). Because
(0,0) is the image of W; under the mapping repre-
sented by this formula for @, the projection in question
is along the gradient of the length | Z, — Z;| in the
registration holding | Z; — Z;| constant—that is, it is
along the gradient of | Z, — Z;|/|Z; — Z;|, ratio of two
sides of the triangle AZ;Z;Z;. Similarly, the direction
from (1,0) through (W, — W;)/(W; — W,) is along the
gradient of | Z, — Z;|/| Z; — Z;|. Ratios with other
denominators may be obtained by rotating the con-
struction to a different baseline, which, as we noted
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FiG. 6. Under permutation of subscripts, a population of offine ratios (Z, — Z;)/(Z; — Z:) undergoes very nearly a similarity transformation.
(a) A population of 36 ratios (Zs — Z,)/(Z; — Z:) for some data related to the example in Section 6 (Z, = Sella, Z, = Nasion, Zs = Menton).
(b) The ratios (Zy — Z3)/(Zs — Z) for the same data set. Note the changes in origin and scales of the axes as well as in orientation of the scatter.

above, merely counter-rotates and scales d@. Hence,
for a single triangle of three landmarks, the space of
shape variables spanned by d[(Z, — Z,)/(Z; — Z))]
includes the differentials of ratios of all pairs of edge
lengths from the size basis for the same triangle.

In fact, because the span of d[(Z, — Z,)/(Z; — Z;)]
includes all the shape information about this triple of
landmarks, it must include the differentials of all
ratios

|a;Z; + aij + arZy |
IbiZ,' + ij_,' + kakI

with @; + @; + ax = b; + b; + b, = 0, that is, all ratios

of pairs of size variables whose differentials are
spanned by the d | Z; — Z;|.

The Complex Affine Ratios Span the Ratios
of Size Variables

The preceding is true for more general sets of land-
marks than triangles. The linearized space of all ratios
of size variables

| Y aiZ; |]
dl—=—— N a; = b,‘ = 0,
[I ] R
is spanned by the sets of shape coordinates dQ(Z;, Z;,
Z:). Because for scatters bounded away from the origin
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the absolute value operator is linearly equivalent to
projection along a line from the origin, it is sufficient
to show that the d@ span the space of complex shape
ratios d[z a,-Zi/Z biZi] with 2 a; = 2 bi = (.

Rewrite this latter expression as

%zuz—&q
2 bi(Zi - Zl) )

Ignoring a factor (3 b;(W; — W,))?, the expected value
of the denominator in the usual formula, the differ-
ential then becomes

[X bi(Z; — Z))] d[Y, ai(Z; — Z))]
=2 ai(Z; — Z))] d[Y bi(Z; — Z))]

K K
= E ‘21 (aibj - ajbi)[(zi - Z) d(Zj - Zy)
i=1 j=
= (Z; — Z1) d(Z; — Z))]
K K Z. -7
— h. — n.h. - 2 o Bl
= El El (asb; — a;b:)(Z; — Zy) d[ 7= Zl]
K K Z -7
~ .bh. — a.b: L — 2 = =2
~ El El (a;bj — a;b))(W; — W) d[Zi — Zl]'

Thus, just as the distance differentials d|Z; — Z;|
span the space of all size variables, so do the affine
differentials d[(Z, — Z;)/(Z; — Z;)] span the space of
differentials of all ratios of size variables. For instance,
the four-point ratio (Z, — Z,,)/(Z; — Z;), combination
of the angle between two segments and the ratio of
their lengths, is equal to Q(Z,, Z;, Z,) — Q(Z;, Z;, Z,,),
so that its statistics may be inferred from the variances
and covariances of the @’s. This space of size ratios
will henceforth be taken as the space in which we look
for shape differences and trends; it is our space of
shape variation. Like the basis for size space, for
configurations of more than three landmarks this
basis for shape space is redundant. The total number
of geometric degrees of freedom for shape, 2K — 4, is
spanned by many sets of K — 2 affine ratios, such as
dQ(Zl, ZZ, Zk), k= 39 ) K.

I noted in the previous section that Cartesian co- °

ordinates of landmarks, however registered, are not
, suited to be size variables; but-the components of
these d@ are Cartesian coordinates used as shape
variables. The coordinates of Q(Z;, Z;, Z) describe
the shape of the triangle AZ;Z;Z,, a shape determined
by the distances | Z; — Z;|, etc., and thus a function
of the ratios of homologously defined size measures.
If we had allowed such freedom in the membership of
the space of size variables, it would have included
coordinates that pass through the value zero, greatly
complicating the relation of size space to shape space.
But the components of @ lack precisely the scale
information necessary to draw out a mean configura-
tion of W’s. We need some single size variable to

supply a single criterion of scale; otherwise, the mor-
phometrics of landmarks can proceed wholly in shape
space.

Other coordinate invariant descriptions and mo-
ments of these landmark configurations are spanned
by the edge lengths and affine ratios together. For
instance, the quantities (Z; — Z;) or (Z, — Z,,) have
no meaning in this biometric system, as they vary
with the orientation of the configuration; likewise
the product (Z; — Z;)(Z, — Z,); but the product
(Z; — Z;)(Zy, — Z,,), inner product of the two segments
(Z: — Z;) and (Zy, — Z,,) treated as Cartesian vectors,
does not change when data are shifted or rotated, and
so is expressible in terms of the two morphometric
spaces:

(Zi=Z))(Z~ Zn)

_Zi—2%
A

=[Q(Zn, Z, Zi) = Q(Zn, Z, Z)) | Zr— Zm |*.

Then its differential is a linear combination of the
differentials of the @’s and of |Z, — Z, | having
coefficients that are functions of the W’s.

A few commonly used shape variables do not suit
the linear methods presented here. For example, con-
sidered as a function of one movable landmark with
respect to a baseline from (0,0) to (1,0), the ratio of
the area of a triangle to its squared perimeter has an
extremum, value v3/36, at the points (1, ++3)/2
corresponding to the shape of an equilateral triangle.
The gradient of the ratio there is zero, which is not a
direction in our linear shape space. All the instances
of such functions that I have seen applied treat the
three landmarks symmetrically, a feature undesirable
in shape analysis. But size variables may treat land-
marks symmetrically, as do perimeter, area, and the
special variable S.

(Zh—= Zn)(Z = Zp)

4. THE RELATION BETWEEN SIZE AND SHAPE

Summary

On the null model of identical circular normal per-
turbations at each landmark independently, the spe-
cial size variable S introduced in Section 2 has covar-
iance zero with every shape variable. The existence of
size allometry, associations between shape and size
(or shape change and size change), may thus be tested
by a single ordinary F ratio, that for the multiple
regression of S on any basis for shape-space.

The Size Variable Independent of Shape Space

Section 1 of this essay cited Mosimann’s (1970)
demonstration that, under characterizations of “size”
and “shape” somewhat more general than those used
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here, there can exist at most one size variable sto-
chastically independent from the space of shape vari-
ables. The usual context in which this theorem is
applied (see, for instance, Mosimann and James, 1979)
is the linear statistical analysis of real-valued random
variables Vi, --., V,, perhaps the logarithms of a
motley of measured:distances having no particular
geometrical structure. The size variables are the com-
binations Y7, a;V; with ¥ a; = 1, and the shape
variables are the combinations Y, a;V; with Y, a; = 0.
In this context the unique shape-free size variable to
which we are restricted by Mosimann’s theorem al-
ways exists; it is proportional to the combination
Y. ¢;V; for which each ¢; is the sum of the entries in
the i* row of the inverse of the covariance matrix
among the V’s. (A geometric exegesis of this result
may be found in Bookstein et al., 1985, Section
2.2.2.1.)

The coefficients ¢; depend explicitly upon the co-
variances of the V’s. If they are to be observed from
data, of course, a selection of particular size variables
V; must be specified. In the present context, evidence
from data may be superseded by the algebra of the
null model, which provides a covariance for every pair
of size measures. However, it is never necessary to
compute these covariances, owing to the following very
convenient result.

THEOREM 1. On the null model, the sum of squares
of the distances between landmarks in pairs, which is
the special size variable S of equation (1), has zero
covariance with all shape variables that may be defined
on the set of landmarks Z;.

PrROOF. Because of space of shape variables is
spanned by the linear projections of the dQ(Z;, Z;, Z\)
in various directions, it is sufficient to show that on
the null model the covariance of S with any one of the
dq is zero.

Split all the complex variables into their real and
imaginary parts: write W; = X; + Y; \/-——I, dz; =dx; +
dy;N—1, (W; — W;)? dQ = dU + dVv-1. In terms of
these components, we have, from equation (2),

4) IdS =3y dxi[KXi - X,,,] + X dyi[K Y.—-Y Y,,,].

Also, from equation (3), the components of the nu-
merator of dQ(Z;, Z;, Z,) are
dU = (X; — Xj) dxx + (X; — X3) dx;
+ (X, — Xi) dy;
= (Y= Y) dyr — (Y; — Y3) dy;
- (Y, - Y)) dyj,

(5a)

and
dV = (X; — X;) dy, + (X; — Xi) dy;
+ (X, — X;) dy;
(5b) :
+ (Y; = Y)) dx,. + (Y; — Y3) dx;
+ (Yk - Yl) dx,».

On the null model, the dx’s and dy’s are all independ-
ent and identically distributed with variance o2. Then
the covariances of dU and dV with dS are proportional
to the sum of products of corresponding coefficients
between forms (4) and (5):

o ?E(dU dS) = (X; — X))[(KX; — % Xl
+ (cycled subscripts)
— (Yi = Y)IKY, = ¥ Yul
— (cycled subscripts),

o 2E(dV dS) = (Y; — Y))[KX, — ¥ Xl
+ (cycled subscripts)
+ (Xi — X)[KY: — ¥ Yl
+ (cycled subscripts),

in which the cycling of subscripts replaces (ijk) by
(jki) and then by (kij). In all these expressions, the
terms in Y, X, or Y, Y, can be deleted, as the
coefficients of either—for instance X; — X; + X; —
X, + X, — X;—sum to zero. There remain, up to a
factor of ¢°K, the expressions

(X = X)X + (X — X)X+ (X — X)X

- (Y- Y)Y, — (Y, - Y)Y — (Y — V)Y,
and
Xi—-X)Y.+ (X, - X)Yi + (X — X)) Y;

+ (Y- Y)Xp+ (Y, - Yu)Xi + (Y — Y)X,.

But each of these expressions reduces to zero by simple
cancellation. Hence for all shape variables d@ the

‘covariance with size dS is zero for the null model, as

was to be proved.

The demonstration of this proposition relies upon
the linearization of analytic relationships between d@
and dS. Such a manipulation is less risky over sub-
stantial size ranges if S is replaced by its square root,
a quantity having units of linear distance like all the
other members of size variable space. Because dvS =
dsS/2 VS, the demonstration of Theorem 1 is unaltered.

Testing Size Allometry

By virtue of this theorem we arrive at a rigorous
statistical test for the existence of size allometry, the
(linear) dependence of shape upon size, in samples
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which are growing or otherwise vary in size. The usual
discussions of size allometry, as criticized, for in-
stance, in Mosimann and James (1979), are funda-
mentally ambiguous inasmuch as the covariance be-
tween “size” and “shape” depends on the particular
pair of size and shape variables chosen. This ambiguity
is especially problematic when the measures are con-
founded by construction—for instance, when the
shape variable is a ratio with size in its denominator,
or is a regression residual from which size has been
“removed.” Efforts to clarify this situation by refine-
ment of shape variables have generally been unavail-
ing (see Bookstein et al., 1985, Section 2.2.2.1).

But for data which are landmark coordinates, Theo-
rem 1 permits us to escape all these complications. On
a reasonable null hypothesis, the particular size vari-
able S is uncorrelated with the entire space of shape
variables howsoever (homologously) constructed.
Such a correlation is tested by the ordinary F ratio for
the multiple regression of S (or, especially for large
size ranges, VS) on any basis for shape space. If that
F ratio is significant, we may proceed with the esti-
mation of loadings upon size for each dimension of
shape space. These are computed as the simple regres-
sion coefficients for the shape coordinates separately
upon S. The report of allometry thereby reverts to its
traditional form, a regression of shape upon size.

In real data, even in the absence of meaningful
allometry no change of form is ever exactly a change
of scale. An observed change or difference in S is only
an estimate of scale change, with noise attributable to
inconsistencies, haphazard or systematic, among the
ratios by which distances between diverse pairs of
landmarks actually change. The use of the term “load-
ing” in the context of allometry reminds us that we
are regressing lengths or length ratios upon a net size
measure to which they have all contributed, and also
that the necessary regression coefficients are simple,
not multiple. We have no way of interpreting the
covariances among shape coordinates except by virtue
of their joint dependence upon factors of deformation.

As a basis for purposes of the regression of size on -

shape, I generally use the set of shape coordinates
Q(Z,, Zy, Z1), kR = 3 --- K, specifying the relation
of all other landmarks to one particular chord Z,Z,.
A suitable candidate for this “chord of reference” is a
diameter of the form passing near the centroid of the
set of all the landmarks. Whenever allometry is found,
to draw out its explicit picture we choose a small
change of size AS and apply it to the mean form as
follows. Holding W; and W, fixed at (0,0) and (1,0),
we displace each centroid W,, k = 3, according to the
predicted change dQ(Z,, Z;, Z;) corresponding to the
change AS in size. Then the figure of Wy, W,, and the
displaced centroids Wi, - - -, Wk is rescaled as a whole
by setting the distance between W; and W, to the

predicted value of | Z; — Z,| corresponding to the
same AS.

Even when no statistically significant allometry is
to be found, S is still the best size variable for testing
the statistical significance of differences and trends in
size. Under the null model, S is the size variable least
affected by haphazard shape variation, and hence most
sensitive to any real differences of scale that may
exist.

Example: Size Allometry for a Microscopic Fossil

Lohmann (1983) published outlines of Globorotalia
truncatulinoides, a microscopic planktonic created re-
trieved from ooze at the ocean floor. Each of the 21
outlines itself represents a sample average based on
up to 50 separate organisms; the 21 averages corre-
spond to 21 distinct patches of ocean bottom at various
latitudes in the South Indian Ocean. (The averages
were computed by an interesting automated method
making no explicit reference to landmark information:
see Bookstein et al., 1986). The form of this organism
(Figure 7a) is similar to a snail’s shell. From the
averaged outlines supplied, we extracted three land-
marks representing the endpoint of the axis of coiling
and the limits of the aperture. Figure 7b shows the
scatter of shape coordinates (7;,72) for the top of the
aperture with reference to a baseline taken from the
bottom of the aperture to the axis point. At each
(71,7m2) plotted is the value of VS, the mean size of
that core sample, in units of microns.

The regression of V'S on the pair of shape coordi-
nates is highly significant. We have

E(VS) =32 — 46 n, + 103 7, R% = .68,
(59) (19)

where the quantities in parentheses are standard er-
rors of the coefficients above them. Hence there exists
strong size allometry in this data set. The correlation
between #; and S, like the coefficient for n; in the
multiple regression, is not significant by virtue of the
absence of much variance upon #; in this scatter.
Allometry is expressed mainly in the value of the
shape coordinate n.. This coordinate is the ratio to
baseline length of the height of the aperture opening
perpendicular to the baseline. It is an aspect ratio of
the form as shown in Figure 7c. The size of these
creatures is strongly determined by their environment,
specifically, by water temperature, and so the shape
gradient we just displayed is a good index of latitude—
in fact, it is a better such index than size itself. For
more about this example, see Bookstein et al. (1986).

Certain departures from the assumptions of the null
model will be labeled as allometry by this test proce-
dure. For instance, if in a configuration of three land-
marks two were rigidly constrained to a constant
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F1G. 7. Analysis of allometry for a microfossil. (a) Drawing of a specimen of Globorotalia truncaiulinoides, with one of the 21 sample averages
and its landmarks. (b) Scatter of coordinates in shape space for 21 shapes representing averages of separate ocean floor samples. Each coordinate
pair is coded by the mean size VS of its sample, in microns. (c) The regression of shape on size indicates that allometry is expressed in the

coordinate 7, the ratio of height above this baseline to baseline length.

separation, allometry would be found to inhere in
the coordinate 5, of the third landmark, just as was
found here. But the presence of a clear axis in the
(1, n2) scatter aligned with the computed gradient
of allometry would not be expected under such an
alternative.

5. SIZE AND SHAPE VARIABLES FOR
DESCRIBING A GROUP DIFFERENCE

Summary

For a single triangle of landmarks, the existence of
any mean difference in shape between groups, mean
change of shape in a single group, or mean difference
of shape changes between groups may be tested by
Hotelling’s T%. Any such difference that is statistically
significant may be interpreted using a variable whose

gradient in shape space is precisely along the group
difference observed. That shape variable may be con-

- strued as the ratio of a pair of size variables, each a

transect | Z; — (aZ; + (1 — a)Z) | of the triangle, at
an angle averaging 90° in the samples of forms. One
size variable will bear the greatest dimensionless load-
ing on the change in question—the greatest mean rate
or ratio of change between the forms; the other will
bear the least. In this way we may construe any mean
shape difference as a deformation between two mean
shapes and vice versa. The practical significance of
the shape difference is embodied in the numerical
difference between these two extreme ratios of change
and in their directions upon the typical form. Analysis
of differences between configurations of more than
three landmarks reduces to consideration of size vari-
ables involving at most three landmarks.
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Group Differences in the Shape of a Triangle

Consider the problem of identifying a mean shape
difference between two groups of triangles. Because
the shapes of the triangles are embodied in their affine
ratios @ to any convenient baseline, we may view our
task as that of choosing between the null model and
an alternate hypothesis for which the groups have
different centroids in € space. On the null model, the
squared distance between the two centroids, divided
by the square of their pooled standard error in that
direction, is distributed as Hotelling’s 7’2 on two de-
grees of freedom for the numerator. Hence the exist-
ence of a mean shape difference, regardless of the shape
variables upon which it may be expressed, can be tested
by the single F ratio which corresponds to Hotelling’s
T? for the net shift of means in @ space. Any basis for
the dQ’s may be used for this purpose. Should the
appropriate F ratio fail to achieve significance, the
populations may still differ in size, but as we have just
accepted the proposition that there has been no shape
change, change of size must be taken as the same for
all distance measures in all directions. The size vari-
able S then provides the best estimate of this change.
Should the null hypothesis instead be rejected, we
conclude that the groups differ in mean shape, so that
the observed size difference is a function of the choice
of a size variable. We now face the problem of describ-
ing that shape difference effectively in the face of this
relativity of “size.” This section returns to the geo-
metric interpretation of morphometrics, the study of
deformations, in order to explain how the geometry of
a particular shape change leads to a selection of size
and shape variables most suitable for reporting it.

The Relation of Two Triangles As a Single
Symmetric Tensor

Figure 8a shows a single displacement d@ pertaining
to a single affine ratio @ in the shape space of a single
triangle AZ,Z,Z5. This displacement, the replacement

of one triangular form by another (Figure 8b), may be -

represented as a particularly simple deformation, the
. uniform affine transformation, or shear, of Figure 8c.

. The mapping invoked here is that having a deriva-
tive which is constant throughout the triangle. When
the fixed landmarks have their usual locations (0, 0)
and (1, 0), then if @ = (r1, s1), @ + dQ = (rs, s2), the
mapping we want is (x, y) — (x’, y’) with

rg r
x’ =x+y s
S1 $1

The following exposition is the geometric equivalent
of the usual singular value decomposition of the

Qo
(a)
m,o»«do

(00) (1,0)
() .
S
(c) .
—p

F1G. 8. Shape displacement as deformation. (a) A displacement dQ
in shape space. (b) The transformation from triangle AZ\Z.Z3 to
AZ{Z3Z35 represented by dQ. (¢c) The uniform transformation of
interior points suggested by the pair of triangles: the map taking
S ciZito Xk, ¢:.Z! for all combinations of coefficients ci, ca, c3 with
2 C; = 1.

coefficient matrix

re —n
1 s
S2
0 81

Compare the algebraic treatment in Goodall (1983) or
Bookstein (1978a, pp. 103-104, 154-155).

As Section 2 explained, the size measures avail-
able for this triangle of landmarks are the formulas
| 32, ciZ;| with ¥ ¢; = 0. We are interested in the
ratios by which these distances have changed from
left to right. For the uniform transformation, all dis-
tances in the same direction change in the same ratio
(an assertion equivalent to the assumption that our
coordinate plane is Euclidean: Bookstein (1982b), pp.
180-181). We may thus restrict our attention to an
assortment of distances measured along lines through
a single point (Figure 9a). To each corresponds a strain
ratio, length on the right divided by corresponding
length on the left. Note the spirit of factor analysis,
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F16. 9. Principal strains of a single shape change. (a) Because the
transformation shown in Figure 8c is uniform, we may restrict our
attention to length changes for a set of lines in all directions through
a single point. (b) The strain ratios (loadings of the logarithms of
distance upon this shape change) may be read in the lengths into
which a set of originally equal lengths are deformed. (c) The trans-
formation indicated in Figure 8c takes circles into ellipses; the direc-

[ ]
[ )

tions of greatest and least strain ratio correspond to the axes of the
ellipse, its longest and shortest diameters. They are at 90° upon the
ellipse, while the diameters mapped into them are at 90° upon the
circle. Hence distances measured parallel to these principal strains
are perpendicular both before and after the deformation. (d) Each of
these distance measures may be realized as the length of a transect
Joining one vertex of the triangle to a point of the opposite edge.
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as promised: without yet specifying how the change
will be measured, we wish to inspect the loadings
(strain ratios) induced by a single underlying change
(the uniform deformation as factor) upon the full
space of distance measures.

For visualizing this quotient, it is convenient to
arrange the diagram so that the lines undergoing
deformation begin at constant length. To this end we
may invoke the radii of any conveniently placed circle
(Figure 9b); we read the strain ratios directly in the
lengths of the segments into which the originally equal
lengths are deformed.

Under uniform transformations, circles are mapped
into ellipses. (This is a very old theorem, demonstrated
in most texts of analytic geometry.) Then the axes of
the ellipse, longest and shortest diameters, represent
the directions of greatest or least ratio of change in
homologous distances, that is, greatest or least loading
of log distance on the factor (deformation) which is
the shape change.

These axes (Figure 9c) are at 90° both before and
after deformation. Because the strain ratio is a func-
tion solely of direction, the direction of either axis
may be displayed, without reference to any particular
circle, as a transect from some landmark through a
point on the opposite edge of the triangle (Figure 9d).
In the algebraic notation of Section 2, the distance
referred to is the size variable | Z; — (aZ; + (1 — a)Z,) |
for a between 0 and 1 and (ijk) some permutation of
(123).

In shape space, these directions may be computed
from observation of dQ alone without explicitly draw-
ing any ellipses. The construction (Bookstein, 1984a)
is as in Figure 10a. The circle H is drawn to pass
through @ and @ + d@ with center on the real axis.
Let the points at which H intersects the x axis be
denoted (X;, 0) and (X;, 0). The angles ZX; QX, and
Z(X1(Q + dQ)X, are each inscribed in a semicircle,
hence both measure 90°. Because the X’s are on the
real axis, the linear transformation represented here,
which leaves (0, 0) and (1, 0) fixed, also leaves the X’s

fixed. Then under this transformation the lines X;Q, °

i =1, 2, correspond to the lines X;(Q + dQ). Because
. these directions (i) correspond under the transforma-
tion, and (ii) are at 90° in both forms, they must be
the principal directions of the transformation to which
the construction refers—axes of the ellipse, directions
of greatest and least ratio of change of size.

For small changes of shape, the concern of this
essay, the circle through @ and @ + d@ may be ap-
proximated by the circle through @ with tangent along
the direction d@ there. Then (Bookstein, 1984a, pp.
490-491) the directions we seek through @ are at
+45° to the bisectors of the angle between dQ and the
real axis; they are the bisectors of the angle between
the real axis and the direction perpendicular to d@, as

(a)

(b

FiG. 10. Ruler and compass construction of the principal directions
corresponding to a displacement d@ in shape space. (a) Exact con-
struction. Let the line L, perpendicular bisector of the segment from
Q to Q + dQ, intersect the real axis at P. About P draw the circle H
through Q, intersecting the real axis at X, and X. The principal axes
of the deformation, referred to the triangle on @, lie along X,Q and
X,Q. (b) Approximation for small | dQ |. The previous construction
results in directions bisecting the angle between the perpendicular to
dQ and the real axis.

in Figure 10b. Furthermore, if 6, and 8, are the strain
ratios in the two principal directions, we have, to first
order terms,

1dQ|
Im Q@

This is the anisotropy of the transformation, the great-
est divergence of specific rates of change (difference
of loadings) in any pair of distances.

The geometrical object just introduced is a repre-
sentation of homogeneous deformation that is familiar
to the mathematician or engineer: a symmetric tensor
formally independent of any choice of coordinate sys-
tem a priori. In this form it appears frequently in
mathematical discussions of growth and in cartogra-
phy, geology, and other sciences of position.

51—62=

Mean Shape Difference As the Deformation
between Mean Shapes

This construction applies directly to sample scatters
of points Q or displacements dQ in shape space. The
maximum and minimum mean ratios of distance lie
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in directions determined by this construction as ap-
plied to the centroid of the observed group difference
d@ acting at the centroid of the observed points @
(Figure 11). If the mean dQ is significantly different
from the zero vector, by T test, these directions are
empirically determinate; if the centroid of the d@ is
not significantly different from (0, 0), then mean
ratios of distance must be considered to be the same
in all directions.

This notion of a mean ratio of distances is not the
ratio of the mean distances contributing to it. Size
change along baselines is scaled out first, so that
diverse changes of net size do not contribute so dis-
parately to determining the principal directions. In
exchange for this complication, we arrive at a sense of
“mean shape” analogous to “mean size” for the com-
putation of differences and changes. The size variable
of greatest “mean” ratio of difference, in this sense,
becomes the size variable showing the greatest loading
upon the single transformation associated with the
mean differential d@ at the mean point @, as in Figure
11. That is, just as the mean difference between two
samples of scalars is the difference of their means
separately, so the mean difference between two sam-
ples of triangular landmark shapes is here construed,
and measured, as the transformation between the
means of their shapes separately.

