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Comment: Causality, Complexity and

Determinism

Patrick Suppes

As always, Jack Good provides enough topics for a
dozen commentators. I have restricted what I have to
say to three issues that are of central interest to
philosophers and statisticians. These are: probabilistic
causality, randomness and complexity, and determin-
ism. The topics I have selected for comment do
not reflect how much I agree with Good’s general
philosophical position, especially his emphasis on a
Bayes/non-Bayes compromise and on the essential
role of intuitive judgment in statistical practice.

PROBABILISTIC CAUSALITY

Good and I are not far apart on the theory of
probabilistic causality. Certainly his early work (1961/
62) was a direct influence on my own major effort in
this area (1970). As he rightly remarks, mine is pri-
marily a qualitative theory, and what he has offered
is a more quantitative one. It is exactly this issue that
I want to focus on here. For many kinds of founda-
tional matters we certainly want a general quantita-
tive theory. A good example would be the fundamental
theory of measurement of extensive quantities, as
applied, for example, to length or mass. We expect
this fundamental theory to work without modification
across a wide range of applications and in the context
of many different theories. Certainly across the range
of classical physical theories we expect the measure-
ment of mass or length to remain unchanged. Given
these expectations, supported by a wealth of experi-
ence, it is certainly appropriate to develop in complete
detail the general theory of extensive measurement,
with standard quantitative results.

It is much less clear to me that this is the case with
the more general notion of cause. Good’s attempt to
develop a quantitative theory of causality is certainly
the most interesting and sustained effort that has
been made, as far as I know. On the other hand, it
also seems to me that it has had surprisingly few
detailed applications. It seems to me that there is a
clear reason for this absence of a wide range of appli-
cations, in spite of its considerable intrinsic interest.
The reason is that the quantitative theory of causality
is not fixed or invariant across contexts, but varies
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considerably from one application to another. In con-
trast, the ordinal or qualitative theory, reflecting the
broad intuitions of common sense, should remain in-
variant across quantitative variation.

Let me illustrate the contrast I have in mind with
a simple comparison of two learning models or, more
generally, models with some sort of feedback. In the
first case, we have a simple linear response model
with discrete trials. On each trial the probability of
response R,—for simplicity I shall restrict myself to
two responses, i = 1, 2—, is a linear function of the
probability of such a response on the previous trial
and the reinforcement or feedback on the previous
trial. Thinking in terms of the feedback causally influ-
encing response, let C;, i = 1, 2, be the reinforcement,
and let x, be the sequence of responses and feedbacks
through trial n. We may write this simple linear model
with a single learning parameter  as follows:

P(Ri,n+1 | Cj,ny Rk,n, xn—l) = (1 - O)P(Ri,n | xn-—l) + 051']',

where 6,; is the Dirac delta function.

Consider in contrast Luce’s beta model (1959)
where, for the purposes at hand, there are two beta
parameters with 3; being the applicable parameter
when the feedback at the end of the trial is C;. In
terms of this notation, then, we may write the beta
model as

P(Rl,n | xn—l)
(1 = B)P(R1n| %n-1) + B;

The single important difference between the linear
learning model and Luce’s beta model that I want to
concentrate on here is that in the case of the beta
model the operators commute, that is, the probability
of a response on trial n + 1 is just a function of the
initial probability together with the number of causes
of each type that have occurred in the first n trials. In
contrast, the linear model is completely dependent on
the order in which the causes occur, that is, the causal
operators, to put it in such language, do not commute.

What happens in these two cases is that we get
two different quantitative causal theories for exactly
the same phenomena. It seems to me that there is
no reason whatsoever to think that a general quantita-
tive theory of causality should discriminate between
two such models. It is very much a matter of de-
tailed empirical theory and experiment in particular

P(Rl,n+1 | Ci,nRj,nxn—l) =
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domains. It is for this reason that I am skeptical that
we will see a successful general quantitative theory of
probabilistic causality, in spite of Jack Good’s inter-
esting and original efforts.

As Good points out in the present article and else-
where, there may be a use for a quantitative theory of
causality in situatiohs in which we have no other
theory. This is in the same spirit with which one
applies linear regression models in the absence of any
fundamental theory of the phenomena in question. I
have no quarrel with such an approach, but I retain
my skepticism that a quantitative theory of causality
can compare in any sense with the full criteria we
expect a quantitative theory to satisfy, as in the case
of the measurement of mass, length, temperature, etc.,
or as in the grander examples of classical mechanics
and other quantitative physical theories.

RANDOMNESS AND COMPLEXITY

In the article published here, Good makes some
remarks about randomness, but he has a lot more to
say about it in his volume Good Thinking (1983f), to
which he refers repeatedly in this article. On page 88
of Good Thinking, Good raises the problem of accept-
ing the enciphering of a secret message when the
randomly enciphered message “by extraordinarily bad
luck” came out exactly the same as the original one.
He poses the question “would the enciphering agent
be prepared to use it.” There are two questions that I
want to address to him in the context of his thoughts
about randomness as expressed especially in Chapter
8 of Good Thinking.

The first is the importance of making a distinction
between random processes or procedures on the one
hand and random results on the other. It seems to me
that in much of the discussion of randomness there is
not always a clear distinction between these two ideas.
By random procedure I mean, of course, a procedure
that we characterize as having appropriate random-
ness characteristics. In contrast, by random result I
mean the actual sequence obtained. Here we apply the
type of test advocated by Kolmogorov and others to
decide whether the actual sequence.is random, with
the basic criterion being that there is no essentially
shorter way of describing the sequence than by repro-
ducing the sequence itself. The Kolmogorov criterion
does not consider at all the method by which the
sequence is generated—it concentrates entirely on the
features of the sequence itself. It seems to me that
this distinction is not often enough brought to the fore
in statistical discussions of the place of randomness
in experimentation.

