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be required to be of equal precision. For example, in a
clinical trial for a new drug it is not uncommon to
include two controls, a placebo and an existing active
drug. For regulatory purposes, it often is necessary to
demonstrate the magnitude of the activity of the new
drug, and therefore the comparison with the placebo
is the more impotrtant. It is not always necessary to
demonstrate to the regulatory agency that the new
drug is more effective than the existing drug. But for
the purposes of the pharmaceutical company’s mar-
keting efforts, in fact, the second comparison is likely
to be the more important. This latter comparison
would generally be two-sided. Such considerations
should be taken into account before determining how
to optimally allocate the available experimental re-
sources to different competing test treatments and the
controls.

A final brief note concerning nomenclature. We
suggest that the word “control” should be used rather
than “standard” because the latter sometimes refers
to a known benchmark value; this is the case, e.g., in
the physical sciences (although, not always in the
biological sciences). Clearly, if the comparisons are
made with a known benchmark then the device of
blocking cannot be used.

We again express our gratitude to the authors for
this state-of-the-art survey and to the editor for giving
us an opportunity to comment on it.
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Comment

William [. Notz

Sam Hedayat, Mike Jacroux, and Dibyen Majumdar
are to be congratulated on this very thorough survey
- of optimal designs for comparing test treatments with
a control. This paper is an excellent starting point for
anyone wishing to do research in this area and it is a
nice reference for those of us actively engaged in such
research. Unfortunately, any such survey begins to go
out of date the moment it is completed as research
goes ever forward. The authors can do nothing about
that, however.

William 1. Notz is Associate Professor, Department of
Statistics, The Ohio State University, 1958 Neil Ave-
nue, Columbus, Ohio 43210.
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ical Sciences Institute of Cornell University. We are
indebted to Professor Charles Dunnett for his insight-
ful comments and suggestions on an earlier draft of
this article.
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Let me begin my comments by describing the his-
tory of my own involvement in this area of research.
If nothing else, this will at least add a little historical
color.

I first became acquainted with this area of research
as a relatively new assistant professor at Purdue. In
the Autumn of 1980, Bob Bechhofer came to Purdue
as a colloquium speaker. He spoke about results he
and Ajit Tamhane had obtained on incomplete block
designs for comparing test treatments with a control
and which were soon to appear in Bechhofer and
Tamhane (1981). One unsolved aspect of the research,
which Bob invited those of us in the audience to try
and solve, involved constructing finite sets of designs
(so-called minimal complete sets of generator designs)
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from which all admissible balanced treatment incom-
plete block designs (BTIBs described by Hedayat,
Jacroux and Majumdar) could be generated. Admis-
sibility was defined in terms of the joint confidence
coefficient for the elementary treatment-control con-
trasts, i.e., the contrasts t; — ¢, to use the notation of
Hedayat, Jacroux and Majumdar, resulting from a
given design. Having exhausted research ideas result-
ing from my thesis, I was looking for new fields to
conquer and so began to work on this admissibility
problem. After a few weeks I began to get solutions to
the problem. I communicated these to Bob who en-
couraged me to keep working. Bob also passed my
results along to Ajit who noticed several ways to
shorten proofs and who provided me with some addi-
tional useful results. Ajit and I pooled resources and
eventually published our work (Notz and Tamhane,
1983). Tire, then a Ph.D. student of Cheng at Berke-
ley, was also working on this problem. In 1982 Tire
improved upon our methodology and extended our
results.

