264

(largest contemplated) linear model Q@ by Jaeckel’s
method, say using (3.15). Having obtained the result-
ing e(Bsw) residuals e(B;w) and an estimate of éx,
form pseudo values for the data as follows,

(N + 1)]

Y= [XﬁAJW]i + 3R[Ri(l§.lw) - 2

i=1’...’n.

The heuristics of Bickel (1976) can I believe be
rigorized in this case also to conclude that if we
now act as if the Y were the data, apply ordinary
least squares methods in fitting subhypotheses and
then calculate the usual F statistics we are asymptot-
ically right in the sense that the asymptotic null
distribution and power functions of these statistics
agree with the x > approximations to the corresponding
Hettmansperger-McKean statistics. We expect more.
For instance, application of Tukey’s method of mul-
tiple comparisons to the pseudo observations should
have the same efficiency (say in terms of length of the
intervals) with respect to the method applied to the
original observations as the Wilcoxon test has to the
t test.

Of course the asymptotic x* approximations here
too will be inadequate as Draper points out. However,
one might hope that the same empirical observations
made by Draper continue to hold, viz., using the
classical degrees of freedom for F works adequately.

Let me add a caution. As Draper points out what is
done here guarantees robustness only against heavy
tails. In particular, sensitivity to high leverage points
among the [Xg]; is not affected. Nor is sensitivity to
heteroscedasticity, dependence, transformation of the
Y scale, etc. Perhaps the pseudo values could be used

Comment

R. Douglas Martin

Dr. Draper has provided a very nice exposition and
review of two rank-based robust methods for fixed
effects ANOVA problems. In so doing, he concentrates
on (i) the formal structure of the methods and
(ii) robust inference based on rank-based analogues
of the classical test statististics, where robust infer-
ence is taken to mean robustness of validity and
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as a first step in procedures where the second step
fitting method would address these departures and of
course, one would then iterate.

It is worth noting that the scope of the methods
discussed by Draper has recently been enlarged by
Tsiatis (1986) to handle the case of right censoring of
the Y;. It’s not clear what happens to the pseudo
value-based procedures in this context.

Finally, it is worth remembering that the scope of
purely rank-based procedures is much greater than
what is suggested by the Kruskal-Wallis, Friedman-
Tukey tests. In particular, ranks not rank of residual
procedures are appropriate when one considers trans-
formation models of the form

h(Y)) = [XB]: + e

where the e; are assumed to come from some paramet-
ric family but h is an unknown monotone transfor-
mation. See Doksum (1987) and Bickel (1986) for
example.

I congratulate David Draper on this clear insightful
presentation.

i=1’...’n
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efficiency. Given the author’s commitment to focus
on the R-estimate approach, I would only wish that
he had given some emphasis to examples, and in so
doing revealed the exploratory data-analytic use of the
methods. As far as the focus on rank-based methods
goes, I have a pragmatically motivated reservation
based on a concern I share with Draper, namely,
robust methods are not widely available in the major
statistical packages.

As Draper points out, R-estimates comprise just one
of three major classes of robust estimates, with L-
estimates and M-estimates being the other two, and
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these classes hardly exhaust the range of proposals
found in the literature. For example, other approaches
include robust Pitman-type estimates and robust min-
imum distance estimates. Although the wide range of
possibilities reflected in these various approaches has
made the robustness area a rich one for research, this
has not been altogether helpful for the potential user
of such methods, who may be confused by the wide
range of possibilities. Researchers have their own
individual preferences, and we have no “general
committee” to recommend one class over another.
Furthermore, it does not seem to be a very convincing
sales pitch to tell the applied statistician to “pick one
at random, because that is better than using no robust
procedure.” All in all, the actual use of robust proce-
dures has probably been hindered considerably by the
existence of far too many robust statistics.

Thus, if we really want to see robust methods widely
used by practitioners, we must somehow focus on as
few types of estimates as possible from a statistical
performance point of view. Only by such a focus will
we see a satisfactory emergence of robust methods in
many statistical software packages, and their inclusion
as a standard part of the statistics curriculum offering
(much as courses on nonparametric tests are standard
fare). It is with this motivation that I make the
ensuing remarks.

I agree with the author that L-estimates have yet to
prove themselves with regard to providing a unified
approach for a wide range of statistical models. Al-

though M and R methods are considerably more uni-

fied than L-estimates, I do not find R-estimates as
appealing as M-estimates in this regard. Furthermore,
because R methods only have “simple, closed form
expressions” for a few special models, this argument
does not provide a very convincing case for preferring
this class.

The main justification for having a strong prefer-
ence for one class over the other should be based on
dominating robustness properties. In the event that
no class clearly dominates the other, then I believe we
should emphasize to applied statisticians that class
which has the best combination of intuitive appeal,
transparency and generality. From this point of view
the M-estimate class seems preferable. Its intuitive
appeal and transparency features for general linear
models include (a) close connection with maximum
likelihood procedures, (b) a weighted least squares
interpretation and (c) a constant E¥?*(¢)/E*¥’(¢) in
the asymptotic variance-covariance formula, which by
now is becoming relatively familiar and which is easily
estimated from the data in a natural way (perhaps
with some small sample size correction). By way of
contrast with (c), the constant [ f? for the Wilcoxon
scores does not have a ring of general familiarity, and

it is rather more complicated to estimate from the
data.

