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Monotone Regression Splines in Action

J. 0. RAMSAY

Abstract. Piecewise polynomials or splines extend the advantages of poly-
nomials to include greater flexibility, local effects of parameter changes and
the possibility of imposing useful constraints on estimated functions. Among
these constraints is monotonicity, which can be an important property in
many curve estimation problems. This paper shows the virtues of monotone
splines through a number of statistical applications, including response
variable transformation in nonlinear regression, transformation of variables
in multiple regression, principal components and canonical correlation, and
the use of monotone splines to model a dose-response function and to
perform item analysis. Computational and inferential issues are discussed
and illustrated.

Key words and phrases: Regression splines, monotone transformation, non-
linear regression, semiparametric principal components analysis, Eckart-

Young approximation, dose-response, item regression function.

1. INTRODUCTION

The problem of estimating some transformation of
a variable x — f(x) is so basic to statistics that it often
goes unrecognized. For example, were linear regression
discussed as a data transformation problem more fre-
quently, there might be a stronger desire to move
beyond this most elementary of transformations. The
motives for nonlinear transformations include:

Estimation: An interest in the function f itself (as
in nonlinear regression).

Reformatting: Transforming the data so that
some prespecified model or relationship fits better
(as in transformation to normality).

Redefining: Moving the data from one domain
such as the entire real line to another such as [0, 1]
(as in dose-response function estimation or bio-
assay).

Approximation: Replacing a complex and/or
noisy relationship by something simple but reason-
able (as in interpolation and smoothing).

Whatever the motive, the statistician needs a flexible
set of functions appropriate to the job. Spline func-
tions are fast replacing polynomials in this role, and
this article tries to show why. By illustrating splines
in action in a wide variety of settings, it aims to
convince the reader that they work remarkably well.
Monotonicity can be essential in a data transfor-
mation. Often the inverse transformation is required
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in order to describe effects in terms of the original
variables, and in some instances theoretical consider-
ations require this feature. Attempting to impose mon-
otonicity on polynomials quickly becomes unpleasant.
A spline function, on the other hand, is easily con-
strained to be everywhere nondecreasing (or nonin-
creasing) while still retaining its essential flexibility.
This is achieved by imposing nonnegativity on the
parameters which define it. Because these simple lin-
ear inequality constraints can always be relaxed where
monotonicity is inessential, the models used in this
paper lose no generality by being restricted to mono-
tone splines.

It is hoped that enough “how to” material can be
found in this paper to enable the reader to move
quickly to trying out splines in his favorite context.
Emphasis here is on computation rather than mathe-
matics, because there are now many excellent refer-

. ences on the mathematics of splines at all levels (e.g.,
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Chambers, 1977; de Boor, 1978; Schumaker, 1981).

2. WHAT ARE SPLINES?

In this section the concept of a polynomial regression
spline defined on an interval [L, U] is introduced as a
piecewise polynomial with specified continuity con-
straints. The continuity characteristics of the spline
and the number of independent parameters which
define it depend on a knot sequence t which partitions
this interval into a number of subintervals. Associated
with t is a suitable set of basis splines that can be
combined linearly to yield any other spline associated
with this knot sequence. This set of basis functions is
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then modified to provide a computationally conven-
ient and meaningful basis for monotone splines, re-
ferred to as I-splines. A monotone spline function can
be constructed from these I-splines by taking a non-
negative linear combination. The approach is dis-
played in Figure 1 showing such a monotone spline.
Further discussion and interpretation of Figure 1 is
given later in this section.

In the first part of this section the properties of the
knots are described, and the second part defines the
M-spline and I-spline bases. Readers unconcerned or
already familiar with these details may wish to skip
to the next section discussing computational issues or
to Section 4 in which applications are taken up.

Only a very limited introduction to the vast and
fascinating topic of splines is possible here. Fortu-
nately, there are now many excellent introductions to
both the mathematics of splines, and also to their
applications to data analysis. The review of splines in
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F1G. 1. The six M-splines and associated I-splines of order 3 asso-
ciated with the interior knots .3, .5 and .6. The dotted lines indicate
the linear combination of splines resulting from the coefficients 1.2,
2.0, 1.2, 1.2, 3.0 and 0.0 (and divided by 6 for the I-splines). Note
that the effect of the final zero coefficient is an M-spline which returns
to zero and an I-spline which has zero slope at unity.

statistics by Wegman and Wright (1983) is particu-
larly recommended.

Polynomials, f(x) = Y%, a;x"!, owe their central
role in practical mathematics to two features: they are
linear in the parameters a; to be estimated, and the
functions x'~! that are linearly combined are easy to
manipulate algebraically and numerically, especially
with respect to differentiation and integration. A
transformation family which does not have both of
these features will not be likely to find wide applica-
bility.

However, polynomials do have one serious limita-
tion: a lack of flexibility in the sense that changing
the behavior of f near one value x; has radical impli-
cations for its behavior for any other value x,. Thus,
a polynomial transformation which is quite satisfac-
tory for values of x in, say, the central portion of their
distribution, may exhibit very unpleasing features in
the tails. This can be disastrous for certain problems
such as density or distribution function estimation
requiring some predetermined characteristics such as
nonnegativity and small derivatives in these regions.
This poses the problem of how to retain flexibility
where it is needed, while leaving the function else-
where either relatively unaffected or constrained as
desired.

A polynomial spline achieves these objectives by
constructing f from polynomials joined end-to-end.
That is, an interval [L, U] is subdivided by a mesh A
consisting of points L = § < ... < ¢, = U. Within
any subinterval [£;, £;.,) the function is a polynomial
P; of specified degree k — 1 or order k.

Crucial to the practical value of splines is the fact
that adjacent polynomials are required to join with a
specified degree of smoothness at the boundaries &,.
Smoothness is usually defined as the equality of
the derivatives, (D" 'P;)(£j41) = (D™ 'Pjs1)(§j4+1),
m=1, ..., v;, where the notation (D™ 'P;)(£) means
d"'P/dx™"! evaluated at argument £ if m > 1 and
(D°P)(£) = P(£). In the most common case, all orders
of continuity v; are specified as the degree k£ — 1 of the
polynomial, so that adjacent polynomials have match-
ing derivatives up to order k — 2. That is, if k = 2 the
spline consists of straightline segments required to
match at the boundaries ¢;, and if k = 3, the spline is
piecewise quadratic with matching first derivatives.
However, provision must be made for other situations,
and, for example, if v; = 0 then the spline is permitted
to be discontinuous at ;. Thus the spline for & =1 is
a step function discontinuous at the boundaries. At
the other extreme, if all values of v, are k, the entire
spline function is a single polynomial of degree k& — 1
or order k.

In order to provide a useful system of notation and
to develop a representation of a spline function that
is convenient from the points of view of application
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and computation, the mesh A and the continuity
conditions v; are incorporated into a knot sequence
t = {t,, --+, to+r} Where n is the number of free
parameters that specify the spline function having the
specified continuity characteristics. The knot se-
quence has the properties:

1. h< - < thsp.

2. For all i there is some j such that ¢; = £;.

3. The continuity characteristics are determined
by:
3.1. th=--- =tk=Land U=tn+1= v = lptky
3.2. t; <ty for all i;
3.3. if t;= & and t;-, < &, then

(1 L= = tivk—-1.

" That is, the knot sequence t is derived from the mesh
A by placing the number of knots at a boundary value
¢, according to the order of continuity at that bound-
ary. In the simplest situation, a single knot occurs at
a boundary value, and property 3.3 then implies that
the order of continuity is kK — 1 and thus that & — 2
derivatives match. Multiple knots at a boundary value
implies a lower order of continuity, and k& knots at a
boundary point implies discontinuity. In particular,
property 3.1 indicates that the spline is permitted to
be discontinuous at the end points of the interval. An
example of the relationship between the knot sequence
t and the mesh A generating it is displayed in
Figure 1.

Because a spline of degree & — 1 is a polynomial at
any point £, it is determined in the absence of any
continuity constraints by & free coefficients on the
subinterval containing that point. However, the con-
tinuity conditions impose v; linear equality constraints
on the coefficients defining adjacent polynomials. It
turns out that the total degrees of freedom or number
of independent variables in a spline with specified
degree and continuity conditions is given by the value
n defined implicitly in the above definition of the knot
sequence t. Thus, there are a total of n + k knots to
be allocated, and the number of mathematical param-
‘eters or the dimension of the function space associated
with a spline given A and the v;’s is n. In the most
common situation where maximal continuity k — 1
holds at each boundary point in the interior of [L, U],
the dimension n equals the number of knots interior
to [L, U] plus the order k.

Although the idea of a spline as a piecewise poly-
nomial is intuitively simple, its widespread application
required the development of a suitable set of basis
splines, M;(¢| k, t),i =1, ..., n, such that any piece-
wise polynomial or spline f of order & and associated
with knot sequence ¢ could be represented as the linear
combination f = Y, a;M;. The earliest basis was pro-

vided by the truncated power functions
d’jm(x) = [(x - Ej)+]m’ m=Uv,---, k- 1’

where u, = max{u, 0}. Although the simplicity of this
basis makes it attractive for statistical work, and
Smith (1979) and others have used it effectively in
applications, it has the rather serious disadvantage of
generating considerable rounding error except for very
low values of k. Moreover, truncated power functions
do not seem to have a natural interpretation in most
applications, unlike the splines comprising the bases
specified below.

A set of basis splines particularly appealing to
statisticians is the M-spline family in which M,,
i=1, ..., n, is defined such that it is positive in
(t;, ti+r), zero elsewhere, and has the normalization
J Mi(x) dx = 1 (Curry and Schoenberg, 1966). Al-
though they can be defined in terms of divided differ-
ences of truncated power functions, from a
computational perspective they are more appropri-
ately specified for ¢; < x < t;+, by the recursion

1 ti =x< ti+1’

Mi(x]1, ¢) = ti.n — t;” and O otherwise,

(x| &,
@ M, (x|k,t)

_klx—=t)M. (x| k= 1,8) + (tiss — X)Mina (x| k= 1, £)]
- (k= 1) (s — t.) ’

kR>1.

The fact that M;(x | &k, t) > 0 only when t; = x < t;4,
and is zero otherwise is a very important property
from the standpoint of controlling rounding error in
the computations.

Each M; has the properties of a probability density
function over the interval [t;, t;+.], and in particular
M;(x |1, t) is the uniform density on the interval
[t;, ti+1] and M;(x]|2, t) is the triangular density
on [t, t;+2] with mode at ¢;,;. In general the ran-
dom variable X having distribution M;(x |k, t) has
moments

E[X | Mi(x |k, t)]
=+ - + tie)/(kR + 1),
(3) Var[X|Mix|k, t)]
i+k i+k
= 3 ¥ - t)?(k+ 1)k + 2)
Jj=l+1 I=i

From a computational perspective, because each M;
is itself a spline, and hence a piecewise polynomial, all
the desirable features of polynomials such as comput-
ability, linearity and differentiability obviously carry
over to splines. Moreover, because the value of M; is

zero outside of the interval [t;, ¢;+] and positive within
it, a change in coefficient a; will only affect f within
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this interval, thus achieving a very desirable local
sensitivity to coefficient values. The nonnegativity of
f =23 a;M; is assured by a; = 0 and its unit area
by ¥ a; = 1. Moreover, because only M; and M,
are nonzero at L and U, respectively, f(L) = 0 or
f(U) = 0 is achieved by setting a, or a, to zero,
respectively. '

A closely related basis is given by the B-splines,
B; = (ti+r — t;)M,/k. These have the alternative nor-
malization Y B;(x) = 1 for all x, which can be especially
useful in modeling discrete data. Although considera-
tion of nonpolynomial splines is beyond the scope of
this article, it is worth pointing out that splines com-
posed of piecewise linear combinations of exponential,
trigonometric and other function families are also
possible (de Boor, 1978; Schumaker, 1981).