In this way, for any set of three landmarks we can
extract by purely geometric operations the size vari-
ables relatively most increasing or most decreasing
over any comparison of biometric interest. The shape
variable showing the greatest proportional change—

the “optimal” shape variable—is the ratio of these two
size variables. Thus for a single triangle, a single
geometric construction which began with arbitrary
size and shape variables (the baseline, together with
one pair of shape coordinates with respect to it) results
in a selection of size and shape descriptors customized
for the mean difference actually observed. The sense
in which these descriptors are optimal is here one of
net proportional difference, raw loading of the loga-
rithm of distance upon the deformation in question.
For a study design comparing two groups of trian-
gles observed once only, the appropriate statistic is
the ordinary two-group Hotelling’s TZ the report
which results identifies the distances showing the
greatest and least mean ratio between the groups; and
the shape variable which is the ratio of these distances
shows the greatest mean difference (on a log scale)
between the groups. If the data follow a single group
of triangles observed through time, or other matched
design, then the statistic is a matched Hotelling’s T
and the distances identified are those showing the
greatest and least mean ratios of change over the
period of observation. (Once again, change in length
of the baseline is scaled out before changes in other
lengths are averaged.) Variations in elapsed time in
this design may be corrected (Bookstein, 1984a) by
normalizing the vector d@ of shape difference to a
standard interval of time. Finally, if the purpose of
one’s study is the comparison of observed growth
in two groups of triangles followed over time, then
Hotelling’s T is applied between the scatters of the
change scores in shape space, leading to a report of

F1G.11. The mean shape difference describes the relation between two mean shapes as a deformation. It is reported by reference to its directions
of greatest and least mean ratios of length. Here “mean” refers to a mildly nonlinear mode of averaging in which differences in length of the
baseline are divided out first. The centroids Wy and W, have been moved to (0, 0) and (1, 0) so that we can identify landmark space with shape

space for the purpose of this diagram.
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the distances showing the algebraically greatest and
least differences of mean growth rate between the
groups. In all cases, the two distance measurements
having extremal loadings on the contrast under study
will tend to be at approximately 90° in all the forms
of the series.

Analyses of More Than Three Landmarks

It might be imagined that for configurations of four
or more landmarks the extraction of optimal mean
strain ratios would lead to geometrical constructions
distinctly more complicated than these. Surprisingly,
no further complexity is necessary, owing to the fol-
lowing finding. (Recall that admissible size variables
are distances between weighted combinations of land-
marks Yo €iZ;, Y,<0 —CiZ; for which the convex hulls
of the landmark sets {Z;|c; > 0}, {Z;|c; < 0} are
disjoint.)

THEOREM 2. For any set of landmarks, the admis-
sible size variables showing the maximum or minimum
mean ratio of difference between two configurations
are lengths of segments from one vertex through the
proper linear combination of two others, transects
|Z;— (aZ; + (1 — a)Z) |, 0 < a =< 1, as in Figure 9d.

However many the landmarks of a configuration
observed in two populations, the theorem asserts, any
distance showing the largest or smallest mean ratio
between the populations may be measured using at
most three of the landmarks. In other words, all the
distances we use in our reports of shape change are
either direct length measures between landmarks or
else transects of some triangle as exemplified in Figure
9d. The complexity of our search for distances with
optimal loadings upon a single comparison is thus
limited to a combinatorial search through (¥) trian-
gles. Because the principal strains relating a pair of
mean triangular shapes can be computed in closed
form, the search for these distances does not require
any empirical numerical optimization with respect to
even a single continuous parameter.
~ This theorem is principally geometrical, not statis-

tical. Its proof proceeds by reducing the problem to a
matter of the ratio between two positive definite quad-
ratic forms. Write W;, W/ for the (unobservable) mean
landmark configurations in the two groups under com-
parison. Let | Y ¢;Z;| be the size variable we are seek-
ing, with ¥ ¢; = 0, and construct a formal squared
distance R = | ¥ ¢; W;|? pertaining to means of mea-
sures made upon the configurations of Z;. Write R’ =
| ¥ ¢; W/ |% the homologous quantity defined upon the
configuration of the W/. Even though the W’s are
unobservable, R and R’ are estimable, since, because

the c; are real,
I X aWil>= X c(W: — W) |?
= a(W: = W) ci(W: — W)

K K B 3
=Y Y cici(W; — W) (W; — W)).

=2 j=2

But each product (W; — W1)(W; — W,) is observ-
able: it is estimated as the mean of the products
Z;— Zl)(Zj — 7)) of two Euclidean vectors themselves
observed in a single coordinate system. Thus the
squared length R we seek is a non-negative definite
quadratic form in the coefficients ¢;, - - -, cxk.

The theorem deals with extrema of the ratio of R’
to R over all sets of coefficients ¢; summing to zero.
This ratio may be construed, in light of the corre-
sponding remark for triangles, as a (squared) loading
of the log distance measure represented by the c; upon
the shape difference considered as a factor; we seek to
specify, prior to measuring them, the distances that
have the highest and lowest loadings upon this factor.
The ratio is a function only of the proportions among
the ¢’s—multiplying them all by the same constant
multiplies both numerator and denominator of the
ratio R’ /R by the square of this constant, leaving their
ratio unchanged. Then by reordering terms, as in
Section 2, we may interpret R as the squared distance
between a pair of constructed landmarks in the mean
configuration of the W;, and R’ as the comparable
squared distance for the W/.

From this point on, the proof of the Theorem follows
by an induction argument using two geometrical lem-
mas. It is presented in the Appendix.

6. AN EXTENDED EXAMPLE FROM
CRANIOFACIAL BIOMETRICS

Summary

The techniques of the previous sections are exem-
plified in a study of growth of the head in 62 normal
Ann Arbor youth. Using the landmarks Sella, Nasion,
Gonion, and Menton of the lateral cephalogram, we
rigorously test for sexual dimorphism in form at age
8, mean shape change from age 8 to 14, and presence
and dimorphism of size allometry. By canonical cor-
relations analysis of the shape coordinates, we extract
the shape variable of highest autocorrelation over this
age interval. All analyses are interpreted as smooth
tensor fields over the interior of the quadrilateral of
landmarks. Each is visualized by the method of biorth-
ogonal grids, an orthogonal coordinate system custom-
ized for the depiction of particular deformations.
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The Lateral Cephalogram

The algebraic and statistical machinery is now in
place for averaging populations of deformations and
subsequently expressing their central tendencies by
way of particularly helpful size and shape variables.
This section illustrates the tensor biometrics in a
typical study design combining growth and group
differences.

Most craniofacial biometrics begins with x-ray im-
ages of bony crania and jaws positioned for exposure
in a standardized fashion. The subject’s head is placed
some 6 feet from the x-ray tube and a few inches from
a film cassette; the central beam of rays is made to
pass along the line joining his ear holes, and then
intersects the film plane at 90°. In the images which
result, edges of anatomical structures can be reliably
traced in a conventional abstraction of normal anat-
omy which includes the midsagittal structures traced
in Figure 1 as well as many more. Two kinds of curves
are used—projections of true space curves, and edges
of regression of bony surfaces; and landmark “points”
may be true anatomical loci or intersections of

Sella_-1gase

shadows of structures which do not actually abut in
the skull. Figure 12 shows a stereotyped tracing of this
so-called lateral cephalogram, with indications of the
landmarks used in the course of the example.

The data for the example are landmark locations
from cephalograms taken annually in the course of
the University of Michigan University School Study.
The summary of that study (Riolo et al., 1974) in-
cludes operational definitions of these and many other
conventional landmark points. The full sample is of
about 100 Ann Arbor schoolchildren followed over
various age ranges in the 1950’s and 1960’s; for a
subset of 36 males and 26 females, there are serial
records of the four landmark locations at ages 8 years
+ 6 months and 14 years = 6 months. The statistical
demonstrations to follow may be read in the context
of earlier, simpler analyses of these same data (Book-
stein, 1983, 19844, b).

A Splanchnocranial Quadrilateral

When we view a person in profile, one of the features
to which we attend is the position and angle of the

osion

Menton

FiG. 12. Schematic of a lateral cephalogram, indicating the quadrilateral of landmarks used in the example. Sella, center of the pituitary fossa
(sella turcica) in the sphenoid bone; Nasion, junction of the frontonasal and metopic sutures; Gonion, “midpoint” of the angle of the mandible
(for details, see Riolo et al., 1974, p. 17); Menton, junction of symphyseal outline with the lower border of the chin.
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lower jaw, or mandible, relative to the rest of the head.
We may record the lie of the mandible by two of its
landmarks: Menton, one of several alternate defini-
tions of the point of the chin, and Gonion, the palpable,
often visible corner of the mandible underneath the
rear molars. The join of these two points is the so-
called mandibular plane.

The trained observer perceives this pair of land-
marks with respect to a superior baseline, Frankfurt
Horizontal, a straight line running over the top of the
earhole and under the lower rim of the eye socket.
A configuration of landmarks under better biological
regulation is the quadrilateral relating the mandibular
plane to the anterior cranial base, the front part of the
floor of the braincase. Landmarks for this segment,
also present in Figure 1, are conventionally taken as

TABLE 1
Statistics for a size basis, quadrilateral
Sella-Nasion-Menton-Gonion

Age 8 Age 14 Change

Mean S.D. Mean S.D. Mean % S.D.

