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TABLE 3
The impact of point 3 on some regression results for the data in Stewart’s Table 3°

Y IMP, 8 Var (B)
Var
F R F R F R F R

X, 213 .181 .04 .07 2.19 1.89 041 129
X, .602 470 .06 .26 1.15 .90 .004 .063
X, .104 .090 .05 .06 .76 .63 .029 .043
X, 171 .083 .04 .19 49 .23 .003 066
Xs .001 .247 .06 48 .02 10.02 1.065 95.988

°F denotes full data and R denotes reduced data (point 3 deleted). Values of ; and IMP; are from
Stewart’s equations (5.1) and (5.2), respectively.
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Rejoinder

G. W. Stewart

I would like to begin by thanking the commentators
for giving my paper a fair and careful reading. Since
the following remarks must necessarily focus on our
differences, let me stress at the outset that I find much
to agree with in their comments.

I am happy to acknowledge that Donald Marquardt
knew of the connection between variance inflation
factors and collinearity. My only quibble is that one
must read a rather small section of his 1970 paper
very carefully in order to see it. Marquardt never uses
the word collinearity and only asserts that the vari-
ance inflation factors depend on the partial correla-
tions, without explicitly stating the nature of the
dependency. From his comment one can deduce that
he takes a partial correlation near one as a synonym
for collinearity and means for the reader to infer that
the dependency is the same as the one he writes down
for two variables. However, the passage can also be
read as a vague afterthought, which is how I inter-
preted it on first reading.

On nomenclature, the difficulty with the term var-
iance inflation factor is that it draws attention to one
effect of near collinearity to the exclusion of other,
equally important effects. It seems more natural to
me to give a simple characterization of near collinear-
ity and then show how it affects statistical procedures.
Taking the square root of the variance inflation fac-
tors not only simplifies the formulas but stresses a
useful connection with the condition number.
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David Belsley’s comments are practically a paper in
themselves, and a complete response would amount to
another. Here I will only make a few observations and
trust the reader to sort out the issues.

Belsley would make a distinction between data and
models, and in a sense I heartily agree. Numerical and
statistical tricks are no substitute for a knowledge of
the science underlying a problem. However, on close
inspection his distinction appears elusive. Is a con-
stant term model or data? How do we classify the
design matrix for an unbalanced analysis of variance?
Moreover, the term model has come to mean many

things. Belsley’s “rather exhaustive” survey evidently

did not include Draper and Smith (1981, page 86) or

Seber (1977, pages 42 and 43), who use the term model
in much the same sense as I do. Attempting to preempt
the word model is like trying to tell the tide where to
come in.

I will save my comments on importance for the end
of this rejoinder. Regarding centering, I will simply
restate that centering is a change of variables, and the
new ones are not equivalent to the old. There is
nothing vague or “psychological” about this observa-
tion, and it is ironic that Belsley quotes at length from
a passage that describes the psychological biases in
the opposing view.

Belsley points out that the collinearity indices do
not tell the dimension of the approximate null space
and provide little help in selecting an independent
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subset: they can diagnose, but they cannot cure.
Ronald Thisted makes the same point, and I wish
I had done so too. The regularization (to borrow a
term from the field of ill-posed problems) of nearly
collinear regression problems is an open question.
Many people have had a go at it, including myself
along with my colleagues Gene Golub and Virginia
Klema (1976). Unfortunately, our approach and all
the others I have seen are sensitive to scaling, which
for me renders them unsatisfactory. It may be a mis-
take to argue from lack of imagination, but I am
coming to feel that the regularization problem can
only be solved with additional information from the
underlying problem—from the model in Belsley’s
sense of the word.

