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the upper margin of the braincase with respect to the
lower margin. It is not at all equivalent to the second
weakest principal warp (dotted lines, frames (C) and
(D)). The bending energy eigenanalysis has extracted
these large scale patterns of shape covariance by
explicitly weighting  empirical covariance patterns
inversely to geometric localizability. Other equally
plausible geometric patterns, such as bending of the
upper or lower structures, are not observed to bear
any sample variance.

The example suggests the descriptive possibilities
inherent in accommodating the metric geometry of
Kendall’s shape space to a biological subject matter.
One can imagine other modifications of the metric in
response to other contexts than the biometric. For
instance, one can imagine the statistical study of the
positions of a robot arm. When the state of the linkage
is coded by the coordinates of its joints, then because
certain parts of the robot are rigid, an appropriate
measure of “distance” would be somewhat altered
from the Procrustes. In another sort of constraint,
certain “landmarks” might represent the loci of curves
in the data—boundary arcs not otherwise labeled—
and would thus be “deficient” by one coordinate; again
the Procrustes metric needs to be modified. In a study
of schools of fish, or flocks of birds, an appropriate
shape metric might be the Cartesian product of a
biological shape space by a hydro- or aerodynamic one
(for the V of migrating geese, for instance). Yét other
modifications would arise when the points of Kendall’s
space are “colored” in classes whose separate patterns
cannot be usefully studied without reference to their

Comment

Christopher G. Small

With a high standard of rigor David Kendall has
given us an interesting survey of the theory of shape
analysis that he has pioneered with the help of others
over 'the last decade. This work is now of sufficient
volume that the many topics discussed in this survey
can be only briefly touched upon. I certainly hope that
this paper is a stimulus to additional consideration of
this topic by statisticians. It may well be that on future
occasions the topologists will have to introduce their
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interpenetration, as in problems of multispecies ecol-
ogy. These and other possibilities represent an enrich-
ment of the metric geometry of shape space within the
global purview pursued so sparely and elegantly by
David Kendall.
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theory of shape with preparatory remarks to the effect

that it is not to be confused with the growing statistical
theory of shape.

At first glance, this paper might seem to have much
in common with the differential geometric techniques
in statistics that are associated with Amari (1985) and
others. However, despite the abstraction of some of
the theory, the methods of Kendall are essentially
data analytic rather than model theoretic: the differ-
ential geometry is on the sample space not the param-
eter space. So how much differential geometry must
the data analyst know in order to implement the
techniques that are described in this paper? The an-
swer is largely dependent on the amount of software

&4

Statistical Science. NINORY

www.jstor.org



106 D. G. KENDALL

that can be developed to analyze shapes, because the
differential geometry need not be duplicated by the
data analyst if it is built into the software. Software
that is analogous to the techniques available for pro-
jection pursuit would be especially useful here because
it is impossible fér most of us to visualize global
properties of shape manifolds. So it would be helpful
to be able to search a shape space interactively through
various two-dimensional (or even three-dimensional)
projections. The appropriate tools would then be able
to analyze shapes in much the same way that multi-
variate data sets can be analyzed by “Grand Tours.”
(See Buja and Asimov, 1985 and Hurley, 1987.)

It is the job of a discussant to provide a different
perspective on a paper. As I have been involved in the
work with D. G. Kendall this is not an easy task.
Nevertheless, I would like to indicate why there
is room for flexibility in the choice of geometries
available to the statistician. Each geometry can be
examined in light of criteria such as naturalness,
computational convenience or graphical convenience,
etc. Although among such geometries the shape space
geometry of D. G. Kendall is by far the most devel-
oped, and perhaps the most important, other geome-
tries deserve consideration.

Need the statistician consider geometry at all? The
answer must be yes, because there is a natural inter-
play between geometrical and statistical considera-
tions. Suppose for example we are to find a measure
of location for a multivariate data set y1, y2, - - -, ¥&.
A family of such measures based on minimum distance
methods is given by using that point x which mini-
mizes Y, p(y:, X) where p is a metric that represents
the geometry in use. If p(y, x) = ||y — x||® then x is
the centroid of the data set. However, the centroid is
sensitive to outliers. So if a more robust measure of
location is desired the metric p(y, X) = ||y — x| can
be used. In this case x becomes the spatial median
whose properties were investigated by Brown (1983).
This example shows how a departure from the L.
metric of “least squares” used in multivariate analysis:
leads to differing statistical properties in the resulting
estimator. .

To a statistician, the centroid of a data set is a
sensible measure of location based upon the traditions
of multivariate theory. Similarly, sums of squares are
natural measures of scale. However, other geometries
are worthy of consideration in contexts in which their
properties are more useful than the standard geome-
try. Moreover, the assumption that there exists a
unique natural geometry on the space of shapes pre-
supposes that there exists a unique natural geometry
on the space in which the observations lie. Yet differ-
ent contexts seem to dictate different geometries, and
differential geometric considerations only tell us how

to transfer the geometry across from the space in
which the observations lie to the shape space. A dis-
tinction must be made between the Euclidean space
in which points lie (Kendall’s R™) and the Euclidean
space in which a data set is represented (Kendall’s
R™*). When m < 3 the geometry of the former usually
has a physical interpretation. The geometry of the
latter is typically a mathematical construction.