Shortly after completing the article with Ajit, I had
a chance to talk with Jack Kiefer, who was at Purdue
in the spring of 1981 for the Third Purdue Symposium
on Decision Theory and Related Topics, about the
problem of finding block designs for treatment-control
comparisons. He suggested I try to find designs opti-
mal with respect to ellipsoidal criteria such as D-, A-
or E-optimality. These criteria measure, in some
sense, the size of the ellipsoidal joint confidence region
associated with the space of all linear combinations of
the elementary treatment-control contrasts t; — &.
Notice that this space includes arbitrary contrasts in
the test treatments alone as a v — 1 dimensional
subspace. Jack Kiefer wondered how designs optimal
under such criteria might compare with the admissible
designs of Bechhofer and Tamhane (1981). It should
be kept in mind that in Bechhofer and Tamhane
(1981) attention was restricted to the class of BTIB
designs and then designs which were admissible in
this class were sought. Would BTIB designs remain
optimal under the criteria suggested by Kiefer if the
class of allowable designs was enlarged to include all
block designs? -

As a former student of Jack’s I knew his suggestions
were not to be ignored, so I began working out the
structure of such optimal designs. By the end of the
summer of 1981 I had an article written which I sent
to The Annals of Statistics. Unknown to me, that same
summer Dibyen Majumdar had independently ob-
tained similar results and had submitted his work to
Journal of Statistical Planning and Inference. Fortu-
nately a kind editor or referee noticed the two papers
and suggested we combine our work into a joint paper
for The Annals of Statistics. The result was Majumdar
and Notz (1983). We found that certain types of

BTIBs were optimal so that not all the admissible
BTIBs of Bechhofer and Tamhane (1981) were, say,
A-optimal but A-optimal BTIBs were admissible. In
addition, which designs were optimal (in particular,
how many times the control was replicated) depended
on the criterion used. Thus for comparing test treat-
ments with a control one does not have the same sort
of universal optimality enjoyed by balanced incom-
plete block designs for estimating all treatment con-
trasts. A number of researchers, Hedayat, Jacroux and
Majumdar being prominent among them, have sub-
sequently greatly extended these early results.

So much for personal history. Some comments on

Hedayat, Jacroux and Majumdar’s article are now in
order. In my opinion, it was the paper by Bechhofer
and Tamhane (1981) that sparked the majority
of recent research on optimal designs for comparing
test treatments with a control. None the less, re-
searchers (myself included) abandoned the approach
of Bechhofer and Tamhane fairly quickly and focused
attention on more tractable criteria (the influence of
Jack Kiefer?) such as A-optimality and MV-optimal-
ity. As Hedayat, Jacroux and Majumdar point out,
these criteria have nice interpretations in terms of the
elementary treatment-control contrasts. Other ellip-
soidal criteria do not have this feature, although they
also are relatively tractable. When I talk with re-
searchers in multiple comparisons such as Bob Be-
chhofer, Ajit Tamhane or Jason Hsu, a colleague at
Ohio State, I find that they would like to see research
return to designs which optimize some features of the
rectangular joint confidence regions for the elemen-
tary treatment-control contrasts. The first issue I
would like to raise, therefore, is what sort of criteria
might be useful? Such criteria might be difficult to
work with but progress in this direction would make
optimal design results more appealing to researchers
in the area of multiple comparisons. This issue is not
really addressed by Hedayat, Jacroux and Majumdar
although any thoughts they might have would be
worth hearing.
" My second comment is related to the first and
involves the issue of robustness of designs under vary-
ing criteria of optimality. As Hedayat, Jacroux and
Majumdar point out, for estimating all treatment con-
trasts balanced incomplete block designs are optimal
under a broad class of criteria. Such a general result
does not hold for BTIB designs, yet the A-optimal
BTIB designs are also MV-optimal and admissible in
the Bechhofer and Tamhane (1981) sense. In addition
I believe it is not hard to show (for what it is worth)
that A-optimal BTIB designs minimize criteria of the
form

é f(var(t; — to))



482 A. S. HEDAYAT, M. JACROUX AND D. MAJUMDAR

where t; — £, is the best linear unbiased estimate of
the elementary treatment-control contrast t; — ¢, and
f is a convex, nondecreasing function. It is interesting
to speculate, therefore, as to whether or not A-optimal
BTIB designs are optimal over a large class of “rec-
tangular” optimality criteria. To answer this, of
course, requires coming up with suitable criteria as
indicated in my first comment. Similar questions
might be raised regarding optimal row-column designs
also.

As a third comment, I would like to thank the
authors for including material on Bayesian approaches
to the design problem. Such approaches seem fairly
natural in this setting because often the control treat-
ment is a standard treatment about which we have
considerable prior information whereas the test treat-

Comment

A. Giovagnoli and I. Verdinelli

This is a very useful survey of many known results
on optimal designs of experiments when one of the
treatments is a control. It comprises a wide variety of
results and it is impossible to comment on each one
of them in detail. We shall pick up some general
themes.

The first remark is on the choice of the optimality
criteria. The title is actually somewhat misleading,
because the only optimal designs that are surveyed in
it are A- and MV-optimal ones. A-optimality and MV-
optimality certainly appear to have very intuitive and
appealing statistical interpretations and, according to
the authors, are the most widely studied criteria for
this type of experimental design. It is a rather disturb-
ing thought, however, that neither of these criteria

takes into account the covariances of the estimated

treatment-control contrasts.

Besides, other criteria may be relevant in this
context. For pilot experiments- when the control is
taken to be known and the interest lies in testing
whether or not the overall effect of the new
treatments is appreciable, we may want to contrast
the average new treatment effect with the old one and

A. Giovagnoli is Associate Professor, Dipartimento di
Scienze Statistiche, Universita degli Studi di Perugia,
Via A. Pascoli, 06100 Perugia, Italy. 1. Verdinelli is
Associate Professor, Dipartimento di Statistica, Prob.
e Stat. Appl., Universita di Roma, Piazzale A. Moro 5,
00185 Roma, Italy.

ments are new and less is known about them. One’s
prior knowledge about the control should be incorpo-
rated into the design and, as one would expect, Baye-
sian results indicate the effect is to reduce the number
of replications of the control. To my knowledge, exist-
ing Bayesian results have been obtained by allowing
approximate designs and optimal designs are often
approximate designs. Although seemingly a hard prob-
lem, exact Bayesian design results would be quite
interesting. Are the authors aware of any research in
this direction?

In summary, Hedayat, Jacroux and Majumdar are
to be thanked for a readable and thorough survey
article. It is to be hoped that this article will stimulate
further research and such research will answer, among
other things, the questions I have raised above.

minimize var(}; fi/v - fo), i.e., min var Y, (& — &),
i =1, ..., v. This criterion, which can be easily
extended to the case of more than just one control, is
also mentioned by Majumdar (1986) and it seems
appropriate to call it J-optimality because it reduces
to minimizing trace(JPC; — P’), with J the v X v
matrix of all ones. In Giovagnoli and Righi (1985) and
Notz (1985), it is shown that certain J-optimal designs
are also E-optimal, where E-optimality is defined as
minimizing the maximum variance of all the estimated
contrasts Y ci(t; — to) with ¥; ¢? = 1, and conversely
some sufficient conditions for E-optimality turn out
to ensure J-optimality too. Thus although E-optimal-
ity does not appear to have a very natural statistical
interpretation when there is a control, E-optimal plans
may also deserve attention in some cases.

Lastly we would like to stress that in the Bayesian
approach, due to the (possibly) different prior as-
sumptions on the test treatments and the control, it
is no longer true that designs which are D-optimal for
inference on treatment-control contrasts, i.e., which
minimize the determinant of the posterior covariance
matrix of those contrasts, are always D-optimal for
any set of contrasts. Thus in this case it is worthwhile
to look at D-optimality too.

J-optimality shares with A- and MV-optimality
(and also with E- and D-optimality, and others) the
property of being invariant under all relabeling of the
test treatments which leave the control unchanged.
We believe this invariance under a suitable group to
be the key to many results on optimal designs, and in