The focus of this article is monotone splines, and
one technique for defining these is to employ a basis
consisting of monotone splines. Because M-splines are
nonnegative, one obvious approach is to define the
integrated splines I, or I-splines for the sake of brevity,
as

(4) Li(x |k, t) = J; Mi(ul|k, t) du,

and this provides a set of splines which, when com-
bined with nonnegative values of the coefficients a;,
yields monotone splines. Because each M; is a piece-
wise polynomial of degree k — 1, each I; will be a
piecewise polynomial of degree k.

We shall use the term order k to refer to an M-
spline of degree £ — 1 or the associated I-spline of
degree k. This permits us to refer in either case to the
number of free parameters n as being the number of
interior knots plus the order for simple knot sequences
having only one knot at each interior boundary. For
such simple knot sequences, for which ¢; < x < t;,,; for
all x, the I-spline I; can be put in the more convenient
form

L(x |k, t)
0, i>],
G) ) S (bsrrs — t) M (x| R+ 1, 8)/(R+ 1),
J—k+l=si=<j,
1, i<j—k+1.

In the useful special case of k = 2, when I; will be
piecewise quadratic, zero for x < t; and unity for x >
ti+2, one has the direct expressions

_ _ (ti+1 — x)2
Ii—l(x|2’ t)=1 (tiv1 — ) (i1 — tiz1) ’
(6) 2
L(x|2, 1) = — 20

(tiv1 — t) bz — &)

Figure 1 displays the family of M-splines defined on
[0, 1] of order 3 and associated with interior knots .3,
.5 and .6. Each M-spline is piecewise quadratic and
nonzero over at most three intervals. An M-spline of
order k& will have k — 2 continuous derivatives at the
location of a knot within its interval of support. It
loses one level of continuity for each additional knot
positioned at that location. If the usual practice of
positioning k& knots at L and U is followed, then the
lower and upper splines will be discontinuous at these
boundary values, the adjacent M-splines will have
discontinuous first derivatives, and so on.

Also displayed in Figure 1 is the result of combining
these six M-splines with the coefficients indicated.
Note that there is a close relationship between the
value of the resulting function and the size of
the coefficient for the nearest M-spline. The I-splines
associated with these M-splines are also indicated in
the top figure, along with the behavior of the resulting
linear combination. The fact that the final coefficient
is zero imposes a zero slope on this function at unity.

In the case of natural monotonic ordering of variable
values considered in this paper, the isotonic regression
techniques discussed by Barlow, Bartholomew,
Bremner and Brunk (1972) and Kruskal (1965) can be
viewed as a particular case of monotone splines. The
piecewise linear monotone functions that these pro-
cedures generate correspond to monotone splines de-
fined as above with £ = 1 and a knot positioned at
each data point. This achieves optimal flexibility, but
one pays a rather heavy price in the sense that such
functions may not be pleasing to the eye in terms of
smoothness, and they imply a very large number of
estimated parameters. Illustrations in this article will
concentrate on very much smoother splines with the
goal of keeping the number of estimated parameters
as small as possible.

Wegman and Wright (1983) and Smith (1979) re-
view some of the large literature on statistical appli-
cations of splines, including the important work on
smoothing splines by Wahba (1978) and Craven and
Wahba (1979). The splines used in this paper are
called regression splines to distinguish them from in-
terpolating and smoothing splines, where the objective
is to fit to data a curve which minimizes the loss
function

mfin {Z [Y, — f(X)]* + A f [f"(x)]? dx},

where (X,, Y,), r =1, ..., R, are bivariate observa-
tions. The first term in this smoothing criterion
indicates the lack of fit of f to the data, and the
second measures the degree of smoothness of f and is
therefore a roughness penalty. Smoothing parameter
A = 0 controls the trade-off between smoothness
and fit, with interpolation resulting from A — 0. No
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assumptions are made about f aside from having an
integrable second derivative. The solution is a poly-
nomial spline of degree 3 with knots positioned at the
values of x. More general splines are obtained by using
an arbitrary linear differential operator L instead of
the operator D? in the above integration. Silverman
(1985) offers an extensive discussion of smoothing in
a statistical context.

What primarily distinguishes interpolation and
smoothing splines from regression splines is the mat-
ter of knot placement; knots are positioned at fixed
values and are usually much fewer in number in the
regression spline case. From this perspective regres-
sion splines imply in general far fewer coefficients to
be estimated from the data, although necessarily at
some expense in terms of flexibility. In statistical
applications, where confirmation or prediction is im-
portant, the estimation and inferential advantages of
working with a very restricted number of parameters
tends to favor regression splines.

Regression splines also offer more control over
the characteristics of the transformation. Although
Wright and Wegman (1980) describe an approach to
fitting monotone smoothing splines, and Passow
(1974) and Passow and Roulier (1977) discuss mono-
tone interpolation splines, in general monotonicity
and other boundary conditions are much easier to
impose for regression splines, where the basis splines
determined by the knot sequence t and order k are
regarded as a fixed basis for a finite dimensional
function space. Computing with regression splines
involves well-established techniques and is discussed
in the next section. Moreover, as will be indicated in
the next section, it is a relatively simple matter to
constrain one or more derivatives to be zero as well as
to impose normalization constraints.

The Box-Cox transformation family, f(x; \) =
(x* — 1)/X (Box and Cox, 1964), also requires mention
in any discussion of data transformation. This is an
attempt to provide a useful range of transformations
using only a single parameter A. Where the resulting
curve fits the data sufficiently well, this is a very
desirable approach. Most of the applications discussed
There, however, will require more flexibility than this
technique can provide.

3. COMPUTING WITH MONOTONE SPLINES

Once a suitable interval [L, U] for transformation
f =Y a;I; and a knot sequence ¢ have been chosen,
the estimation of an f assumes the familiar form of
optimizing a suitable criterion with respect to the
transformation parameters a; subject to a variety of
linear equality or inequality constraints. The condi-
tions a; = 0 are sufficient to impose monotonicity, and
Y a; = 1 implies f(U) = 1. Moreover, if for some
m < k we have all @; = 0, i =1, . - ., m, then

(D'HYL) =0,i=1, .-+, m, so that the initial
value of f and its order of contact can be easily
controlled. Similarly, if a,—; = 0, then (D**'f)(U) = 0,
i=0,..-,m.

