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Comment

Ron Pyke

I have greatly enjeyed reading this paper by David
Pollard. It is a further example of his fine expositing
skills. By focusing on two particular problems, he
underlines for statisticians the practical values that
are intrinsic to the subject of weak convergence of
empirical processes.

It is slightly more than 60 years since Harald
Cramér introduced the idea of an empirical distribu-
tion function for real random variables and suggested
its use in statistics (Crameér, 1928). Shortly thereafter,
the Glivenko-Cantelli-Kolmogorov result of 1931
showed that the empirical distribution function was a
strongly consistent estimator of the population distri-
bution function. This was followed for about 25 years
by a virtual explosion of applied and theoretical activ-
ity on distribution-free nonparametric procedures:
Kolmogorov-Smirnov and Cramér-von Mises type sta-
tistics: one-sided and two-sided; one-sample and two-
sample; weighted and unweighted; asymptotic and
exact results; with tables of critical values provided
for most.

Forty years ago, in the midst of this activity, J. L.
Doob proposed a result that would enable one to
obtain the asymptotic behavior of most of the proce-
dures that had been, or would ever be, proposed from
an appropriate limiting Gaussian process, a tied-down
Brownian motion. (Cf. Doob, 1949). Out of this
heuristic beginning, a vast literature has emerged
concerning the asymptotic behavior of empirical proc-
esses. Throughout this research, the central and ena-
bling property of the empirical measure of a sample
of iid observations X;, X,, - - -, X, has been its basic
structure as a sample average of iid objects, namely,

P,, = n_1(5X1 + 6)(2 + ... + 5xn)

where 6, is the degenerate probability measure that
puts probability 1 at x. Because of this structure, it is
natural that the asymptotic distributional, or weak
convergence, results are referred to as central limit
theorems (CLT) for empirical processes. (It also sug-
gests interest in other sample average limit laws for
P,, such as the SLLN and LIL.) Shortly before (1),
Pollard states that, “In some asymptotic sense, the
process v,f(-, t) is approximately Gaussian.” This is
as close as the author gets to mentioning a CLT for
empirical processes. This briéf sentence encompasses
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an enormous literature that pertains to the asymptotic
distribution of empirical processes.

Although the setting for these CLT’s is much more
general than for the classical CLT and the technical
aspects are accordingly more complex, their much
greater applicability to statistics makes their study
worthwhile. In fact, I view any CLT for empirical
processes as a conveniently packaged collection of
many individual limit theorems of importance to stat-
isticians. For exposition purposes to statisticians, I
prefer to define convergence in law of empirical proc-
esses (i.e., when a CLT holds) to mean precisely the
convergence in law of all statistics that are continuous
functions of the empirical process. (Cf. Pyke and
Shorack, 1968). From this viewpoint, CLT’s for em-
pirical processes are powerful tools that statisticians,
or their consulting probabilists, can check out of
our Asymptotic Methods’ Toolroom. Often, however,
these tools need to be individually customized to han-
dle statistics that are only approximately continuous,
and this is the situation with the two examples pre-
sented here by David Pollard; the simple substitution
of X for ¢ in the first problem is unfortunately one
complication that requires technical care to justify the
natural Taylor-expansion heuristics, while the ques-
tion of asking for the location of a min or max as in
the second problem is in and of itself another compli-
cation. Regardless of the excellent quality of exposi-
tion, the level of this complexity cannot be hidden.
The important message, however, is that applications
of this type can be handled by the theory, regardless
of whether or not the particular methodology is under-
stood or even fully appreciated by the user.

Major advances in the theory of statistics are driven
ultimately by applications. In 1978, I felt that rather

* complete results about all three major types of limit

theorems for empirical processes were available;
namely, for the CLT or weak convergence, Dudley
(1978); for the SLLN or Glivenko-Cantelli result,
Steele (1978); and for the LIL, Kuelbs and Dudley
(1980; a preprint was available in 1978). I therefore
used my 1978 IMS Special Invited Lecture to survey
the 50 years since Cramér (1928) and to encourage
that the rather complete theory then available be
brought to bear on applications of empirical process
involving multidimensional data. The considerable
theoretical advances of the last decade clearly indicate
that the subject’s theory and methodologies were far
from complete in 1978. Many major advances have
occurred since then, and along with these have come
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several fine monographs and survey papers, including
the one under discussion. These expositions make the
theory and its application much more accessible today
for study and implementation, even though much
more can still be done to improve the formulation of
results so as to facilitate their applicability. