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Comment

Randy Eubank

The author is to be congratulated on his insightful
and far-reaching article. This article represents a sub-
stantial contribution to the field of nonparametric
function estimation due in particular to the many new
application areas it will introduce to statisticians who
are concerned with developing such methodology. The
collection of examples Professor Ramsay presents
pose challenging problems, that are also of practical
importance, for study by nonparametric data model-
ers. It will be interesting to see the alternative solu-
tions that are sure to be developed as a result of this
article. I am delighted to get one of the first shots at
this and will suggest some other possible approaches
in Section 2 below.

I found myself in agreement with much of what
Professor Ramsay has said. My few points of disa-
greement are methodological, rather than philosophi-
cal, and therefore minor. My primary concerns are
related to the problems of knot selection and inference
in spline fitting. Here my experiences appear to be
almost the opposite of the author’s. I will elaborate
further on this in the next section.

It seems to me that nonparametric and paramecric
estimation methods are too often viewed as competi-
tors to one another. There is no reason that these
methods cannot or should not be used in tandem.
Indeed, it is foolish to do otherwise when conducting
exploratory data analyses. I would therefore like to
expand on Professor Ramsay’s point concerning his
example in Section 4.1. He notes that although his
nonparametric approach did not lead to new results,
it provided us with reassurance concerning a para-
metric fit. This is an illustration of how nonparametric
procedures can provide diagnostic checks concerning
the validity of parametric models. Whereas no diffi-
culties were uncovered with the parametric model for
the data in question, this need not always be the case.

* Serious parametric modeling deficiencies can be un-
covered by comparison with nonparametric fits. An
excellent illustration of this is the growth curve analy-
sis conducted by Gasser, Miiller, Kéhler, Molinari and
Prader (1984).

1. CHOOSING KNOTS, INFERENCE AND
RELATED ISSUES

The transformations Professor Ramsay employs are
splines of some specified order k with n knots having
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locations contained in a set ¢,. In practice &, n and ¢,
must all be selected in some fashion. I agree with the
author that the choice of k is generally not crucial;
with k = 4 (i.e., cubic splines) being statisfactory for
most purposes (provided the number and locations of
the knots have been chosen correctly). However, he
also indicates that good choices of n and ¢, can be
easily made and that the shape of a spline function is
robust with respect to these choices. This view is
inconsistent with my experiences and those of many
others.

To illustrate my point, consider the data in Fig-
ure 1 which represent a property, Y, of titanium as a
function of heat, X. (See de Boor (1978), page 222 for
the actual data.) Three cubic splines have been fitted
to the data via least squares, the first uses five uni-
formly spaced knots whereas the second has five knots
that have been selected more carefully. Notice that
although both fits have the same order and number of
knots, they are not even remotely similar in shape.
The spline based on uniformly spaced knots is also a
woeful fit being very little (if at all) better than fits
obtained using polynomials.

This example illustrates that knot placement can
be crucial for both the shape and quality of a spline
fit. Some ad hoc rules for good knot placement can be
found in Wold (1974). They are motivated by the same
considerations which led the author to propose his
two guidelines for this purpose in his Section 3.

A more objective knot selection can be accomplished
by optimizing the estimation criterion of interest with
respect to both the knot set ¢, and the vector a of
spline basis coefficients. For example, both ¢, and a
could have been chosen to maximize the sample like-
lihood in the examples discussed in Sections 4.1 and
4.2. This idea is by no means new and has even been
suggested by the author (Winsberg and Ramsay,
1980). The second fit in Figure 1 was obtained by
optimizing the knot locations and therefore illustrates
the gains to be realized from optimal knot selection.

Once the knot locations have been optimized, n can
be chosen using various model selection techniques. A
criterion such as that of Akaike (1974) would be easy
to use with likelihood-based fitting methods.

Unfortunately, I am not optimistic about the prac-
ticality of methods for optimal knot selection. In the
context of least squares estimation this is a very poorly
behaved nonlinear optimization problem (Jupp, 1978).
It is unlikely that matters will improve for more
general likelihood-based methods.

An alternative approach to selecting knots is to
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choose the knots to be the n-tiles of some density,
such as a uniform, and then optimally select n via
model selection methodology. Knots which do not
contribute to the fit can be eliminated using appro-
priate statistical tests for their corresponding basis
function coefficients. This is in the spirit of proposals
by Smith (1983) and Stone (1985). An illustration of
this procedure is provided by the third fit in Figure 1.
Here the knots were uniformly spaced with the num-
ber of knots selected by generalized cross-validation
(GCV). (See, e.g., Golub, Heath and Wahba, 1979.)
The fit selected by GCV includes 19 knots (only five
of which really contribute to the fit) and is quite
similar to the fit obtained using five optimal knots.
The above discussion is intended to indicate that
the issue of knot selection is not, in general, as ele-
mentary as the author seems to suggest. However,
Professor Ramsay is primarily concerned with mono-
tone transformations which exclude the possibility of
functions with peaks and valleys and, in particular,
my example in Figure 1. I wonder if monotonicity
simplifies the knot selection problem and would be
interested in the author’s experiences and insights
concerning this case. I am especially curious as to why

good results should be expected from the placement
he suggests of locating knots at the n-tiles of the
variable to be transformed.

Another point on which I would like to comment
concerns the author’s approach to interval estimation
of the transformed predicted values. The intervals he
employs are constructed using variances that are com-
puted as if the actual transformation which makes the
data lognormal, or whatever, is a spline. In fact, there
is a true transformation f(-) which accomplishes this
that is being approximated in some sense by a spline
function f(-; a). Thus there are two sources of esti-
mation error: the difference between f(.) and f(-; a)
and the difference between f(-; a) and its estimator
f(-; a). Typically, the method of inference utilized by
Professor Ramsay can be expected to adequately
account for the random error resulting from the
difference between f(-; a) and f(-; a) but will not
include appreciable information on the deterministic
error f(-) — f(+; a). If the latter component is substan-
tial, this can create problems with interval estimates
for fitted or predicted values because they will not be
correctly centered. Such problems will not improve by
optimal selection of n and ¢,. I also feel it is unlikely
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that jackknifing or bootstrapping will prove to be a
panacea for these difficulties, although I would like to
be proven wrong. It therefore seems prudent to at least
utilize root mean square error estimates in this type
of interval estimation rather than standard errors that
are based on an admittedly wrong transformation
model. A possible advantage of the alternate methods
proposed in the next section is that they have a
Bayesian interpretation that has been shown in some
cases to lead to “confidence intervals” that provide
some compensation for bias.

2. PENALTY FUNCTION METHODS

In this section I would like to outline an alternative
approach to estimating transformations of a variable
Y. The class of procedures I will describe might be
termed penalty function methods and are formulated
as follows. Given a vector y of R observations on a
variable Y that is to be transformed, a transformation
is estimated by minimizing a criterion of the form

QU; f) = Gly; f) + 0S(f), 6>0,

over an appropriate collection of transformations or
functions f. The criterion @ is a sum of two compo-
nents. The first of these, G(y; f), is assumed to assess
the goodness-of-fit of the transformation to the data,
whereas the second, S(f), will measure the smoothness
of f. The parameter 6 then governs how much weight
is given to the two competing aspects of the criterion.
A typical choice for S is S(f) = [(f"(t))’dt which
measures the curvature of the transformation. In the
context of regression analysis G(y; f) is usually taken
to be the sum of squared errors. However, for general
applications G can be chosen to be many things in-
cluding the negative of the log of the sample likelihood.

General results which can be used to answer ques-
tions concerning the existence and uniqueness of es-
timators derived from @ are given in Tapia and
Thompson (1978) and O’Sullivan (1983). Techniques
for computing and analyzing the properties of such
estimators are provided by O’Sullivan (1983, 1986)
and O’Sullivan, Yandell and Raynor (1986). Code
which might be adapted for computational purposes
is discussed in Bates, Lindstrom, Wahba and Yandell
(1987).