The Appendix describes the gradient projection con-
strained optimization algorithm used in the applica-
tions described in the next section, and further
computational remarks will be made in discussing
them.

The choice of the interior knots is obviously an
important consideration in any application, because
these determine the shapes of the basis splines M; or
I;, and thus in turn the shape of the final function.
This choice should be guided by two considerations:

1. The more knots in a region, the greater the
flexibility of the function in that region.

2. The more data points there are between a pair
of knots, the better defined the curve in that
interval.

The second consideration tends to dominate, be-
cause there is little point to positioning many knots
in a region where a lack of data points would imply
poor definition of the function. Nevertheless, if other
considerations imply more nonlinearity in one region
than in another, both having a reasonable amount of
data points, it makes sense to use more knots in the
former than in the latter. In practice, however, there
is often enough flexibility in a curve defined by a
single interior knot, and it is not usually necessary in
a statistical environment to use large numbers of
knots. Moreover, unless great flexibility is required
(accompanied inevitably by a large number of data
points), very low values of k£ such as 2 will suffice.
This will be illustrated below.

A useful preliminary knot placement is to position
a single interior knot at the median, or two interior
knots at the terciles, and so on. There are techniques
for automatic refinement of knot placement (de Boor,
1978), but it remains to be seen whether these will
prove useful in statistical applications. A number of

. papers have studied knot placement as a design prob-

lem (Agarwal and Studden, 1978; Park, 1978, for ex-
ample). In general the shape of a spline function is
not very sensitive to knot placement.

4. APPLICATIONS

In this section a number of applications of mono-
tone splines to real data analytic problems are pre-
sented with a view to displaying some of their
potential. Not included, however, is the most obvious
application: splines can and have often been used in
nonlinear regression to transform an independent
variable x so as to minimize ¥ [y; — f(x;)]? (Wegman
and Wright, 1983; Wold, 1974). Instead, this problem
is subsumed in a couple of other applications.
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4.1 Linear Regression with Response
Transformation: The Yarn Data

The first application is to data frequently used to
illustrate dependent variable transformation tech-
niques. Box and Cox (1964) and Kruskal (1965),
among others, transformed 27 observations of the
breaking strength of yarn gathered in a three-way
factorial design. The optimal Box-Cox power trans-
form was (Y %% —1)/(—0.06), a curve that very closely
approximates the natural logarithm.

Let Y be a random response variable, and let f be a
transformation of Y which is determined by transfor-
mation parameter vector a. Assume that the trans-
formed response f(Y; a) is distributed as N[g(x; 6),
o?), where g is a function of a known covariate vector
x and structural parameter vector 6.

The additive model for observation Y;;, at levels i,

j and k of the three factors for the yarn data is
E[f(Yix; a)]l = p + a; + B; + vi. Thus, the structural
parameter vector 6 contains the constant term u and
three regression coefficient vectors «, 3 and v for the
dummy variables coding the effects subject to the
constraints Y a; = Y 3, =Y, v+ = 0.

Using more general notation, the problem is to
estimate the dependent variable transformation f
which is defined by parameter vector a of dimension
n, and the structural parameter vector 6, which con-
tains a constant term 6, and p regression coefficients
0,. The data consist of a set of dependent and inde-
pendent variable observations, y, and x,;, r =1, -- -,
R,j=1, ... ,p, respectively. In the yarn data, the y,’s
are the 27 observations in the 3° design and the x,’s
are elements of the design matrix for the additive
model.

The fitting criterion could be least squares, but
this is not desirable when the dependent variable
is being transformed, and maximum likelihood or
Bayesian approaches which take into account the
Jacobian J(y; a) = df/dy of the transformation are
preferable (Box and Cox, 1964). The maximum
log likelihood is

Lax = max {—R In o

a,f,o

- % S(y, x; a, 0)/c® + In J(y; a)}
(7

= max {—g [In S(y, x; a,8) —In R + 1]

a,f

+ In J(y; a)},

where the error sum of squares S(y, x; a, ) and the
Jacobian J(y, a) are

R » 2
S(y’ xX; a, 0) = 2 [f(yr; a) - 2 xrj'oj - 00):, )

nJia) =3 (5 a

n y;a)= %: n ay Yr; @)
It may be practical to determine L., by alternating
between maximizing with respect to a and maximizing
with respect to 6.

The monotone spline transformation f(y; a) =
Y a:;I;(y) was specified to be over the interval [0,
4000]. Figure 2 shows the result of using order k = 2
and placing a single interior knot at the median value
of 566. This implies a total of three transformation
parameters, and their estimated values are .533, .442
and .024. The resulting transformation closely resem-
bles a logarithm, and in fact the resulting L., =
—137.57 did not exceed the value of —136.44 resulting
from the optimal power transformation. Moreover,
increasing the flexibility of the spline transformation
by placing interior knots at the terciles and quartiles
yielded L., values of —138.69 and —137.49, respec-
tively, so that it seems clear that monotone spline
transformations cannot improve on a power or loga-
rithmic transformation for these data.

Interval estimates for the transformation and struc-
tural parameters may be obtained by asymptotic
techniques, jackknifing or bootstrapping. Parameter
estimates which are zero require some special consid-
eration, but a useful procedure is simply to treat
them as fixed and to derive interval estimates for the
remainder. Interval estimates for the values of the
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FiG. 2. Estimated monotone spline transformation of the breaking
strength of yarn fit by a linear model with three qualitative independ-
ent variables. The interval of transformation was [0, 4000] and the
vertical dashed line indicates the location of the single interior knot,
which was positioned at the median. Points correspond to data values.
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values. Cross-hatching is at data values, and the edges are at the least and greatest values. The location of the single interior knot is indicated by

the vertical dashed line.

transformation at various dependent variable values
can then be obtained either by the same techniques or
from the estimated sampling variance of a.