Size
measure’

Males (N = 36)

| Sel-Nas | 2951 .124 3.156 .149 .205 6.9 .052
| Sel-Men | 4541 .176 5.276 .250 .735 16.2 .165
| Sel-Gon | 2.739 .169 3.267 .217 .528 19.3 .120
| Nas-Men | 4462 216 5.116 .297 .654 14.7 .155
| Nas-Gon | 4362 .174 4976 .221 .613 14.1 .128
| Men-Gon | 2.597 .122 3.052 .151 .455 17.5 .124
S 82.7 58 1090 9.0 264 5.7
Females (N = 26)
| Sel-Nas | 2.825 .123 3.003 .139 .178 6.3 .039
| Sel-Men | 4.370 .195 4.994 .220 .624 143 .099
| Sel-Gon | 2.614 .184 3.036 .226 .422 16.1 .092
| Nas-Men | 4284 182 4821 .234 537 125 .120
| Nas-Gon | 4.176 .168 4.689 .188 .512 123 .075
| Men-Gon | 2524 160 2952 .174 429 17.0 .071
S 762 5.6 973 172 21.2 3.1

%The units of S are square inches; of the other size measures,
inches.
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Sella (the seat of the pituitary gland, a little circular
fossa visible on the x-ray) and Nasion (the concavity
at the bridge of the nose). The quadrilateral formed
by these four landmarks (Figure 12) straddles most of
the splanchnocranium, that part of the head which
deals with breathing, smelling, and chewing rather
than with protection of the brain.

In a study of only four landmarks, it is feasible,
even though redundant, to tabulate the sample means
and mean changes of all distances between landmarks
and of one affine ratio for each triangle of landmarks.
These are presented in Tables 1 and 2. The roster of
interlandmark distances is augmented by the addi-
tional size variable S, sum of the squares of all the
interlandmark distances.

Findings

The tests appropriate for a study of growth and
growth dimorphism are as follows.

Sexual dimorphism at age 8: Size. The mean differ-
ence in S corresponds to a ¢ ratio of 4.35, p < 0.0001.
There is about a 4% difference in mean linear dimen-
sion VS, the boys tending to be larger. Shape. The
overall T2 on four degrees of freedom for net difference
of means in shape space is not significant. Triangle
by triangle, no T? for differences in mean @ attains
even an F ratio of 1.0. Thus there are no reportable
differences in starting shape between the sexes.

Allometry at age 8. Separately by sex, static allometry
for the 8-year-old samples may be tested by a single F'
ratio for the multiple regression of S on shape space.
Using the shape basis derived from the first two tri-
angles—real and imaginary parts of dQ(Sel, Men,
Nas) and dQ(Sel, Men, Gon)—we find F’s of 1.87 for
the males and 0.75 for the females, neither significant.

Growth from age 8 to age 14. The loadings of inter-
landmark distances upon this factor appear under the
heading “%” in Table 1. Males. The change in S
averages 26.4 with a standard deviation of 5.7; this

TABLE 2
Statistics for a shape basis, quadrilateral Sella-Nasion-Menton-Gonion

Baseline, Ageé 8 Age 14 Change
| Chg|
movable
point Re @ Im Q@ S.D.e’ Re @ Im Q@ S.D. Re @ Im @ S.D. Im Q
Males (N = 36)
Sel-Men, Nas 23 .61 .03 21 .56 .04 -.019 —.047 .019 .08
Sel-Men, Gon .52 -.31 .02 .52 -.33 .03 .006 —.021 .015 .07
Sel-Gon, Nas -.19 1.06 .07 -.20 .95 .07 —.005 -.115 .038 11
Gon-Nas, Men .15 —.57 .03 .16 -.59 .04 .005 —.017 .021 .03
Females (N = 26)
Sel-Men, Nas 23 .60 .03 21 .56 .04 -.013 —.043 .016 .08
Sel-Men, Gon 51 -31 .03 51 -.33 .03 —.002 -.022 .014 .07
Sel-Gon, Nas -.19 1.06 .08 =21 97 .08 —.011 —.095 .034 .10
Gon-Nas, Men .16 -.58 .03 .17 —.61 .04 .013 —.022 .020 .04

@ The average of the population standard deviations for Re @ and Im @ separately.
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corresponds to a ¢ ratio above 20. For all triangles, all
T*? ratios for testing shape change are at least 30. Both
change of general size and changes of shape in all
parts of the form are therefore inferred to be real. The
F ratio for growth allometry, the regression of change
in size on change in shape, is 8.15, itself highly sig-
nificant. Females. The change in S averages 21.2 with
a standard deviation of 3.1. The change in shape of
each triangle bears a T of at least 50. The F ratio for
growth allometry in this change is 4.06, p < 0.015. For
both sexes, the greatest mean change of proportion
(about 10%) is in the triangle Sella-Gonion-Nasion;
the least is for triangle Menton-Nasion-Gonion.

Sexual dimorphism in growth. Triangle by triangle,
F ratios corresponding to Hotelling’s T range from
1.33-2.86, none quite significant at the 5% level. The
dimorphism most nearly approaching significance is
for the shape change of the triangle Sella-Menton-
Gonion. In an analysis of covariance of dS upon two
dQ’s and sex, the F ratio for equality of slopes is 0.31,
so that the patterns of allometry may be taken as
geometrically the same in the two sexes, differing only
in the extent to which dS actually varies.

Visualizing Mean Changes by Biorthogonal Grids

Triangle by triangle, the mean growth changes just
tabulated may be diagrammed as mean shifts of single
landmarks with respect to a baseline, together with
information about the change in size of that baseline.
For either sex there are 12 such vector interpretations,
some of which are shown in Figure 13 along with the
directions of greatest and least mean size change that
may be derived from the vectors by the construction
of Figure 11. In these latter figures the change of scale
of the baseline, ignored in the construction of shape
space, has been restored, so that the principal direc-
tions now bear true mean fractions of growth as ob-
served over the 6 years of the study. They may be
compared to analogous quantities differently aver-
aged, the mean change as a fraction of mean starting
form, in Table 1.

The net change in the entire configuration, all four
landmarks, may be diagrammed as a combination of
the shape changes corresponding to any two of these
triangles, together with one scale change along their
common edge. For instance, we may use d@(Sel, Men,
Nas) = (—.019, —.047), dQ(Sel, Men, Gon) = (.005,
—.021), d | Sel-Men | = 16.2% for males, and the cor-
responding values of (—.013, —.043), (—.002, —.022),
14.3% for females. There result the two displacement
plots of Figure 14, the changes of mean polygonal
shape for the two sexes.

For triangles, the mean shape change of a configu-
ration could be graphed in two ways: as a displacement
dQ of one vertex with respect to a fixed baseline or as

a deformation distributed continuously (and uni-
formly) over the interior of the form. (Recall Figure
8.) The same option is available in the study of poly-
gons of higher order. We may treat the observed
correspondence of vertices as a sample from a com-
puted homology mapping that is linear along edges of
the form between landmarks and is smoothly inter-
polated within. This map is drawn by its effect on an
arbitrary set of interior points: the square grid on the
left, deforming into the more general structure on the
right. This calculation is illustrated in Figure 15a for
the pair of forms representing the mean shape of our
36 growing males at ages 8 and 14. The deformation
as thus distributed cannot be uniform, because it must
blend the different linear transformations that are
appropriate near each corner separately. An algorithm
for such interpolations has been published previously
(Bookstein, 1978b; 1978a, pp. 108-118); for quadrilat-
erals, a simplification has been described more re-
cently (Bookstein, 1985). The resulting figures are
reminiscent of D’Arcy Thompson’s, but have been
computed to an objective criterion. Other examples of
this computation were presented in Figure 1.

In Figure 15a it may be seen that the segments
in the righthand mesh corresponding to lines Sella-
Menton, Nasion-Gonion—the diagonals of the quad-
rilateral—in the left form are in fact slightly curved.
In the statistical treatment, points a(Sella) +
(1 — a)(Menton) correspond, so that the line Sella-
Menton, like the external edges of the form, is formally
perfectly straight; but this constraint precludes the
sort of interpolation we are now seeking—the inter-
section of the diagonals, for instance, is not homolo-
gous from form to form—and must be relaxed.

At every point of a smoothly interpolated mapping
one may extract a pair of local principal strains from
the derivative of the mapping. These correspond to
the geometry of Figure 9 as applied to very small
triangles. Figure 15b draws a sample of these tensors
at the points of the original square mesh (Figure 15a),
but the crosses are in fact computable as a smooth
symmetric tensor field defined everywhere throughout
the interior of the landmark polygon.