If the transformation is required to be monotone,
convex, positive or whatever, this can be accomplished
by restricting the functions over which € is minimized
accordingly. Methodology that may prove useful in
the analysis of the resulting constrained minimization
problem is described in Tapia and Thompson (1978),
Wright and Wegman (1980), Utreras (1985) and
Villalobos and Wahba (1987).

Objective data-driven choices for the parameter 6 in
Q can be made using natural parallels of the general-

ized cross-validation criterion. The basic idea is de-
scribed in O’Sullivan, Yandell and Raynor (1986).

To illustrate the idea, consider the problem of trans-
forming log(Y) to normality. Then one might attempt
to find a transformation f which minimizes the pen-
alized likelihood criterion

R 2
Qif) = % ((f(k;igy,»

r=1

— log(f' (log(y»)) + 10g(yr)>

+ OJ: (f'())* dt

subject to f = 0. One can show that if @ is minimized
over the set of all absolutely continuous functions
with absolutely continuous, nonnegative derivatives
and square integrable second derivatives, there will be
a unique minimizer that is a cubic spline function with
one continuous derivative. Variants of this particular
suggestion could be employed to give alternate anal-
yses for the problems discussed in Sections 4.1 and
4.2. Specific details will be treated elsewhere. How-
ever, one of the interesting and desirable aspects of
this proposal is that when 6§ = o the estimator of f
reverts back to the one obtained by using the para-
metric power transformation bY?, because then f must
be linear in log(Y). To quote Silverman (1982), “Since
one of the objects of nonparametric methods is to
investigate the effect of relaxing parametric assump-
tions, it seems sensible that the limiting case of
a nonparametric ... estimate should be a natural
parametric estimate.”

Some specific penalty function methods for
the analysis of the other examples studied by Pro-
fessor Ramsay are also easy to formulate and have
already been studied in some cases. For example, an
analysis similar to the one conducted on the data in
Section 4.3 using an additive approximation could be

- carried out using the interaction splines developed by

Wahba (1986). For situations such as those of Sections
4.6 and 4.7 where dichotomous response variables are
to be analyzed, penalty function techniques have been
used by O’Sullivan, Yandell and Raynor (1986) and
Villalobos and Wahba (1987). Concerning the case of
the canonical correlation example in Section 4.4 and
the principal components example of Section 4.5, G
might be chosen to be the canonical correlation coef-
ficient and Ramsay’s trace criterion which could then
be paired with suitable smoothness penalties to obtain
transformation estimates.

When G is chosen to be the log of the sample
likelihood, penalty function methods will be inti-
mately related to Bayesian procedures with S(f) rep-
resenting a prior for the transformation. (See Wahba
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(1978, 1983) and references in Eubank (1988).) This
connection can be exploited to derive Bayesian pre-
diction intervals that can be used for interval estima-
tion concerning values of f. Results in Wahba (1983)
and Nychka (1986), for the special case of regression
analysis, indicate that these Bayesian intervals use
what is very nearly a mean squared error estimate in
their assessment of estimation error. One might hope
this would carry over to the more general setting
discussed above; although, at present, this remains an
open issue.

3. SPLINE SMOOTHING VERSUS SPLINE
REGRESSION

The two approaches to estimating transformations
set out in Professor Ramsay’s article and the previous
section are fundamentally different in nature. These
differences are easiest to see in the setting of regres-
sion analysis. Therefore, let us assume a simple re-
gression model with a uniform design wherein

y,=f(r/R) +e¢, r=1,---, R,

with f representing an unknown regression function
and the & assumed to be zero mean, uncorrelated
random errors having some common variance. A
smoothing spline estimator of f can be obtained by
minimizing ¥,(y, — f(r/R))* + 6 [ (f’(t))’dt. When
formulated appropriately, the solution to this problem
is a cubic natural spline with knots at the data values.

Another possible estimator, that is more in line with
the article under discussion, is a cubic spline regres-
sion estimator of f. For simplicity assume that the
knot set ¢, has been chosen a priori and let f(-; a)
denote a cubic spline with knots at ¢,. Then a least
squares or regression spline estimator of f is obtained
by minimizing ¥.(y, — f(r/R; a))? with respect to the
vector of basis coefficients a.