Because in this application only three iterations
were typically required to achieve convergence, jack-
knifing by deleting one observation at a time was not
expensive. Figure 3a displays the estimated standard
error of the estimated curve location. Standard error
tends to be high near the end points of the transfor-
mation where there are fewer data points, and near
the single interior knot where the curve has the great-
est flexibility.

Figure 3b shows the correlations among curve lo-
cations as a surface whose height at any point is the
correlation between function values at corresponding
abscissa values. Note that when both values are in
regions of high standard error due to the lack of data,
the correlation between curve locations on opposite
,sides of the single interior knot falls off to nearly —1.0,
but is near unity when both points are on the same
side. On the other hand, values at opposite sides of
the knot but each in a region of minimal standard
error have nearly zero correlation due to the flexibility
of the curve in these regions. This lack of coupling of
curve values among distinct regions where the curve
is most flexible is one of the great virtues of splines.

4.2 Nonlinear Regression: bissimilarity Judgments

That this first example fails to do better than pre-
vious analyses is not at all disappointing; one is reas-

sured when more powerful tools reproduce results
obtainable more simply. The next example is drawn
from multidimensional scaling where the response
variable is a judgment on the degree of dissimilarity
of two stimuli on a rating scale. In the typical experi-
ment, each of the (¥) unordered pairs among V objects
is presented to a respondent, who is requested to rate
the degree of similarity or dissimilarity of the two
objects. The objective of the analysis is a representa-
tion of each object v by a point in a Euclidean space
of the appropriate dimensionality J, with its coordi-
nates relative to some coordinate system being £,;.
This representation is arrived at by treating the dis-
similarity rating d,., for object pair (u, v) by respond-
ent r as an index of distance.

People vary remarkably in the way in which they

- use rating scales in general, with some showing tend-

encies to avoid extreme ratings, others using specific
categories disproportionately often and still others
piling their judgments up against one extreme of the
scale. Thus, it is more realistic to seek a monotone
transformation f,(d,,-) of a dissimilarity rating which
can be treated as a distance measure rather than using
raw judgment. These and other idiosyncracies
of human judgmental data require very flexible
transformation tools.

In the multidimensional scaling model used in
this analysis (Ramsay, 1982), the judgment d,, of
the degree of dissimilarity of stimulus objects u and
v,u,v=1 ..., V, by subject r, r =1, -.., R, is
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at the ordered observations dividing the data in equal thirds.

approximated by a distance 8,,, = [Y7 (£, — £,;)2]Y%
The parameters to be estimated are the VJ coordi-
nates £,;. It is assumed that transformed independent
judgments for a specific stimulus pair have a log-
normal distribution about the model wvalue, or
f-(log D,,) ~ N(log 6.,, 62), so that the R variance
parameters o2 along with the coordinates comprise the
structural parameter 6. Because each subject’s data
are transformed separately, there are R transforma-
tion parameter vectors a,, each containing the coeffi-
cients a; determining the spline transformations. In
this application each transformation also includes a
constant term ao,.

The stimulus objects in this example were fifteen
types of recreational activities, and each of ten sub-
jects rated all unordered 105 pairs on a rating scale
with 25 categories. The first category was labeled:
“extremely similar” and the last “extremely different.”
Order 2 spline transformations were applied to the log
responses, and knots were located at the extreme
responses and at the terciles, which divide the
responses for a specific subject into equal thirds.
Figure 4 shows the ten estimated spline transforma-
tions, and indicates that all ten subjects required an
expansion of the upper end of the response scale to be
consistent with the model. A comparison of these
results, for which the log likelihood was —1760, with
those using a linear transformation for each subject’s
log dissimilarities, which yielded a log likelihood of
—2267, indicates that the use of 20 extra parameters
was well worthwhile.

4.3 Monotone Spline Regression: City Gasoline
Consumption

The next few illustrations involve the analysis of
the data in Table 1, comprising various measures on
44 automobiles reported in the April 1986 issue of
Consumer Reports. Among these are the two measures
of gasoline consumption that are of interest as de-
pendent variables, and two other measures, engine
displacement and weight, that are obvious explanatory
variables. Weight is relevant because much of the
energy expended in city driving goes into acceleration,
but one may wonder whether a car with a large engine
will use more gas than is explainable by its extra
weight.

A conventional regression analysis in which city gas
consumption is predicted by displacement and weight
yields a squared multiple correlation of 0.799 and
shows a contribution of displacement which is signif-
icant at only the 0.03 level. However, these variables
may not be linearly related, and we wish to know
whether a nonlinear but monotone transformation of
each variable will yield different conclusions about an
additive model as well as provide a better fit.

Thus, we seek a transformation of the dependent
variable f,(Y) and independent variable transforma-
tions f;(X;), j = 1, ---, p, such that the following
additive model holds:

P
(9) fO(yr)= Zﬁ(xr1)+a0+er’ r=19 "'7R7
j=1
where e, is the residual for the rth observation and a,
is a constant term. Each of the transformations has
the form

fi(s) = ;1 a;L;(*|k,¢t), j=0,---, D,

where U is the upper limit on the interval of transfor-
mation and k; and ¢; are the order and knot sequence
for the jth transformation, respectively. In order to
fix the scale of the model, we can impose the constraint
fo(U) = 1, which implies that ¥ a;o = 1.

Figure 5 displays the order 2 monotone spline trans-
formations of these three variables using a single
interior knot positioned at the median for each vari-
able. The domain of the transformation in each
case was the range of the variables. Also shown in
Figure 5 are estimated 95% asymptotic confidence
limits on curve location, where each coefficient which
was given a zero estimate was regarded as fixed (Wins-
berg and Ramsay, 1980). The FORTRAN 77 computer
program used in these analyses can be obtained from
the author by sending a diskette.

