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surprise however is a relative concept and readers of
McKean (1973) would not be surprised at all!

No doubt readers will see other ways of addressing
these problems using perhaps stochastic calculus with-
out benefit of CA or the theory of Wishart distribu-
tions (indeed Mr. James of Leeds University has
shown me how to use Wishart matrix theory to estab-
lish the Clifford-Green result mentioned above). The
main purpose of this work has been to initiate the
development of CA as an effective tool in the study of
random processes, rather than to develop new results.
More recently, and with the same motivation, I have
been working on the use of CA to derive the statistics
of shape diffusions for k-ads with £ > 3. Here the
technical problem is to find effective ways of dealing
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In stochastic geometry as in number theory, it is
easy to ask questions that the layman can understand
but that the specialist can only answer with difficulty
or not at all. Under the older name, geometrical prob-
ability, the subject is old, e.g., Buffon’s famous prob-
lem was invented around the time Buffon was
preparing a French version of Newton’s “fluxions.” I
don’t know of any ancient and unresolved conjectures
like Fermat’s but it is easy to give simple-sounding
problems that are hard to solve, e.g., the motivating
problem of Kendall’s theory of shape. How do the
shapes of triangles vary when their vertices are inde-
pendently and uniformly distributed in a fixed rectan-
gle? This problem arises from questions about whether
there is too much “collinearity” in sets of points (see
Figures 1 and 2). A recent and very readable survey of
Kendall’s theory has been given by Small (1988).

All but the most mathematically gifted readers will
find this paper difficult. Rather more basic details are
given in Kendall (1984), but this too is written for
mathematicians. I hope the promised book (now in
preparation) by Carne, Kendall and Le will make it
clear to statisticians, because I’'m sure that this is a
fascinating area for research and applications. To
support this belief I will give a brief summary of my
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with sums involving k2 summands, when % is not fixed
beforehand but must be treated as a symbolic quantity.
Some progress has been made, but work is not yet
complete.
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own related efforts, sticking mainly to triangles. This
is reasonable because most of the suggested applica-
tions use them and they are the simplest case.

The shape of A, a triangle P,, P,, P;, with vertex
angles a;, as, as, could be defined as the pair (a;, as).
But for most problems this is not easy to work with,
or to generalize to k labeled points in .#™. There are
lots of other ways to define the shape of a triangle.
We may think of A as a 2 X 3 matrix [z, 2, 23], where
the column z; has elements x;, y;, and denotes the
position of the vertex P; in the plane. Because we are
only interested in the shape of A we may translate,
dilate and rotate A without changing the shape of A,
so we seek a “canonical” triangle. Kendall’s approach
is a variant of the following. Change the origin to the
centroid of the triangle and consider the singular value
decomposition of the new 2 X 3 matrix, RAL’, where
R is a 2 X 2 rotation and so irrelevant. By scaling we
could make A} + A\ = 1. The remaining object defines
the shape. See Mannion (1988) for a simple descrip-
tion—it is very similar to the next suggestion—and
Small (1988).

I found Kendall’s reduction hard to understand and
considered (in Watson, 1986) two alternatives, which
worked well in the simple planar problem I had posed.
Move P, to the origin (0, 0), move P, to (0, 1), which
uses up the available transformations, and denote P;
by 2z, which then serves to define the shape of A. It is
natural to take it as a point in the complex plane.

The other alternative came from taking 21, 23, 23 @8’
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complex numbers C, and letting them be the elements
of a vector Z in C3. With w = exp 27i/3, the vectors
1,1, 1), 1, w, w?, (1, w? w), denoted by 1, u and @
are an orthogonal basis for C3, so Z = ¢;1 + cou + c;
for complex numbers c;, ¢z, c3. 1 denotes a degenerate
triangle, and u and @ equilateral triangles with cen-
troids at the origin. Clearly c;1 is of no interest —
1’Z/3 is the centroid of A and so set ¢; = 0. Multiply-
ing Z by a complex number is the same as dilating
and rotating A. Thus my canonical version of A could
be written as u + bi, with b its “shape.” I then
complicated the problem by going on to ignore the
labels on the vertices. Veitch and Watson (1986) used
a generalization of this Fourier method for k-labeled
points in m dimensions for a generalization of the
problem that started me off: Go along side PP,
a distance S| P,P,| to a point s, go along P,P; a
distance S|P,P;| to a point @, and along P3P,
a distance S|Ps;P,| to get a point .. Thus one
gets a new triangle @, @,, @;. Let S, S,, - - - be iid
on [0, 1], and repeat this construction successively.
Thus we get a random sequence of triangles and
I was interested in the random sequence of shapes.
Mannion (1988) studied a much more interesting and
difficult problem. His sequence of triangles was ob-
tained by successively picking 3 points, iid uniformly
at random in the parent triangle to get a new triangle.
The labeling of the vertices is irrelevant for Mannion
as it was in my problem and in the next paragraph.
As one can guess, his triangles tend to collinear
triangles.