Professor Ramsay suggests that the principal dif-
ference between these two methods for estimating f is
that the cubic smoothing spline has R knots, one at

, each data value, whereas the least squares spline es-
timator has some specified set of knots t,. He then
equates the number of knots to relative degrees of
freedom for inference and flexibility of the two meth-
ods. Such statements are, in my view, both misleading
and incorrect.

First note that the knot locations play no role
whatsoever in controlling the actual shape of a
smoothing spline. This is governed by the smoothing
parameter 6. In contrast, the number and the locations
of the knots are entirely responsible for the shape or
smoothness of a least squares regression spline. It is
therefore clear that relative location and number of
knots represents only a superficial difference between

the two methods. For an accurate comparison one
must look a little deeper than this.

Both smoothing splines and least squares splines
are linear estimators. Thus, in each case there is a
function W(., -) such that the fitted or predicted
value at a point x can be written as Y,y,W(x, r/R). In
the case of smoothing splines, work by Silverman
(1984) has the consequence that W(x, y) = W(|x —
y|/6%)/R6" for a specific symmetric kernel function
W(.). Thus smoothing spline estimators behave es-
sentially like kernel estimators in the way they use
the data. The corresponding form of W(x, y) for least
squares splines is not so simple. In particular, it cannot
be expressed as, or even well approximated by, a
function of only |x — y|. Its shape is governed by
where x and y lie relative to the knot set t,. Thus, in
my opinion, the principal difference between smooth-
ing and least squares splines lies in how they smooth
the data. Smoothing splines can be expected to
perform like kernel estimators whereas least squares
splines will not.

Because least squares splines are obtained by a
projection, it makes sense to tie the number of knots
(or equivalently the number of basis functions) to
degrees of freedom. Smoothing splines do not stem
from a linear projection and, hence, what is meant by
degrees of freedom in this case is less clearcut. Some
suggestions for what should be used for degrees of
freedom for inference with smoothing splines have
been made by Wahba (1983) and Green, Jennison and
Seheult (1985).

4. SUMMARY

The article by Professor Ramsay describes a number
of exciting application areas and analysis techniques
for those interested in nonparametric data modeling.
In the above discussion I have indicated some possible
alternative methodology and some points of disagree-
ment with the inference procedures that were em-
ployed. However, such details should not be confused
with what I feel is the main issue here: namely, the
benefits that can be realized from using flexible, non-
parametric estimation procedures in lieu of, or in
conjunction with, parametric methods. It is my sus-
picion that many people choose to use parametric
methods, even when they know they are not appro-
priate, because they feel the results will be more
interpretable. Professor Ramsay has aptly demon-
strated in his article that important and interpretable
conclusions can also be drawn from data using non-
parametric procedures. For this he has my vote of
thanks.
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Comment

Trevor Hastie and Robert Tibshirani

Professor Ramsay has written an informative paper

about a topic that is new (at least to us) and deserves

exposure. The techniques that he describes and his
software implementations are potentially useful in a
number of different areas. However, we found that
after careful reading of the paper and experimenting
with monotone splines, we are in substantial disagree-
ment with him over a number of important points. In
particular:

¢ The monotonicity assumption inherent in mono-
tone splines will sometimes (often?) be unwar-
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ranted. A more useful modeling technique allows
a choice of smoother for each variable, perhaps
between linear, monotone and nonmonotone, to-
gether with a strategy for selecting the appropri-
ate form. A general estimation procedure called
backfitting can be used to estimate models of this
kind.

e The number and position of knots can make a
difference and we can see no clear way to make
these choices. Other smoothing techniques such
as smoothing splines have the significant advan-
tage that a single smoothing parameter controls
the smoothness of the output.

e The number of parameters inherent in a mono-
tone spline is not “far fewer” than the number in
a cubic smoothing spline or other common
smoothers, given a comparable amount of smooth-
ness.

e The data analysis in the paper are somewhat weak
and potentially misleading.