No explicit regression coefficients are required in
(9) because the scale of each f; is unrestricted. The
derivative f/ (X;) = ¥ a;M,(X;) is therefore an
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TABLE 1
Automobile data from 1986 Consumer Reports

Plot
Automobile symbol Price Displacement City gas Expwy gas Weight
in Fig. 9
Chevrolet Chevette A 56 1.6 13.3 6.8 10.0
Chevrolet Nova * B 74 1.6 10.5 5.5 10.2
Chevrolet Spectrum C 67 1.5 10.1 5.3 8.7
Dodge Colt D 56 1.5 11.0 5.6 9.9
Dodge Omni E 68 1.6 11.5 5.6 9.5
Ford Escort F 61 1.9 12.0 6.2 10.9
Honda Civic G 56 1.5 11.5 6.5 9.2
Mitsubishi Tredia H 75 2.0 12.0 6.3 10.9
Nissan Sentra I 56 1.6 10.5 5.6 9.5
Renault Alliance J 60 14 12.0 5.6 9.1
Subaru K 80 1.8 12.0 5.6 10.4
Toyota Corolla L 73 1.6 11.0 5.3 10.3
Toyota Tercel M 56 1.5 11.0 5.5 9.7
Volkswagen Golf N 74 1.8 12.0 6.3 10.1
Volkswagen Jetta (0] 83 1.8 12.6 6.3 10.5
Chrysler Laser P 94 2.2 15.8 74 12.7
Honda Civic CRX Q 73 1.5 94 5.6 9.0
Honda Prelude R 110 1.8 10.5 6.5 10.6
Isuzu Impulse S 109 1.9 14.9 6.8 12.4
Mitsubishi Cordia T 89 2.0 12.0 6.3 11.2
Nissan 200SX U 95 1.8 12.6 6.5 12.2
Nissan Pulsar NX \Y% 87 1.6 9.7 5.1 9.2
Pontiac Fiero w 89 2.5 12.6 6.7 11.5
Audi 40008 X 142 2.2 14.1 8.2 10.7
Chevrolet Cavalier Y 67 2.0 15.8 7.2 11.6
Ford Tempo Z 74 2.3 13.3 6.2 11.8
Honda Accord 1 88 2.0 13.3 6.3 11.8
Mazda 626 2 92 2.0 12.6 6.7 11.8
Mitsubishi Galant 3 132 24 14.9 6.7 12.9
Nissan Stanza 4 101 2.0 11.0 5.6 11.1
Oldsmobile Calais 5 93 2.5 14.1 6.7 12.0
Saab 900 6 126 2.0 14.1 7.9 12.9
Toyota Camry 7 97 2.0 11.0 5.5 12.2
Volvo 8 144 2.3 14.1 7.9 13.3
Buick Century 9 101 2.5 16.9 6.5 12.6
Chrysler Fifth Avenue 0 149 5.2 23.0 9.7 16.2
Chrysler Le Baron @ 100 2.2 13.3 7.9 11.7
Dodge Aries # 72 2.2 13.3 7.9 11.5
Dodge Lancer $ 94 2.2 15.8 8.7 12.7
Mercury Cougar % 114 3.8 15.8 8.7 14.1
Oldsmobile Cutlass / 107 3.8 19.5 9.0 15.2
Pontiac 6000 & 95 2.8 16.9 8.7 12.6
Buick Electra < 154 3.8 18.1 7.7 15.0
Chevrolet Caprice > 106 5.0 18.1 8.2 16.5

Notes: Price is measured in 100 U. S. dollars, displacement in liters, gasoline consumption in liters/100 km, and weight in 100 kg.

indicator of the dependency of E(f,) on the indepen-
dent variable X;, and thus plays the role of the regres-
sion coefficient in a conventional linear model. Thus,
the relative roles of weight and displacement in deter-
mining gas consumption may now be assessed for
various regions of the latter by examining the relative
slopes f;' of the three transformations. From these one
may conclude that (a) weight is much more important
than displacement for small cars (under 1200 kg),
(b) both weight and displacement are important for
mid-sized cars and cars with mid-sized engines,

(c) neither weight nor displacement has as much ex-
planatory power for very large cars with very large
engines as for small or medium sized cars and (d) city
gas consumption measured in liters/100 km might be
improved as a measure by taking its square root.
Attempts to improve the fit using more interior
knots or higher order splines were fruitless. A com-
parison of these results with the monotone spline
regression of gas consumption on weight alone yielded
an asymptotic x % test value of 3.3 with 3 d.f., so that
it appears that transformed displacement has little to
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FIG. 5. Estimated monotone spline transformations yielding the
best regression of transformed cfty gas consumption on transformed
displacement and weight. Vertical dashed lines indicate the location
of the single interior knot, positioned at the median. “Plus” and
“minus” signs indicated estimated upper and lower 95% confidence
bands, respectively, for the transformation values. The dependent
variable transformation is fixed at the boundaries of the transforma-
tion interval, and thus has zero standard error at these points.

contribute to transformed weight as an explanatory
variable, and its significance in the untransformed
case was due to the high leverage of the large cars
resulting from its skewed distribution.

Breiman and Friedman (1985) describe an algo-
rithm for estimating the optimal transformation of
variables in multiple regression which they refer to as
ACE, an acronym for alternating conditional expec-
tation. This procedure uses a smoothing process for
each variable in turn conditioned on the transforma-
tions of the other variables estimated in previous
iterations. If monotonicity is required, this can be
incorporated into the particular smoothing algorithm
employed. Although splines are not used in the algo-
rithm that these authors use in their illustrations,
they can be used as a basis for smoothing. Their
procedure as well as the somewhat similar approach
of Hastie and Tibshirani (1986, 1987) may be called
semiparametric in that the smoothing process is not
based on explicit parameters.

In these procedures optimization is with respect to
each variable in turn rather than with respect to all
transformations simultaneously. Unfortunately, as
Figure 6 indicates, the ACE algorithm turned out to
be sensitive to the ordering of the independent vari-
ables. The solution in which weight was the first
independent variable resembles the monotone spline
solution, but reversing the order yields a much
stronger dependency on displacement. This is no
doubt due to the fact that weight and displacement
are strongly correlated (r = 0.90), and the sequential
procedure employed by ACE seems to be the problem
here.