The following example illustrates the point. Sup-
pose X;, X, and X; are three independent random
variables that are uniformly distributed over some
common interval, say [0, 1]. The shape ¢ of the three
points is an element of a unit circle S'(1). If we
compute the shape density on the unit circle, we find
it to be analytic on six arcs that correspond to the
3! = 6 possible rankings of the three variables. Alter-
natively, however, we could introduce the L. norm on
R® by setting [ xfl. = max(Jx|, [x], |xs])-
The resulting induced metric on R? can in turn be
related to a metric space on equivalence classes of
shapes. Let x; be the ith order statistic. Define m =
[xq) + x3]/2 and r = [x3 — x1)]/2. Then the point

I I

X1 — M Xo— M Xz — M
r r r

is a representation of the shape of the triplet
(x1, %2, x3) and lives on a closed path made of six line
segments (i.e., a bent hexagon) that is the shape space
in this case. The corners of the hexagon correspond
to the places in the former shape space S'(1) where
the shape density failed to be analytic. The bent
hexagon can be described by removing two diametri-
cally opposite vertices of a cube and joining the six
remaining vertices with those edges connecting neigh-
boring vertices among the six. The induced distribu-
tion on the hexagon can be seen to be uniform and
therefore very easy to work with. Calculations are
further simplified if the labels of the points are ignored
in which case all shapes are represented on a single
line segment that is the fundamental region on the
hexagon. For a larger number k of points in dimension
1, the resulting shape space will be a continuous image
of a sphere of dimension & — 2 lying within the
boundary of a k dimensional hypercube. It will be
made of the union of k (k — 1) hypercubes of dimension
k — 2 attached at their boundaries. Once again, the
induced distribution on the shape space will be uni-
form. The smoothness of the shape manifolds =% is
deceptive for the induced distributions of shapes of
points uniformly distributed in a planar region. In
such cases, the sets on which the shape density fails
to be analytic are quite complex. Therefore a geometry
in which the singularities are inherent in the shape
space itself becomes plausible in light of the
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computational difficulty of such models on smooth
manifolds.

The existence of numerous geometries for shapes
does not give carte blanche to the researcher to use
any geometric representation whatsoever. As always
in data analysis, the geometry used must serve the
goals of the statistical analysis if it is to be anything
more than a mathematical theory. The use of a
measure of distance between shapes (the “geometry”)
generates clustering and classification algorithms
and test statistics based upon minimum distance
methods. If the measure of distance used is artificial
the resulting statistical analysis will surely not
be any less so. Geometries give rise to statistical
methods which can, in turn, be evaluated in the
context of criteria for good inference or data analysis.
This is as true for shape analysis as it is for multivar-
iate analysis.

In defining metrics within the space R™** or some
subset of that space the nature of shape “kinematics”
should be considered. Shape changes or shape differ-
ences can arise through perturbations of the individual
k points. Alternatively, shape changes can arise
through global transformations of the space R™ which
a fortiori induce a change on the shape of the individ-
ual points of the data set. The usual Euclidean metric
seems inappropriate for the latter case. For example,
suppose we assume that changes in the shape of a data
set arise from a global transformation T of R™**. We
could measure the distance from one data set to an-
other by means of a measure of distance of T' from the
identity transformation. The induced metrics on the
space of shapes from these methods have a very dif-
ferent character from Kendall’s geometry. For exam-
ple, suppose k£ = 3 and m = 2. Any three points which
are not collinear can be transformed to any other such
set by composition of an affine transformation 7. A
measure of distance (in fact a pseudometric) of this
transformation from the identity defined by Bookstein
(1986) induces the riemannian geometry of the hyper-
bolic plane on the shape space in which Kendall’s
great circle of collinear shapes becomes the circle at
infinity of the hyperbolic plane.

In his survey, D. G. Kendall has provided some
interesting inversion results, showing that for three
points independently and uniformly distributed in a
compact convex set the induced distribution of shape
determines the convex set modulo a shape preserving
transformation. The argument, based upon the set
where the shape density fails to be analytic, is quite
delicate. Unfortunately we cannot expect to detect
discontinuities in the higher derivatives of the shape
density through statistical means. So the result does
not transfer immediately into a statistical test al-
though I expect that this could be done. The delicacy
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of the inversion is rather different from that of the
inversion theorems that I have been working on over
the last few years (Small, 1983, 1984, 1985) which are
based upon transform techniques for larger sets of
points.