The visual effect of representing the deformation
by this field is greatly simplified and enhanced if we
replace the original square mesh, having no relation
to the facts of the comparison under study, with a new
mesh computed so as to expressly accord with that
change. This is the biorthogonal grid pair of Figure
15¢c, the coordinate mesh at 90° in both forms. It
consists of a selection of integral curves of the sym-
metric tensor field in Figure 15b; an algorithm for this
integration has been published elsewhere (Bookstein,
1978a, pp. 118-120). The intersections of the curves
of the grid correspond, left to right, under the inter-
polation with which we began (Figure 15a). In other
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F16. 18. Growth and form for four triangles of landmarks. (a-d) Scatters, and their centroids, representing changes in shape coordinate space
for all triangles using the landmarks in Figure 12. The sexes are plotted separately. Baselines were assigned arbitrarily. (e) Principal mean
growth strains corresponding to these shape displacements, with scale change along the baselines restored. The display is now wholly independent

of any baseline.

words, this diagram depicts the same homology map
as Figure 15a, but in a more appropriate coordinate
system. The selection of curves displayed is arbitrary,
but not their orientation: each curve must lie parallel
to one arm or the other of the little cross of principal
directions at every point through which it passes.
The grid of Figure 15¢ combines changes in all
regions of the quadrilateral into a single geometric

scheme of principal strains that are graded as they
curve through the form. Some of these strain ratios
are indicated on the left in the figure. Each quantity
is an actual ratio of the length between neighboring
mesh intersections on the right to the corresponding
length on the left, an “actual” rate of increase of length
(for typical male growth between ages 8 and 14) as
imputed to a little length element aligned with the
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' Males

(c)

FIG. 15. The method of biorthogonal grids. (a) Mean shape change
for males, from the preceding figure, with baseline size change re-
stored. The change has been modeled as a computed homology, a
smooth deformation of the (mathematical) interior of the quadrilat-
eral. (b) At every point of a smooth map, the construction of Figure
9 applies to yield a pair of directions that are at 90° in both forms.
Along one direction, the ratio of change in length is greatest, and,
along the other, least, among the set of such ratios in all directions
through the point considered. The set of all these crosses, not just
those at mesh points but also those everywhere in between, represents

Men

the deformation as a symmetric tensor field. (c) We replace the
original, arbitrary coordinate mesh with a new coordinate system
each of whose curves is aligned with one arm or the other of these
crosses at every point through which it passes. There results an
essentially unique computed coordinate system, the biorthogonal grid,
which lies at 90° in both forms. Corresponding intersections of per-
pendicular curves match from one grid to the other according to the
interpolation of frame (a). The ratios printed upon the 8-year-old
mean form are an arbitrary sample of rates of growth from age 8 to
14 for line elements in the locations and along the directions indicated.
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Females Meén

Mean
Age 14
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F1G. 16. Biorthogonal grids for the same 6 years of growth in 26 females. Compare Figure 15c.

grid. These quantities, once again, are analogous to
factor loadings representing the expected response of
each distance when there is a change in the factor
(deformation) called chronological age. At the top of
the figure, near the cranial base, change in size is
predominantly vertical at a rate of 17% over the 6-
year interval. Perpendicular to this is the direction of
least rate of growth, here, 7% along the cranial base.
Toward the mandibular plane the horizontal rate of
growth increases until it matches the vertical rate.
There results a singularity, a point at which change of
size is at the same rate in all directions; the ellipse of
Figure 9 is a circle, and so the principal directions are
undetermined.

~ The analogous grid pair showing the field of mean
growth for females is shown in Figure 16. The geom-
etry of deformation is very nearly the same; the ver-
tical component of this shape change is 1 or 2% less
than that for males throughout, while the horizontal
component bears nearly the same strain ratios. The
shift in the location of the singularity is not important.

Visualizing Size Allometry

The nature of size allometry for the observed growth
pattern may be displayed by another grid of this sort.
A few paragraphs above, it was mentioned that the

regression of dS on our chosen basis for shape change
space was highly significant. The effect of dS on the
expected shape change is the pattern of changes in
predicted shape coordinates d@ from the inverse
regressions, covariances of dS with the separate com-
ponents of the d@. As explained in Section 4, these
are exactly analogous to the ordinary notion of factor
loadings for the indicators of shape space upon the
factor of size change.

The coefficients of the multiple regression of dS on
the components of dQ(Sel, Men, Nas) and d@(Sel,
Men, Gon), for the male subsample, are —136, —181,
0, —29; of these, the first two are statistically signifi-
cant, the other two not. (These quantities are nearly
the same in the comparable regression for females,
and also in the analysis of covariance pooling the
sexes.) Regressions of the components of the dQ’s
separately upon dS yield loadings as follows: for
Re dQ(Sel, Men, Nas), —.002; for Im dQ(Sel, Men,
Nas), —.004; for Re dQ(Sel, Men, Gon), —.0002; for
Im dQ(Sel, Men, Gon), —.0005; for d | Sel-Men |, .03.
There is no evidence of any failure of the assumptions
underlying these regressions: all scatters of dS against
components of the dQ appear consistent with the
model of bivariate normality, and no cases have par-
ticularly high leverage on the regression coefficients.
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FiG. 17. Size allometry in males. (a) We construe size allometry as a deformation from the mean starting form (left) to a form altered by the
effect upon these coordinates of a size change corresponding to two standard deviations of size (right). Here the deformation is drawn as a simple
interpolation. (b) The same, now expressed by its biorthogonal grid pair. Note the absence of size loading along the cranial base.
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We visualize this effect by augmenting the mean
male starting form by 15 units of size change, an
amount corresponding to two standard deviations of
size. The resulting displacements of two d@’s and
rescaling by | Sel-Men |, explained in Section 4, lead
to the grid of Figure 17. In effect, having altered a
factor score by 2 units, we examine the expected effect
on all the variables that load on that factor.

This grid resembles the two preceding, which dealt

with average growth. Change of net size has no covar-
iance with change of cranial base length Sella-Nasion:
the strain differs from 1.00 by only .01. Even in the
mandible, horizontal growth rate loads hardly at all
upon net size change. Instead, size allometry seems to
be effective in only one direction, that which showed
the greatest mean ratio of change over the age interval
of this study. Because change of size is not susceptible
to forecasting in the clinical setting, this phenomenon
of allometry appears to orthodontists as the concen-
tration of craniofacial unpredictability along the di-
rection of population mean change, the “growth axis.”

At this point in the analysis, we cannot yet tell the
difference between two alternate morphological inter-
pretations of this allometry. In one interpretation, the
growth of the cranial base segment Sella-Nasion is
constrained, while the other two landmarks Gonion
and Menton are free to vary on the usual circular
model. In the other interpretation, the displacements
of Sella and Nasion relative to the rest of the con-
figuration are not constrained, but there is addi-
tional vertical (noncircular) displacement, variable in
amount, applied jointly at Gonion and at Nasion. To
discriminate between these two hypotheses requires
additional evidence from the serial aspect of this de-
sign, which we shall now explore.

Visualizing Shape Stability

Figures 15-17 dealt with contrasts; changes from
age 8 to 14, sexual dimorphism, or the shape change
associated with small versus large change of size.
Another class of questions, of considerable import for

craniofacial biology, has the opposite thrust: what

aspects of shape change least over the age interval we
are studying?—which geometric relations are most
stable? This is not to be construed as a search for
measures which do not change in mean; in fact, for
any triangle of landmarks we can locate a variety of
measures which show precisely zero mean change
(Bookstein, 1983). Instead we ask which shape vari-
ables, regardless of any mean shift, are most highly
correlated from age 8 to age 14. »

This form of the question suggests that conven-
tional canonical correlations analysis be applied to
relate the pair of shape spaces, one for the age 8 forms,
one for those at age 14. We may carry out this aim by

an ordinary analysis of any pair of shape basis ele-
ments d@ at the two ages.

We rely, as before, on a shape basis consisting of
dQ(Sel, Men, Nas) and dQ(Sel, Men, Gon). The first
canonical variates for these spaces bear a correlation
of .938 (versus .873 for the second pair) and canonical
coefficients which are nearly identical at the two ages
(.58, .07, .59, —.41) and (.63, .11, .55, —.30). As usual,
we convert these coefficients to loadings, simple
regression coefficients of the shape basis vectors one
by one on their canonical variate. This dimension of
shape stability is thereby modeled by two landmark
displacements, each embodying the effect of changing
the canonical score upon the predicted location of a
landmark @ while the baseline Sella-Menton remains
fixed. The collection of displacements may be reinter-
preted as the deformation of Figure 18. The strain
ratios presented are now the ratios of change of dis-
tance induced by change of canonical variate score.
As these are, once again, analogues of ordinary factor
loadings for the stable aspect of shape we are teasing
out, we may take Figure 18 as the diagram of a shape
stability factor.

By Theorem 2, distance measures which increase or
decrease most over a particular change of configura-
tion need not involve more than three landmarks. The
shape variable loading most upon the contrast at hand,
assembled from the numerator and denominator with
the greatest divergence of loading among size meas-
ures, will involve more than three landmarks if those
terms are measured upon different triangles. In the
grid for shape stability (Figure 18), the distance with
the highest loading on the stability factor is the dis-
tance Nasion-Menton, and the one with the lowest
loading is Sella-Gonion. The simple shape ratio having
the greatest covariance with the shape stability factor
is thus the ratio | Sella-Gonion | /| Nasion-Menton |,
bearing a correlation of .927 between the waves of
observation. Orthodontists are familiar with this in-
dicator in the guise of the mandibular plane angle
between the segments Sella-Nasion and Gonion-
Menton.