There is also a theoretical explanation for this phe-
nomenon. The authors explain that the algorithm is
considered to approximate the solution to a continu-
ous eigenvalue problem in function space, for which
there are in principle a countable number of discrete
solutions. However, there is no reason to assume that
the eigenfunction of the continuous problem is asso-
ciated with the largest eigenvalue, and hence with the
maximum possible canonical correlation.

4.4 Monotone Spline Canonical Correlation:
Gasoline Consumption

A natural extension of monotone spline regression
involves a comparison between two sets of trans-
formed variables via canonical correlation. Thus, for
variables X,, u =1, ---,p,and Y,,v=1, ..., q, we
seek two sets of monotone spline transformations
fu.= 3 aul, and g, = Y, b, I;,. The goal is to choose
these transformations plus coefficients c, and d, in
such a way that the two linear combinations or
canonical variables

p q
E cufu(xru) and 2 dvgv(yru), r= 1, e, R,
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have the largest possible correlation. Putting this
problem in matrix notation, let matrices F and G, of
dimensions R X p and R X g, respectively, contain the
values of the transformed observations, f,(x..,) and
2.(¥r). We seek simultaneously canonical coefficient
vectors ¢ and d and monotone transformations such
that the canonical correlation p = ¢ F*Gd is maximized
subject to the normalizations ¢‘F‘Fc = d‘G'Gd = 1.
It is convenient to split the computational problem
into the familiar one of computing canonical coeffi-
cients ¢ and d given transformations F and G on the
one hand, and optimizing the canonical correlation p
with respect to the transformation coefficients a;, and
b, that determine F and G on the other. Most appli-
cations will require a preliminary step in which the I-
spline values I;,(X,.),i =1, - .-, n,, are replaced by

R
Iiu(xru) - R_l 2 Iiu(xru)’
r=1

and similarly for I-spline values associated with the
¥’ s. This implies that the matrices F and G will have
zero column sums, and thus define a value of p which
is a correlation in the usual sense.

In this application one seeks to explore the relation-
_ ship between the two gasoline consumption variables
and the two size variables, weight and displacement,
with a view to finding two pairs of transformations
with the best correlation. These transformations are
shown in Figure 7. Those for city gas consumption,
displacement and weight resemble those obtained in
the monotone regression analysis, except for the very
small cars. Expressway gas consumption is trans-
formed so that the role of very small and very large
cars is enhanced by the transformation. The canonical
correlation is p? = 0.806 and the associated canonical
weights for city and expressway gas consumption are
.85 and .52, respectively, and for weight and displace-
ment .75 and .66, respectively. Thus, the inclusion of

expressway gas consumption provides a role for engine
displacement, especially for cars of extreme sizes.

4.5 Monotone Spline Principal Components

The previous examples have shown that gasoline
consumption can be nicely accounted for in terms of
weight with some small contribution from displace-
ment. One suspects that price, although not unrelated
to weight, represents a significant additional dimen-
sion of variation, and that it, too, will benefit from
some nonlinear transformation. One way to address
this question is to perform an analysis of the R obser-
vations in which the transformations optimize a bi-
linear approximation of fixed dimensionality K to the
transformed data. This is often referred to in the
psychometric literature as an Eckart-Young (1936)
approximation of the transformed data (Winsberg and
Ramsay, 1983).

Let R X p matrix F(A) contain the transformed
values of R observations of each of p variables, where
f:i(xrj) = Z aiinj(xrj)’ r= ]-’ tt R;J = 1’ Db and
A contains the coefficients a;;, i = 1, - - -, n;, defining
monotone spline transformations. The objective is to
approximate F as follows:

(10) mBiré {tr[F(A) — BC*)'[F(A) — BC']},

where B is the R X K matrix of scores on the principal
components and C is the p X K matrix containing the
regression coefficients on these components. This
problem requires some normalization of the transfor-
mations f;, and we shall require that they run from
zero at the lowest observation to unity at the largest.

Winsberg and Ramsay (1983) discuss this problem
as well as the closely related issue of transformation
to multinormality with specified covariance structure.
They also provide a computer program in the PROC
MATRIX language of SAS (SAS Institute Inc., 1985).
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Figure 8 displays the five transformations resulting
from the monotone spline principal components
analysis of the automobile data in two dimensions.
Note that the strongly skewed variables, price and
displacement, are transformed so as to have more
symmetric distributions. Figure 9 shows by means of
a biplot the nature of the two principal components.
The first clearly measures the overall size of the car,
while the second, forced to be orthogonal to the first,
might be characterized as the extent to which the car
costs less and consumes more gas than is consistent
with its size.

4.6 Binomial Response: Test Item Analysis

The probability of one of two dichotomous re-
sponses often depends monotonically on the level of
some covariate or linear combination of covariates.
That is, given a sequence of Bernoulli variables, Y;,
and associated covariate values x;, j =1, ---, p, we
have the model

(11) Prob{Y; = 1| %} = P(x;).

Because I-splines map a portion of the real line into
[0, 1], they are especially well suited to the analysis of
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resulting from an approximation of five transformed variables by the first two principal
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dose-response, bioassay, event incidence, test item
response and other binary data requiring models of
this kind. Suppose that for each value x;, j =1, .-,
D, N; responses are observed, of which R; are “suc-
cesses,” and that the distribution of R; is binomial
with probability P(x;). It is proposed to model the
dependence of probability of success on the covariate
values by the monotone spline

(12) P(x) = 3 aili(x).

Results can then be compared with more traditional
procedures such as the logistic model (Cox, 1970)

(13) In{P(x;)/[1 = P(x;)l} = Bix; + fo.

As a first illustration, consider the problem of sum-
marizing the probability of correctly answering a sin-
gle test item as a function of some covariate such as
the score on the entire test. One would expect that the
larger the total test score, the more likely the examinee
would be to get any particular item correct. In the
extreme cases, examinees with a total score of zero
will have zero probability of success on any particular
item, and those with perfect seores will have success
with probability one on any item. In this problem N;
for a specific test item is the number of examinees
whose total test score is x;, and observation r, the
number at that score level who passed the item.