Attention has recently been turned to the represen-
tation of shapes of objects more complex than finite
sets of points. Bookstein has proposed that the shapes
of objects can be studied by choosing a representative
set of points (called “landmarks”) on the object and
studying the shape of this set of points. Although this
works for biological structures in which there is some
differentiation in terms of function of the various sites
on the structure, the problem of representing complex
shapes using finite sets of points is complicated in
general by the lack of obvious landmarks. In such
cases, multidimensional generalizations of Bernstein
polynomials may be of value in representing complex
shapes through finite sets of points. Note that the
problem here is not simply to find a finite dimensional
parametrization of complex shapes, but to ensure that
there is a geometrical relationship between the coor-
dinates of the parametrization and the shape itself.
Thus, for example, the coefficients of a polynomial
parametrize the shape of the polynomial but do not
do so in such a way that there is a clear geometrical
interpretation of the shape to be found within them.
Let A™ be the n-dimensional simplex of all points
(p1, - - -, Pn+1) such that p;, ps, - - -, Pp+1 = 0 and
2 p: = 1. Suppose g(p) = [8:(P), - - -, §»(DP)] defines
a continuous m-dimensional image g(A") of the sim-
plex. The image g(A”) can be approximated by a
polynomial image g;(A") defined by

X, X,
gj(p1, © o+, Pp41) = E[g(}—.l, coe e ,"—J‘ﬂ)]

where X1, - - -, X,+1 have a multinomial distribution
with ¥ X; =j and E(X;) = jp;. Then g; is a jth degree
polynomial that uniformly approximates g. The
image g;(A") is determined by the set of points
-, Xn+1/J) where 0 < x; and Y x; = j. At
this early stage I can only speculate as to the value of
a theory of shape for random paths in applications
such as dynamical systems.

The spaces that Kendall has called “size and shape
spaces” may well turn out to be more useful than
shape spaces themselves. Commonly in statistical
problems it is impossible to ignore size variables with-
out losing information that is important to the under-
standing of the data. The geometry of an object
possessing no intrinsic position or orientation falls
naturally into such a space. For cases where a group
acts upon a riemannian manifold, the resulting quo-
tient space is termed a “‘shape space” by Kendall. The
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' generalization is an important one, although the ter-
minology tends to separate the subject from an area
that is well established in the statistical literature: the
theory of maximal invariance. Thus a shape in this
generalized sense is also a maximal invariant under
the action of the group . Such maximal invariants
for data on riemannian manifolds are not uncommon
in statistics. For example, data in directional statistics
live on a one- or two-dimensional sphere for which
the most useful group to generate transformation
models is the rotation group. For models in which the
rotation group generates a nuisance parameter, ques-
tions involving the testing of a concentration param-
eter in the absence of knowledge of the nuisance
parameter require the reduction to the maximal rota-
tion invariant. Fraser (1968) has emphasized the im-
portance of transformation models and the fibers of
data sets equivalent under the action of a group. Some
relationships with the statistics of shape are developed
in Small (1983).

I would like to close these comments with some
remarks of a more specialized technical nature. The
elegance of D. G. Kendall’s theory of shape is espe-
cially clear for data sets in dimensions 1 and 2. In
higher dimensions, singularities start to emerge. Al-
though these singularities are not obviously detrimen-
tal to a theory of shape, they do detract from the
elegance of the representation. Even in dimensions 1
and 2, the shape spaces are more easily constructed
and represented than the corresponding size and shape
spaces. The reason for the elegance of the shape space
for the cases where m = 1, 2 is that in these cases a
shape preserving transformation can be uniquely de-
composed into two transformations that correspond
to multiplication and addition in the real line and

complex plane for the respective dimensions. For both
m = 1 and m = 2 the group of shape preserving
transformations is a solvable group with a dimension
(i.e., number of degrees of freedom), which is an in-
tegral multiple of m. But in dimension m = 3 this fails
to be the case. The group of shape preserving trans-
formations is of dimension 7, which is not a multiple
of m.

Let me conclude my remarks by congratulating
David Kendall on some very interesting work. The
new directions that are sketched in this paper seem to
be promising for the analysis of geometric data of
various kinds and from various sources. I hope that
much more is forthcoming.
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Comment: Some Contributions to Shape

Analysis

Kanti V. Mardia

There are no words to express the profound depth
of Kendall’s work. I have been working in this area
intermittently since 1976 and I believe his fundamen-
tal work (as well as Bookstein, 1986) has opened up
the field.

Kanti V. Mardia is Professor and Head, Department
of Statistics, University of Leeds, Leeds LS2 9JT,
England.

Bookstein (1986) has used the model for shape
analysis assuming that the points are distributed in-
dependently as Ny(u;, ¢2I),i =1, 2, ---, p. Consider
p = 3. Let x be the point in Kendall’s spherical shape
space from these three points with # representing the
corresponding point in Kendall’s space from u,’s. Let
i be their mean vector. Then using Mardia and
Dryden (1989), it can be shown that the probability
element of x is given by

1+x('x+1)}e"*dS, x €S,



