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TABLE Al _
Approximations to bootstrap percentage points of X — p based on a
sample of n = 10 numbers with 1 d.p.

Via saddlepoint
Probability ~“Exact” @pproximation  Normal
R approx.
G. Gy
0.0001 —6.34 —6.32 —6.3130 —8.46
0.0005 —=5.79 —5.79 —5.7842 —7.48
0.001 —5.65 —5.53 —5.4223 —17.03
0.005 —4.81 —4.81 —4.8051 —5.86
0.01 —4.42 —4.44 —4.4331 —5.29
0.05 —-3.34 —-3.33 —3.3296 -3.74
0.10 —2.69 —2.69 —2.6863 —-2.91
0.20 —1.86 —1.86 —1.8556 -1.91
0.80 1.80 1.79 1.7956 191
0.90 2.87 2.85 2.8516 2.91
0.95 3.73 3.74 3.7480 3.74
0.99 5.47 5.47 5.4765 5.29
0.995 6.12 6.12 6.1212 5.86
0.999 7.52 7.46 7.4634 7.03
0.9995 8.19 7.98 7.9889 7.48
0.9999 9.33 9.11 9.1145 8.46

compared in Table A1, which includes also the “exact”
results obtained by Monte Carlo with 50,000 simulated
samples, as well as normal approximation results
obtained with the correct mean and variance for D.

Comment

Luke Tierney

Professor Reid’s paper is an excellent review of the
use of saddlepoint methods in statistics. In this
comment I would merely like to expand briefly on
Professor Reid’s discussion of the relation between
saddlepoint approximations for sampling distribu-
tions and approximations to posterior moments and
marginal densities based on Laplace’s method.

As described, for example, in De Bruijn (1970) the
basic Laplace method and saddlepdint method both
involve approximating a number a, defined as a, =
[ f.(y) dy for some function f, when n is large. For
Laplace’s method the function and its arguments are
real, for the saddlepoint method the function is com-
plex and the integral is over a path in the complex
plane. In both cases it is assumed that the behavior of
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Calculations using G, never differ from those using G,
by more than 3 X 107

The success of the saddlepoint approximation in
this example extends to many bootstrap and permu-
tation distributions, so long as we restrict ourselves to
problems involving sums as in Daniels’s papers. We
are unaware of comparable saddlepoint approxima-
tions for general nonlinear statistics. For practical
purposes the key result would be the analog of Reid’s
(28) for statistics T, of the form

Tn =0+ n_l Z aj(Xj) + n_2 22 bjk()(j, Xk),

because many statistics are very well approximated
by such an expression. The relevant approximation
would apply, for example, to the bootstrap distribu-
tions of studentized linear estimates.
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the integral is determined by the behavior of f, in the
neighborhood of a particular point y,. For Laplace’s
method y, is a local maximum, for the saddlepoint
approximation it is a saddlepoint.

The statistical applications of the saddlepoint

_approximation discussed by Professor Reid add some

new features. Rather than approximate a single num-
ber a, these methods approximate a density function
&n(x) given as g,(x) = [ fu(x, ) dy. As n increases the
density g.(x) becomes concentrated about some point
x, at rate n~Y2. The point x, represents the mean or
some other measure of the center of the distribution
with density g.(x). For each value of the argument of
the density g.(x) the saddlepoint approximation
involves the determination of the corresponding sad-
dlepoint y, = y,(x) of the function f.(x, -).

This use of the saddlepoint approximation closely
resembles the use of Laplace’s method for computing
approximate marginal posterior densities as described
in Leonard (1982) and Tierney and Kadane (1986). In
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that case the function f, represents the joint density,
g, the marginal density. The point x, represents the
center of the marginal distribution g, and y, = y,.(x)
is the conditional mode of the distribution of y
given x. Of course this approximate marginalization
does not require f, to be a posterior distribution.
Phillips (1983) uses this approach to approximate the
marginal sampling distribution of various econometric
estimators.

The asymptotic properties of the saddlepoint
approximation to sampling distributions and the
Laplace approximation to marginal densities are very
similar. Both yield approximations that have errors
uniformly of order O(n™") on fixed neighborhoods of
x,. Both benefit from numerical renormalization in
the sense that the absolute errors of the approxima-
tions are of order O(n~%?) in n~*2-neighborhoods of
X.. Another interpretation of this result is that the
shapes of the densities g,(-) are approximated to order
O(n~%?) by both methods.

The approximation of posterior expectations by
Laplace’s method is somewhat different. A single
number is to be approximated rather than a function.
Direct application of Laplace’s method yields the max-
imum likelihood estimate or the posterior mode as an
approximation to the posterior mean. The error of
this approximation is of order O(n™'). More accurate
approximations with an error of order O(n~?) can be
obtained by using higher order terms, as described
by Lindley (1980), or by using different centers for
the expansions of numerator and denominator inte-
grals, as described in Tierney and Kadane (1986) and
Tierney, Kass and Kadane (1987).

Comment

Robert E. Kass

The world of asymptotics is beautiful and mysteri-
ous. Witness Stirling’s approximation, and recall the
first time you needed to use it. What explains the odd
yet simple formula, you may have asked, and more,
How is it that with one correction term it already
achieves 99.95% accuracy in approximating factorials
as small as 2? Marvel at Figure 1. But recognize, each
time we consider a sample of size n to be part of an
infinite sequence of observations, we are faced with
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The approximate predictive densities discussed
in Leonard (1982), Tierney and Kadane (1986) and
Davison (1986) fall somewhere between marginal
density and moment approximations. Because a pre-
dictive density is a density, its approximation would
appear to be more closely related to the approximation
of marginal and sampling densities. On the other
hand, the predictive density at a particular point can
be expressed as a posterior expectation. The result of
applying second order expectation approximation, as
in (4.1) of Tierney and Kadane (1986), is an approxi-
mation to the predictive density with an error of order
O(n™?). The order of this error term will generally not
be improved by numerical renormalization. As a result
I feel that these approximate predictive densities are
more closely related to approximate expectations than
to approximate marginal densities.

I hope that these comments have added to the
discussion in Section 6 of Professor Reid’s excellent

paper.
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an irony: limits do not depend on the first n values,
yet they are able to inform us about the behavior of
the sample. Our finite world seems tied to asymptopia,
but how?

Second-order asymptotic results continue to pro-
duce this feeling of awe and amazement in those who
aren’t yet familiar with them. Nancy Reid’s review
not only tells the saddlepoint story, it also nicely
demonstrates the similarity of method in applications
to maximum likelihood and conditional inference,
robust estimation and Bayesian analysis. My com-
ment consists of (i) a brief description of the relation-
ship between Laplace’s method and the saddlepoint