The resulting item-test regression curve for a partic-
ular item can reveal a number of useful things about
the role of this item in the test (Lord and Novick,
1968). In particular, a test item is termed highly
discriminating over a specific score interval if the
probability of a correct response rises steeply in that
interval. A difficult item shows up as a curve which
remains near the zero or chance response level for all
total test score values except the very highest.

These features are illustrated in Figure 10, which
shows the item-test regression curves for the last five
items of a multiple choice test taken by 300 examinees
and having 100 items. Each item had four options.
The covariance x; was the total test score, which in
principle could range from 0 to 100, but in fact was
not less than 24 or greater than 91 among the 300
examinees who took the test. The points displayed in
Figure 10 show the frequencies with which the various
total score values were obtained.

The five monotone spline curves shown in
Figure 10 were estimated by maximum likelihood
using procedures described in detail elsewhere
(Ramsay, 1988). The interval of transformation in
this case was [0, 100], with the restrictions P(0) = 0
implying that a, = 0 and P(100) = 1 implying that
3 a, = 1. Three interior knots were positioned at 56,
64 and 73, which are the quartiles of the test score
distribution and these are indicated by the vertical
dashed lines in the figure. Order 3 splines were
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TABLE 2
Incidence of Down’s Syndrome in Australia from 1942 to 1957

Total number of

Age of mother births No. of cases
19 or less 35,555 15
20-24 207,931 128
25-29 © 253,450 208
30-34 170,970 194
35-39 86,046 297
40-44 24,498 240
45 or over 1,707 37

employed, implying six coefficients determining each
curve. However, the two restrictions imposed on each
curve leave four mathematically independent param-
eters to be estimated per curve.

The results display the power of monotone splines
to take on shapes difficult to model using standard
functions such as the logistic. Item 98 is very easy,
with only those in the lowest quartile having any
danger of failure. On the other hand, items 97 and 100
are comparatively difficult. The plateaus in the curves
for items 96 and 99 show that these items are very
nondiscriminating for the majority of students, sug-
gesting that there are two plausible answers and that
students choose between them using criteria unrelated
to ability as measured by total test score. For example,

item 99 reads, “A technique called brainstorming, in
group problem-solving: (a) helps generate solutions
that prove to be superior, (b) actually causes poorer
and fewer solutions to be generated, (c) generates a
greater number of solutions than those given by indi-
viduals working alone, (d) generates fewer but better
solutions than those given by individuals working
alone.” Alternative (c) was scored as correct, but al-
ternative (a) is also highly plausible. Thus, the shapes
of item response curves can provide clues to useful
modifications of items.

_ 4.7 Binomial Response: Down’s Syndrome Data

The data in Table 2 were collected by Collmann and
Stoller (1962) and display the incidence of mongolism
as a function of mother’s age in Victoria, Australia.
Two features of the data invite modeling by monotone
spline response functions: the covariate does not en-
tirely have metric properties due to the discretization
and lumping of all ages below 20 and of those above
44, and there is a sharp rise in incidence at about age
35 that suggests a compound explanatory process.

Figure 11 displays the results using both monotone
splines and logistic regression. In these analyses the
categories were given the integer values 1, ---, 7, and
the transformation was over [1, 7]. The order 2 spline
fit is based on a single knot placed at 4, and thus uses
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three degrees of freedom, whereas the log linear model
uses two. The spline fit is obviously much superior
and thus worth the extra parameter. Its x? value is
2.2 (4 d.f) as compared to 92.2 (5 d.f.) for the log
linear model. Going to the log quadratic model did not
improve the fit substantially.

5. SUMMARY

The flexibility of splines and the ease with which
they can be constrained to satisfy desirable side con-
ditions such as monotonicity are features of great
value in a very wide range of statistical problems, only
a few of which are illustrated here. The price paid is
small; the usual numerical and computational prob-
lems associated with conventional estimation tech-
niques are complicated only by the imposition of
simple linear equality and inequality constraints. The
resulting increase in program complexity and compu-
tation time is not great. Only a very few parameters
need be devoted to defining the transformations, so
that the increase in standard error of structural pa-
rameter estimates is often more than offset by the
improvement in fit. In any case, standard techniques
can be used to determine whether the additional power
of splines is worthwhile. There seems to be a serious

case for including spline transformation as a routine
tool on the applied statistician’s workbench.

APPENDIX
We consider the problem
min {f(c)}, c€E€R",

subject to ¢, =0 and Y c,=1.

A variety of techniques are available for this optimi-

- zation problem with linear equality and inequality

constraints. The approach defined here is an example
of the gradient projection method (Fletcher, 1981).
This is based on two principles. First, at any iteration
vthe set .#, is defined to contain the indices of positive
coefficients, termed the active coefficient set. Opti-
mization at this iteration is only with respect to these
coefficients. The second principle is the linear trans-
formation of the active coefficients ¢~ = {c;, | € .7}
by ¢ = Ascs in order to transform the linearly
constrained problem into an unconstrained one. In
particular, for the constraint } ¢; = 1, if there are L
indices in .#, then A~ is any L — 1 by L matrix
satisfying

AjA‘}=I and Aj1=0,
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where 1 is a vector of L 1’s. This implies that P, =
A’, A~ is a projection matrix which projects a vector
onto the subspace orthogonal to 1. One way of com-
puting such a matrix A_- is to use the orthonormal
polynomial values of degree 1, ..., L — 1 associated
with the argument values 1, .- ., L.

Let ¢, and g, deriote the coefficient and gradient
vectors at iteration v, respectively, and ¢ a convergence
criterion. Then the algorithm proceeds as follows:

0. Set Fforcoandg=g,8-=A-%-.
1. For v =1 t0 vmax:
1.1. If | || <ethen
1.1.1. g =8, gj = A}Ajgj;
1.1.2. if Helgl {g,} = gmin < 0 then

remove index of &, from .7, revise
A
else exit;
12. §=g,8,= A{éf; N -
13. H=E[D*f,H=H,H,=A H,A,;
14. A=0,A=H"g,A,=A"A,;
1.5. min{f(c,)|c, = 0}, c, = ¢,y + aA;

1.6. revise .# and A .
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