Recall the pair of alternate hypotheses accounting
for the allometry uncovered in the preceding section.
The stability of this mandibular plane angle is not
consistent with the first of those alternatives, the
hypothesis of restricted growth between Sella and
Nasion; but it is consistent with the other interpreta-
tion, which augmented the null model by a vector of
parallel displacement of the mandibular plane away
from the cranial base. If this data set had not permit-
ted the study of shape stability as well as shape
change—if it were not a matched design—we could
not have discriminated between these two explana-
tions of allometry.
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F1G. 18. The aspect of shape variation showing the greatest autocorrelation from age 8 to 14 in males. The variation in question is realized as
a deformation from the 8-year-old mean to a form differing from it by two standard deviations on the shape score. We display it by means of its
biorthogonal grid. The ratio of anterior to posterior facial height, | Sella-Gonion |/ | Nasion-Menton |, is a good, simple proxy for this dimension:

an ordinary shape scalar of unusual stability over time.

7. RECAPITULATION AND CONCLUDING
REMARKS

In this essay I have attempted to unify the two
principal schools of modern morphometrics, the mul-
tivariate and the geometric. The theorems, tests, and
constructions presented here allow the biometrician
easily to pass back and forth between the alternate
modes of description. The fundamental link between
the two styles is the spatial structure of size and shape
measures: the analogy between directional derivatives
of a deformation (a notion from the geometric school)
and factor loadings of distance measures (a notion
from the multivariate school), yielding an expected
change in every size or shape variable whether or not
actually measured. By this algebraic machinery we
may interpret shape change, shape stability, and the
dependence of shape upon size using a considerably
broader variety of shape variables than those actually
involved in the multivariate analyses.

The tensor biometric techniques introduced here
are amenable to generalization in many directions.

(1) For data in three dimensions, the formalism of
complex arithmetic is not available. The deformation
of a tetrahedron continues to be described by a pair of
distances at 90°, one bearing the highest loading, one

the lowest; but there is an intermediate rate as well,
the “stationary” eigenvalue. A suitable null model for
this scenario might be spherical normal variation of
observed landmarks about (unobservable) centroids in
three dimensions. Do size and shape spaces for three-
dimensional data, spanned by the interlandmark dis-
tances and their ratios as characterized in Section 2
and 3, still have so tight a relationship? Does the size
variable S still have covariance zero with all shape
variables (Theorem 1)? Does the analysis of compli-
cated landmark sets still reduce to analysis of tetra-
hedra (Theorem 2)?

(2) We need the capabilities of testing and, if nec-

A essary, relaxing the assumption of independent and

identically distributed circular perturbations at each
landmark. In reality, different landmarks have differ-
ent measurement error ellipses as observed explicitly
in fixed coordinate frames, and also different ellipses
of true biological noise between individuals or over
growth stages. Observed size-shape covariances, in-
stead of representing “allometry,” might instead be
due to anisotropic patterns of nonsystematic varia-
tion. We need formal protocols for detecting such
specification errors from geometric features of the size
and shape spaces.

(3) We need ways of averaging information on the
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curving of form in between landmarks. This infor-
mation, easily retrieved at the same time that land-
marks are located, can be handled by the method of
biorthogonal grids two forms at a time (Bookstein,
1978a); but it is not clear how to extend the notion of
a landmark configuration so as to permit the averag-
ing of this additional information in a geometrically
meaningful way. Sampson (1981) offers a technique
for averaging arcs of conic sections used to model
boundary arcs between landmarks; Bookstein et al.
(1986) experiment instead with the use of a single
“pseudolandmark” halfway along such an arc.

(4) Related to this is the problem of deciding
whether particular landmarks, perhaps those thus du-
biously extracted from boundary curvature informa-
tion, contribute to the representation of the homology
map or to the detection of group differences or allo-
metric trends. When several landmarks are available
in the same region of a form, or when landmarks vary
so much in relative position that the assumption
| Z; = W;| < | W; — W;| of the null model is unten-
able, we need a way of choosing the most useful land-
mark from a set of alternatives. When landmarks are
available inside or adjacent to regions delineated by
other landmarks, we need to know if they add to
the precision with which we are characterizing the
transformation.

(5) Cartesian coordinates are not all the geometric
data of morphometrics. Another of its active areas is
the analysis of biological point processes and their
geometric generalizations: counts of cells of various
sorts over a region of tissue; stereological estimations
of mean perimeter and area or mean optical density
of selected objects; and quantification of texture,
branching patterns, or reticulation of networks in two
dimensions or three. Modern techniques of image
processing greatly ease the tedium of gathering such
data (see, for instance, the various biological examples
in Serra, 1982).

For reports of the effect of gross interventions,
averages of these counts and indices may be sufficient:
“the treatment doubled the number of dividing cells.”
But for studies of subtle or regional effects, especially

_abnormalities, and of developing systems generally,
we need to compare these fields at corresponding
points of different organisms, or at the “same” points
at different ages. That is, the machinery of deforma-
tion analysis is to be run in reverse, to unwarp all the
organisms of a sample to a standard form so that we
can carry out conventional statistical analyses of
quantities like cell density at corresponding points
across the sample. Because this correspondence must
be set in terms of landmarks at some distance, we
need the statistical machinery of our size and shape
spaces to compute standard errors for that unwarping.
In short, tensor biometrics is one of the many tools

that will be necessary for effective application of
image analysis in biology.

This generalized problem notwithstanding, I believe
that the majority of statistical problems encountered
in applications of morphometrics will be geometric.
Encouraged by enormous technique advances in med-
ical imaging and image processing, the biomedical
community is now gathering far more geometric data
than it is capable of analyzing. In addition to images
of normal human growth, such as those underlying
the data of Section 6, there exist countless images of
beating hearts, breathing lungs, and other natural
cycles; records of explicit geometric interventions,
such as surgery, and of the body’s response to these;
associations of anatomy (form) with symptoms (func-
tion); and extensive archives of body form and form
changes in organisms other than man. Much of bio-
metrics has traditionally been concerned with con-
trasts and trends among such geometric records, but
our literature does not, at present, offer satisfactory
protocols for extracting the relevant measurements. If
shape data are to be analyzed efficiently, modern
multivariate statistics must be made to penetrate fur-
ther into the special combination of two types of
information—geometric and biological—making up
morphometrics.
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APPENDIX: PROOF OF THEOREM 2

Theorem 2 states that any admissible size variable
bearing an extremal loading on the difference between
two mean configurations can be expressed as a dis-
tance involving no more than three landmarks. The
proof of this theorem proceeded in the text as far as
showing that the size variable sought may be taken as
a distance between two constructed landmarks. Com-
pletion of the proof involves three geometrical lemmas
about distances bearing extremal loadings and defined
on configurations of four landmarks. Lemma 2 asserts
that if a transect of a quadrilateral of landmarks bears
an extremal loading, one of the four landmarks need
not be involved in the transect. Lemma 3 asserts that
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(g)

F16. 21.  Diagrams for the proof of Lemma 3. (a) The distance which
the Lemma states cannot be a proper extremum for the ratio (squared
loading) R’/R between mean configurations: join of one landmark
W to a proper linear combination W, = Y&, ¢;W; of three others.
The grids indicate the affine transformation T relating the two
triangles. (b) Consider a set of small displacements D connecting the
point W, to neighbors Y%, c;W,, and the homologous segments D’
connecting W, to Y i, c;W/. (c) Perturbation of the point W, by
displacements D perpendicular to the segment Wy W, does not alter
the length of that segment. (d) If the homologues D' of these perpen-
dicular increments D were oblique to the segment W{ W/, the ratio
R’/R of their lengths between the images would bear a gradient in
the vicinity of W., contradicting the optimality posited by the Lemma.
(e) Whenever displacements D parallel to the optimal segment in the

R/R =070
R/R=0.80

lefthand form do not map into displacements D’ parallel to the
homologue of the optimal segment in the right-hand, primed config-
uration, define points P, - .. P, by distances k, k' as shown. (f) The
ratio R’ /R of distances along W,P, is a convex upward function of
k’; but then so must be the ratio R/R’ of distances along W{P} as a
function of k’. Hence, if P, # P,, the ratio R’/R may have only a
saddle point, not ar: extremum, at W.. (g) If the increment in length
of W1 W, is not the same as the increment in length of little segments
D in its direction around W., then the ratio R’/R has a nonzero
gradient at W,. Hence (d, e, f, g), the landmark W, is displaced
according to the same offine transformation governing the recon-
figuration of AW, WsW,, so that the distance having the extremal
loading may be specified using at most three landmarks, as the Lemma
asserts.
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if a line joining one landmark to a weighted average
of three others bears an extremal loading, one of the
three in the average is redundant. Lemma 4 states
that in the statement of Lemma 3, the word “three”
may be replaced by “many.”