Ronald Thisted’s observation on the condition num-
ber is a fine illustration of how scaling problems can
insinuate themselves into even the most simple argu-
ment—here by way of the parenthetical statement
“subject to the constraint, say, that || v || = 1.” It should
be observed that the quantity & = v’g is invariant
under scaling (or equivalently under a change of
units). For if the columns of X are scaled, then §
inherits the scaling contravariantly, v inherits it co-
variantly, and everything cancels. However, the set
{fv:lv]l = 1} is not invariant under scaling; i.e., by
scaling we inadvertently change our notion of the
linear combinations that we consider important. It is
considerations like this that have prompted me to
search for scale invariant diagnostics, like REps,
RE;w, and 7 in (6.23). However, as I indicated at the
end of the last paragraph, this approach can take us
only so far.

Ali Hadi and Paul Velleman maintain that the
distinction between RE,;.. and REy, is artificial, and
looking over my paper I see that I did not provide
adequate motivation. Briefly, the argument goes as
follows. The coefficient 3, in (6.5) depends quadrati-
cally on the elements of h,, but linearly on v,. Con-
sequently, as ¢, becomes small, v, must ultimately
have the greater effect. Now there is reason for believ-
ing that if h, can be ignored and u = 0, then the effects
of , will not be particularly harmful (see the subsec-
tion “The diagnostics in terms of 7;” in Section 6
and. also David and Stewart (1986)). It is therefore
important that the analyst have one diagnostic to
say when h, is negligible and another to assess the
effect of v,.

Two technical points. The reason for the difference
in the denominators of the definitions of REpi.s and
REj, is that for the range of values we are interested
in it does not make much difference, and we may as
well choose the denominator that yields the simplest
formula. The anomaly reported at the end of their
first section is due to replacing v, by its mean instead
of by ¢,.

The remainder of Hadi and Velleman’s comment is
a nice supplement to my paper. I agree that the
detection of hidden collinearities is an important prob-
lem and am glad that they have undertaken to provide
procedures for resolving it.

The late Jim Wilkinson, a leading authority on
numerical linear algebra, used to say, “This is what I
do in practice. But if you want to argue about it, I
would rather be on your side.” I feel much that way
about the section on significance and importance,
which I included with some reluctance. Thisted seems
to have the best treatment, and therefore I will deal
with his points.

The thesis of Section 5 is that assessing the effects
of collinearity on significance testing requires more
information that is contained in X and y. The notion
of importance is one way of allowing the analyst
to provide such information. Thisted’s objection
amounts to saying that this is no substitute for think-
ing hard about the problem, since the importance
of a variable is not as easy to interpret as its simple
definition might suggest.

In the first place, collinearity can create impor-
tances greater than one. A numerical analyst, who
sees cancellation daily, is not fazed by a part being
greater than the whole; but this will be disconcerting
to many others. In any event, I think Thisted will
agree that models with importances greater than one
should be viewed with suspicion.

Thisted argues that the variables in his model (3.1)
are enormously important in only a very narrow sense.
To establish his point he transforms the second vari-
able, leaving the first unaltered, and observes that the
importance of the first decreases. However, Thisted
greases the skids by writing 8; in both his (3.1) and
(3.2), when in fact these are different numbers. One
could even argue that x, is a different variable in the
two models, since the coefficients are different. But
many people would not accept such an argument, and
to that extent Thisted has a valid point.

If, however, one can interpret importances for the

" model at hand in such a way as to make reasonable

selections of the tolerances );, then the rest is unex-
ceptionable algebra. Note that the procedure does not
require one to estimate importances from imprecise
data; instead one calculates the diagnostics IMP; and
compares them with the ); arrived at from other
considerations. Since as a practical matter one would
select \’s considerably less than one, say 0.1, and
since collinearity inflates the IMP;, there does not
seem to be much danger of collinearity causing us to
accept a poor model. For example, in Thisted’s model
(3.1) we have IMP;, = IMP, = 0.59, which is quite
large. For (3.2) the values are 0.34, which suggests
that transforming the model has not improved things
by much.
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To summarize, where the notion of importance can
be interpreted, it leads to a useful measure of the
effects of collinearity on significance testing. However,
it is only a beginning, and time may produce less
refractory diagnostics.

Again I would like to thank my commentators for
their trouble. I have found the processes of responding
both educational and pleasurable.
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