My second observation is related to this and is a
second query to Jack Good. If we replace random
procedures by random results, why not go a step

further and replace random results by complex results.
Then we could have a table of complex sequences with
some threshold of complexity being satisfied by the
table. We simply draw any sequence of a given length
from the table, or, as a still different approach, we
could use some standard method of generating random
numbers, but we throw out any constructed sequence
whose complexity is below an agreed upon complexity
threshold. It is evident enough that this idea of a
complexity threshold is robust. The exact value chosen
is not important. There will remain for any experi-
ments of any size a more than adequate number of
complex sequences.

The tension between randomness and complexity is
apparent. A sampling procedure is random. Often, any
sequence, simple or complex, is as likely as any other.
But the result of using the random procedure is a given
sequence whose complexity can be measured. My sug-
gestion is that we move from procedures to results and
from randomness to complexity as the essential mea-
sure. I think that what I am suggesting here is sym-
pathetic to what Good has had to say about
randomness in different places, especially in the chap-
ter quoted, but I am not entirely certain.

DETERMINISM

Perhaps my most direct disagreement with Good is
in his drawing a contrast between determinism-and
probability. For example, he says early on in the
present article “Physical probability too is a useful
fiction even if the world is deterministic - -- .” What
I want to say is in disagreement with this, but even
here I suspect that the spirit of what I have to say is
not something that Jack will find particularly unset-
tling. It is a point though that I think philosophically
is worth some clarification.

That we are already not far apart is evident from
the following quotation (1983f, pp. 91-92).

In the discussion some one raised the question
of whether the physical universe might be “infi-
nitely random” in the sense that an infinite
amount of information would be required to make
an accurate prediction of a closed system. The
following observation is relevant. Consider a
model of classical statistical mechanics in which
the various particles are assumed to be perfectly
elastic spheres. Then, to predict a time T ahead,
to a given tolerance, I think we would need to
know the position and velocities of the particles
to a number of decimal places proportional to 7.
There must be some degree of accuracy that is
physically impossible to measure, and in this
sense classical statistical mechanics provides in-
determinism arising out of determinism.
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The particular example I want to cite, an important
one in the theory of classical mechanics, goes beyond
Good’s example in the following sense. Random se-
quences, under any definition that is used, are gener-
ated by simple models of classical mechanics. The
generation of these random sequences does not in any
way depend upon ignorance of initial conditions and
measurement tolerances, but is simply a fact inde-
pendent of measurement about the mechanical sys-
tems themselves. The existence of such systems
shows, it seems to me very clearly, that there is no
opposition between completely deterministic systems
and random systems.

The example I use is a special case of the three-
body problem, certainly the most extensively studied
problem in the history of mechanics. Our special case
is this. There are two particles of equal mass moving
according to Newton’s inverse-square law of gravita-
tion in elliptic orbits relative to their common center
of mass, which is at rest. The third particle has a
nearly negligible mass, so it does not affect the motion
of the other two particles, but they affect its motion.
This third particle is moving along a line perpendic-
ular to the plane of motion of the first two particles
and intersecting the plane at the center of their mass.
From symmetry considerations, we can see that the
third particle will not move off this line. The restricted
problem is to describe the motion of the third particle.
The analysis of this easily described situation is quite
complicated and technical, but some of the results are
simple to state in informal terms and directly relevant
to my focus on determinism and randomness. Near
the escape velocity for the third particle—the velocity
at which it leaves and does not periodically return, the
periodic motion is yery irregular. In particular, the
following remarkable theorem can be proved. Let ¢,
ty, - - - be the time at which the particle intersects the
plane of motion of the other two particles. Let s, be
the largest integer equal to or less than the difference
between t,., and ¢, times a given constant. Variation
in the s;’s obviously measures the irregularity in the
periodic motion. The theorem in the version given by
Moser (1973), due to the Russian mathematicians
~ Sitnikov (1960) and Alekseev (1968a, b; 1969a, b), is
this:

THEOREM. Given that the eccentricity of the elliptic
orbit is positive but not too large, there exists an integer,
say a, such that any infinite sequence of terms s, with
S, = a corresponds to a solution of the deterministic

differential equation governing the motion of the third
particle.

The correspondence between a solution of the dif-
ferential equation and a sequence of integers is the
source of the term symbolic dynamics. The idea of such
a correspondence originated with G. D. Birkhoff in
the 1930s.

A corollary about random sequences immediately
follows. Let s be any random sequence of heads and
tails—for this purpose we can use any of the several
variant definitions—Church, Kolmogorov, Martin-
Lof, etc. We pick two integers greater than « to
represent the random sequence—the lesser of the two
representing heads, say, and the other tails. We then
have:

COROLLARY. Any random sequence of heads and tails
corresponds to a solution of the deterministic differen-
tial equation governing the motion of the third particle.

In other words, for each random sequence there
exists a set of initial conditions that determines the
corresponding solution. Notice that in essential ways
the motion of the particle is completely unpredictable
even though deterministic. This is a consequence at
once of the associated sequence being random. This
example demonstrates the startling fact that the same
phenomena can be both deterministic and random.
The underlying explanation is the extraordinary in-
stability of the deterministic phenomena.

From all the recent work on chaotic systems in
classical mechanics, it is clear that there is nothing
isolated or unusual about this example. There are
certainly other deterministic physical systems of a
simple nature that will generate similar random phe-
nomena. The classical philosophical dichotomy be-
tween determinism and randomness is a mistaken one.
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