Yet another way to get random triangles is to imag-
ine that the vertices represent the three solutions of
a cubic equation with random coefficients, Ps¢Z) =
a + a1z + a,2% + a;2° = 0. Kac (1943) solved the
problem of the distribution of the real roots of
P,_1(z) = 0 when the a/’s are iid N(0, 1). This doesn’t
seem to be a very practical problem but it is intriguing
and one wonders about the distribution of all the roots
or the complex roots. It seems very hard to get non-
trivial analytic answers. The number of roots inside
any closed curve S in the complex plane is given by

1 P (2)-
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Hence one needs to find the expectation of
P! (z)/P,(z) for various assumptions about the joint
distribution of the a;’s, and then to integrate the result.
As far as I can see no one has used this approach.
Bharucha-Reid and Sambandham (1986) give many
references and show simulations with n = 30.
Certainly one wants to start with the cubic. Appen-
dix A of Watson (1986) relates the solution of cubics
to the shape of the root triangle. With Javier Cabrera,

of Rutgers University, I have been studying this case
with National Science Foundation support (DMS-84-
21301). We have many pictures of both the roots and
the shapes of the triangles formed by these roots. Of
course, when the coefficients are real, one must get
isosceles or collinear triangles. The pictures, especially
those for shape, are much more interesting when the
coefficients are complex. But the trick is—how to
explain the patterns we see!

The analytic behavior of the shape density m(x, y)
described in § 4 reminds me of ancient work (Watson,
1956) and references therein) on the joint distribution
of the ratios

x’'Bx

_ x’Ax
B x'x’

x'x’

where A and B commute and x ~ N (0, I). In canonical
form they are

_ 2N Yww
r= y S = ’
Yw; Yw;

where the w; are independent gamma random vari-
ables. Thus (r, s) falls randomly in the convex hull of
the points (\;, u;). Further their joint density changes
its analytic form as (r, s) crosses joins of the points
(\;, u:) and has alternative representations. I wonder
if there are any connections?

Leaving triangles and returning to the original mo-
tivation of Kendall (whether there are too many col-
linear, or nearly so, points in a picture) we see this as
but the first of a series of problems. Earth and plan-
etary scientists often claim to see “lineaments” (linear
and circular segments). Sometimes at the points of
intersection there is oil or gold, etc.. The statistician
is at a loss with this sort of data. The biostatistician
faces similar problems, e.g., is a cluster of cancer
deaths in a neighborhood indicative of a local prob-
lem? This public health issue and geology have re-
cently come together in the radon problem (gas comes
out from the interior of the earth through faults). The
question (could some observed geometrical oddity be
due to chance) will raise puzzles forever, I suspect.

In conclusion I would like to urge others in the
United States to take an interest in stochastic geom-
etry (at the moment it seems to be solely of interest
to Europeans) and to congratulate David Kendall for
his immense contributions to the whole field.
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Professor Kendall’s paper is an excellent survey on
a very important topic and describes many deep and
complicated results obtained by himself and his col-
leagues. It is a pleasure to congratulate him on this
success and to wish him further progress. The publi-
cation in this journal will help to inform many stat-
isticians of these ideas and methods and so lead to
further interesting applications. Because my own work
has had until now only weak connections to Professor
Kendall’s theory of shape (with the nice exception of
being a coauthor of a book that contains a chapter on
shape theory written by W. S. Kendall), I can give
marginal comments only; I take the opportunity to
ask some questions.

In my opinion, in some cases the original problem
of finding collinearities in point patterns can be solved
by means of methods of point process statistics. If the
point pattern under study can be interpreted as a
sample of a stationary point process, then the orien-
tation analysis of Ohser and Stoyan (1981) can be
used to detect orientations and collinearities; see also
Stoyan, Kendall and Mecke (1987). More interesting
is the case of motion-invariant point processes with
“inner orientations’; a nice example is the pattern of
self-intersection points of a motion-invariant planar
line process. Hanisch and Stoyan (1984) suggested
statistical characteristics that are based on third-order
moment measures or two-point Palm distributions.
An example is the mean number of points in a
rhombus with vertices at the members of a “typical”
point pair of the point process with distance r (see
Figure 1). If the corresponding mean, for which an
unbiased estimator was given, is clearly greater than
“intensity X area of rhombus” for interesting values
of r, then some form of collinearity in the point
pattern is detected.
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Fi1G6. 1. A rhombus with vertices of distance r. If the vertices are
points of a point process and in the rhombus there are “many’ other
points of the point process, then this shows some inner orientation.

Many statisticians and physicists, geographers (see
the booklet by Boots, 1987) and others are very much
interested in Dirichlet tessellations and the closely
related Delaunay tessellations. Therefore the results
on the Delaunay tessellation are of great value, both
theoretically and practically. In particular, I like the
elegant way of simulating “lone” Poisson Delaunay
cells.

I think that a promising method for a “shape analy-
sis” of tessellations could be based on the angles at
vertices, if all vertices are Y-shaped, with three ema-
nating edges. (This situation very often appears in
practical problems, as physicists and materials scien-
tists say.) Then each vertex corresponds to a triangle,
which is similar to the Delaunay triangle if the tessel-

" lation under study is a Dirichlet tessellation with

respect to a point pattern. Most empirical tessellations
are not Dirichlet tessellations or, if their generating
points are not given, the natural starting points for
the shape analysis are the three angles. Therefore it
would be helpful to transform shape theory results for
triangles into angular coordinates, where, for example,
a triangle is described by its maximal and minimal
angles.

Perhaps it is of interest to mention a further (ad-
ditionally to Professor Kendall’s findings for PDLY
tiles) interesting property of the Dirichlet tessellation,
which in future may be better elucidated by the new
simulation methods. Together with Dr. H. Hermann,