LEMMA 2. Let .W,, W,, W5, W, be four landmark
centroids such that the segments Wi W,, W W, are
not the interior diagonals of their quadrilateral in two
mean configurations. Consider the set of distances join-
ing a point of the segment WiW, to a point of
the segment W3 W, (Figure 19): that is, a distance
St W with e, + ca = —(cs + ¢s) =1 and all ¢; > 0.
The ratio R’ /R of this squared distance between the
mean configurations has no proper extrema within this
set of segments.

PrOOF. Under the assumptions stated, the ratio
R’/R of the squares of homologous distances between
the mean configurations is a ratio of two quadratic
forms in two variables ¢, and cs. As such, it has three
stationary points: a maximum, a minimum, and an
intermediate saddle point that is not an extremum at
all.

But there is a pair (c{, c¢3) for which the numerator
R’ of this ratio is nearly zero: the parameter pair
corresponding to the intersection of the lines Wi W3,
W3 W/ in Figure 20. (The value of R’ for this pair is
not exactly zero. As it is the population mean square
of the corresponding distances observed in the actual
data, it is positive but small.) Hence the minimum of
the ratio R’/R is achieved nearby, outside the bio-
metrically usable range of segments. This inference is
blocked only if R is also zero at the pair (c1, ¢3)—but
in that case the transformation is affine over all four
points, so that the extremum of distance ratio is not
proper.

Likewise, for another pair (¢, ¢3) corresponding to
the intersection of the lines W, W,, WsW,, the dis-
tance R in the denominator is nearly zero and the
ratio R’/R approaches its maximum (a very large
value). But this point is likewise outside the biomet-
rically useful range.

There are no remaining extremal points to be had,

"and hence no pair (c;, c¢s) corresponding to a distance
along a segment inside the quadrilateral can yield a
proper (nondegenerate) optimum for the ratio of the
R’s, that is, an extremal loading on the mean shape
change, even if it corresponds to the third stationary
point of the ratio.

LEMMA 3. Suppose that landmark W, is outside
the triangle AW,W5sW, in two mean configurations,
and that for three non-negative parameters c;, Cs, Cs
with Y&, ¢; = 1, the distance | Wy — Y- ¢;W;| yields
an extremal ratio between the mean configurations.

Then either (i) one of the c’s is zero, or (ii) the same
extremum can be achieved with one of the c’s equal to
zero.

ProoF. Consider the transformation T (Figure
21a) taking the interior of the triangle W, W; W, ho-
mologously onto the interior of W; W3 W;. This is the
map taking Yo c;W; to Tho c; W/ for Yio i = 1—
the same uniform linear transformation of triangles
we have been using all along. Write W,, W, = YL,
Wi, Y, ;W for the c’s that yield the distance
bearing the extremal ratio.

Consider little displacements D joining W, to its
neighbors inside AW; W, W; in the lefthand form (Fig-
ure 21b). They represent variation of the coefficients
¢ about their optimal values, those used for W,, and
thus correspond (by the transformation T') to pertur-
bations D’ around W/. To segments D perpendicular
to the optimal distance on the left (Figure 21c) must
correspond homologues perpendicular to the optimal
segment on the right, else (Figure 21d) there would be
a gradient of the distance ratio between the images
along this direction, contradicting the assumption that
the segment drawn bears an extremum for that ratio.
Likewise (Figure 21e), corresponding to little line ele-
ments along the optimal segment W; W, on the left, T'
must yield little segments aligned with the extremum
W1{ W/ on the right, for otherwise (Figure 21f), there
would be a saddle-point of the ratio between corre-
sponding distances. Hence the distance W; W, is
aligned with a principal direction of 7. (It is in these
two steps that the assumption about the position of
W, entered. The points W; and W, must be distinct if
the segment joining them is to have a direction.)

Finally, the increments in length measured all the
way from W; must be at the same rate as those
determined by T in the immediate vicinity of W,
(Figure 21g), else, once again, the ratio of correspond-
ing lengths from W; between forms would bear a
gradient at W..

Thus the point W, must be transformed according
to the same homogeneous affine transformation 7" that
applies to the triangle AW, W; W, of the remaining
landmarks, and the distance we are considering is the
ordinary principal strain of that homogeneous trans-
formation. But we already know that the principal
distance ratios of such transformations may be real-
ized along transects from one vertex through points
of the edges opposite, distances which involve only
three landmarks.

Hence either the point described by the ¢’s is not
interior to this triangle—that is, one of the coefficients
¢c; is zero—or else the transformation of quadrilaterals
is the uniform strain T, in which case one of the four
landmarks is superfluous in the formula for the opti-
mal distance ratio. This is what was to be proved.
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FI16. 22. Reducing sets of more than four landmarks to four. (a) A
distance | W, — Y2, 4 W;|. (b) Dividing through by 1 — % yields

the statistically equivalent distance measure |[%sW, — v%W;] —

i, Y5W;|, meeting the requirements of Lemma 3.

LEMMA 4. The same is true for an optimal distance
of formula | Wy, — YLy e;W;l, 3Ly ¢; = 1, for any
J>4.

PROOF. Apply Lemma 3 to the expression

J 4
(Wl -2 ciWi> - Y aW;
i=5 i=2
after its coefficients have been normalized by division
by 1 — Y75 c; = Yt c; (see Figure 22).

PROOF OF THEOREM 2. Let the segment Y ¢;W;
whose distance ratio is optimal be rewritten in the
form

X eWi— X —aW;
>0 ;<0
with coefficients normalized so that Y.-o ¢; =
Ye<o —¢; = 1 and with nonoverlapping convex hulls
* for the two sets of W;. ’

Treating Y.~o c;W; as a single constructed land-
mark, apply Lemma 3 or Lemma 4 as many times as
necessary to eliminate all but two terms of the second
sum. The assumption regarding admissibility guaran-
tees that Y,.~o c; W; will always be outside the polygon
formed by any terms of the second sum.

Likewise, treating the two remaining terms of the
second sum as a single constructed landmark, apply
Lemma 3 or Lemma 4 as many times as required to
eliminate all but two terms of the first sum.

Finally, apply Lemma 2 to the two pairs of terms

that remain, so as to eliminate one landmark of the
four. The assumption regarding admissibility guaran-
tees that the condition of the Lemma applies. In the
expression for the optimal distance which remains,
there will appear at most three landmarks, as was to
be proved.
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Comment

David G. Kendall

The reading of this paper gave me great pleasure.
I wish to congratulate the Editor for throwing open
the windows and allowing a welcome draught of fresh
air to enter the hitherto hermetically sealed publica-
tions department of the IMS. I hope this wise policy
will be a pattern for the future.

Of course Bookstein mentions D’Arcy Thompson’s
work in zoology, and to this name I should like to add
that of F. O. Bower (1930), whose book “Size and
Form in Plants” played a similar role in botany. Bower
gave me a copy of this in 1943, and expressed his
conviction that mathematicians would eventually find
it food for thought. We can now see that he was right.

Despite their name, interdisciplinary studies have
to begin within the author’s own discipline, or one
adjacent to it, and so it takes some time for such work
to diffuse into other disciplines in which it has poten-
tial relevance. Thus it is not surprising that most
of Bookstein’s work was new to me, and I do not
think he has even heard of mine, originating as it did
in response to requests from archaeologists and
astronomers. A summary of this therefore seems
in order.

I have been concerned with constructing and adapt-
ing for statistical purposes the natural representation
space for the shape of a labeled set of k points in m
. dimensions. This is only interesting if k = 3, and the
m values of practical importance are 1, 2, and 3,
together with some higher values like 15 for cosmolo-
gists interested in space-time foams and so on. We
exclude the situation in which the points totally co-
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incide. Obviously the points could be Bookstein’s land-
marks, but they could also be archaeological sites or
quasars.

“Shape is what remains when location, size, and
rotational effects are filtered out,” so it is natural to
begin by taking the centroid as origin and changing
the scale to make ¥ 3 x% = 1 (this is equivalent to
adopting Bookstein’s preferred size measure up to a
constant factor). We now have what I call a preshape,
which we can think of as a generic point on a unit
sphere of dimension m(k — 1) — 1, the “points” of this
sphere being labeled by m X (k — 1) matrices. The
sphere of preshapes comes with a natural metric to-
pology based on geodesic arc length, and a big group
of symmetries generated by a subgroup of the orthog-
onal group acting on the right which includes the
relabeling symmetries, together with the reflexion
symmetry. To get to what I have called the shape space
Y% we quotient out the rotation group acting on the
left. Natural quotient constructions endow this space
with a metric topology and its own rich group of
symmetries. This then is the stage on which shape
statistical transactions are acted out, and we need to
become familiar with it.

The quotient mapping from preshapes (points on
the unit sphere of dimension m(k — 1) — 1) to shapes
(points in Y%) is what is called a submersion when
m = 1 or 2; that is, it is a smooth mapping “onto”
whose Jacobian has everywhere a rank equal to the
dimension of ¥%. When m is greater than or equal to
3, we still have a submersion if we exclude a singular
set in Y% (and its preimage on the sphere). As will be
seen below, the existence of this singular set when
m = 3 adds considerable interest (and difficulty) to
the discussion of these higher dimensional situations.

A great deal of my time in the last 8 years has been



