SADDLEPOINT METHODS

Comment

Ann F. S. Mitchell

Without doubt many interesting developments
and applications can be expected to arise from this
elegant and clear exposition of saddlepoint methods
in statistics.

I have little to add except to comment on the
similarities and dissimilarities in the geometry of
exponential families and transformation models. To
achieve the level of clarity of Nancy Reid’s presenta-
tion would require a lengthy and relatively technical
introduction to the basic ideas and concepts of the
differential geometry approach to statistics. As a com-
promise, albeit a relatively unsatisfactory one, the
reader is referred to Amari (1985) and Barndorff-
Nielsen, Cox and Reid (1986).

Although the exponential families are flat with
respect to the +1 connections of the family of a-
" connections described by Chentsov (1972), Dawid
(1975, 1977) and Amari (1982), transformation models
have constant scalar curvature but are not necessarily
flat for any a-value. The following well known two-
parameter transformation models, which are not expo-
nential families, illustrate what can happen. The
parameters are the location and scale parameters. The
Cauchy family is particularly unusual. It has constant
negative scalar curvature, which does not depend on
o and is thus never flat. However, the corresponding
Student’s ¢ family on k (k > 1) degrees of freedom is
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I would like to thank all the discussants for their
contributions. Many of the discussants, and several
colleagues, also sent me helpful comments on earlier
versions of the paper.

It is a measure of the interest in and potential of
saddlepoint methods that I expect this review will
soon be out of date!
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In the limit, as k — o, we get o = £1, the appropriate

values for a normal family that is both an exponential

family and a transformation model. The logistic family

is not flat for any value of a. These examples are

special cases of a subclass of transformation models,

studied by Mitchell (1988), and are the univariate

analogue of the well known class of multivariate
elliptic distributions.

Flatness plays an important role in defining unique
estimators based on projections and is discussed
extensively by Amari (1985), Lauritzen and Picard
(1987) and Lauritzen (1987).
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I am grateful to Hougaard and to Hinkley and Wang
for providing additional numerical work to supple-
ment Figure 1. Srivastava and Yau (1987) have also
derived the saddlepoint expansion for the noncentral
x? distribution. In work as yet unpublished, Yau has
derived the saddlepoint approximation for the density
and Lugannani and Rice’s tail area approximation for
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several statistics arising in multivariate analysis, such
as Wilk’s lambda, the Durbin-Watson statistic and
ratios of quadratic forms.

These and other examples, such as in Davison and
Hinkley (1988), are so impressive than one is naturally
tempted to find examples where the saddlepoint
approximation doesn’t work. As Kass points out, dis-
tributions that are far from normal might be expected
to be poorly approximated by saddlepoint techniques.
Aside from taking very small (n = 1) samples from
anomalous distributions such as the uniform or a
multimodal distribution (Feuerverger, 1988), it seems
difficult to find such examples. The extreme value
distributions, or rather statistics with limiting extreme
value distributions, are natural candidates, but even
here the situation is not clear. For example, the lim-
iting distribution of the minimum of a sample of
uniforms will be well approximated by the renormal-
ized saddlepoint approximation.

Feuerverger (1988) has also investigated the possi-
bility of using the empirical cumulant generating func-
tion, defined in equation (A1) in Hinkley and Wang’s
discussion, to estimate the saddlepoint approximation
to the true density or distribution function. Here the
situation is less promising than in estimating the
bootstrap distribution; the relative error of the esti-
mated saddlepoint approximation is at best 0,(n""/?),
and this is not uniform. I don’t think this is incon-
sistent with Wang’s result; the bootstrap approxima-
tion to the distribution of X — u is accurate to O,(n ™)
only if X — u is studentized (Hartigan, 1986).

I would like to thank the discussants, particularly
Barndorff-Nielsen, Daniels and Tierney, for addi-
tional historical notes and references. I hope the list
of references is now a fairly complete guide to the
statistical literature on second order asymptotics, and
apologize to authors whose contributions I have over-
looked. Davison has drawn my attention to the papers
by Cordeiro (1983, 1985, 1987) on Bartlett factors for
generalized linear models; these references should
have been included in Section 4. Further discussion of
the geometric interpretation of Bartlett factors is
given in Ross (1987). Hayakawa’s (1977) result is
corrected in Harris (1986).

My interest in the saddlepoint approximation
originated with an interest in the many recent
developments in what might be termed “improved
likelihood-based inference.” In much of this work
Barndorff-Nielsen’s formula plays a central role,
although as he points out, not always as a saddlepoint
approximation. It is, I think, quite striking that the
likelihood functions at the points on the sample space
give an approximate density that can be used for
inference directly. The connection between the renor-
malized likelihood function and Laplace’s method is
further discussed in Fraser (1988).

As noted by Mitchell, in the discussion of likelihood-
based inference and higher order asymptotics, the
geometry of the model seems increasingly to play a
crucial role. It was unfortunately not possible to
include discussion of this very interesting area in the
present paper. The geometrical interpretation of terms
arising in Taylor series expansions, initiated by
McCullagh and Cox (1986) in their discussion of the
Bartlett factor, and extended in Barndorff-Nielsen
(1986¢) and Murray (1988), seems likely to lead to
further understanding of the role of higher order
asymptotics in inference.

The discussants seem divided over whether or not
it will soon be easy to implement saddlepoint approx-
imations and other second order corrections in prac-
tical problems, with Daniels and Hougaard possibly
the most optimistic, and Kass rather more doubtful.
I am myself quite optimistic; I think that it will soon
be possible, and eventually even easy, to compute
corrections like the Bartlett factor in a relatively
straightforward manner.

Preparing this review has been very rewarding, not
least because of the interest and enthusiasm with
which the topic has been received by a great many
colleagues. I would particularly like to thank Professor
DeGroot for his encouragement and his editorial
efforts. .
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