The M-estimate class has considerable generaliza-
bility for a wide range of statistical models, both for
ANOVA setups and for other problems (e.g., time
series, see for example Martin and Yohai, 1985).
Within the ANOVA realm, M-estimates provide
natural estimates in factorial experiments (Carroll,
1980), for random and fixed effects models, and also
for variance components in a REML-like manner
(Fellner, 1986). Although Draper mentions that the
rank-based methods may be extended to mixed
models, I wonder really how natural the methods are,
even for estimating random effects, let alone variance
components?

One more distracting feature of R-estimates. If one
wishes to see widespread use of R methods, then the
point which Draper makes of clearly distinguishing
rank-based methods from rank tests will have to be
made time and time again, as far too many users will
assume that the former have the same nonparametric
properties as the latter.

Now the preceding ceteris paribus comments are
moot if in fact R methods clearly dominate M methods
(and others) from a robustness point of view. Evidence
to date suggests that this will not be the case, as
Draper and other workers might well agree. However,
a complete and thorough analysis remains to be done.

Along these lines one would prefer to see a range of
robustness concepts brought to bear on the problem,
as well as more extensive Monte Carlo studies of
robustness of level and power. In particular, use should
be made of two basic tools for robustness: the influence
curve for estimation and testing, and the breakdown
point for estimation and testing (see Hampel, 1974;
Ylvisaker, 1977; Huber, 1981; Lambert, 1981; Donoho
and Huber, 1983; Field and Ronchetti, 1985; Hampel,
Ronchetti, Rousseuw and Stahel, 1986, and references
therein).

Perhaps a few words concerning the breakdown

. point may indicate its potential utility in selecting

statistics for ANOVA situations. The breakdown
point is a “global” measure of robustness which has
considerable transparency as a concept. It is easy to
explain the concept to any scientist or engineer, and
illustrate it by comparing the sample mean and me-
dian, which have breakdown points of 0 and 0.5,
respectively. It is particularly important to have high
breakdown point procedures when using robust meth-
ods for exploratory purposes. Focusing on the problem
of estimating location, for purposes of illustration, one
finds the Hodges-Lehmann R-estimate has a break-
down point (BP) of only 0.29, whereas the median
(which is both an R- and M-estimate) has the desirable
high breakdown point (HBP) of 0.5.



266 D. DRAPER

In estimating contrasts for ANOVA situations, the
BP will be much smaller. Consider the simplest case
of testing for equality of location parameters in a
balanced two-sample situation with n/2 observations
in each sample. Any two-sample test statistic con-
structed as the .difference of location estimates for
each of the samples will break down as soon as either
of the two location estimates breaks down. The best
we can hope for is to achieve the HBP of 0.5 for each
of the samples. But this results in a BP of 0.25 relative
to the entire sample size of n. The situation will quite
clearly be worse for the higher way ANOVA situations
of major interest. The basic problem in ANOVA is
that typically there are only a small number of obser-
vations per parameter, and thus a small number of
wild points can spoil the various contrasts of interest.
Thus, there will be a premium on maintaining the
highest possible BP in ANOVA situations. From this
point of view, the BP of 0.5 for each parameter ob-
tained with median-based methods (e.g., median pol-
ish where applicable) seems preferable for example to
the Hodges-Lehmann estimate BP of 0.29.

Returning to the M-estimates versus. R-estimates
issue for a moment, it is important to note that the
latter have the attractive property that they do not
require estimation of a nuisance scale parameter. On
the other hand, M-estimates based on the popular psi
functions, e.g., Huber’s favorite or Tukey’s bisquare,
do require an auxiliary scale estimate. For the small
sample sizes per parameter that occur in many AN-
OVA situations, this may result in loss of robustness
in level and power relative to R methods. This issue
needs to be studied in detail.

One other robustness consideration is worth noting.
For those situations where one really needs to estimate
an effect rather than a true contrast, it will be impor-
tant to control the maximum bias due to asymmetric
contamination. In this regard it may be useful to
consider min-max bias robust estimates. For example,
Huber (1964) showed that among all translation equi-
variant estimates of location, the median solves the

Rejoinder
David Draper

Let me open the rejoinder by thanking the discus-
sants for their insightful and kind comments. They
have not given me much to disagree with, but (since
it is at least as much the job of the rejoinderer to be
contentious as it is for the discussants themselves) I'll

problem for ¢ contamination models. Hence, in that
case the HBP and min-max bias properties coincide,
but this is not always the case. Recently Yohai, Zamar
and I have been working on min-max bias robust
estimates of scale (Martin and Zamar, 1987) and
regression (Martin, Yohai and Zamar, 1987). In
the solutions found to date, the breakdown point
BP = BP(¢) will be relatively close to 0.5 for all but
very small ¢ in an e-contaminated model, and further-
more BP(¢) — 0.5 as ¢ — 0.5. Perhaps the min-max
bias robust approach will be of some utility in ANOVA
problems.
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see what I can do. I begin with some remarks about
the influence of robustness work on actual practice to
date; continue with some comments on the relevance
of expert systems research to the comparison of
modeling strategies; and finally devote most of my



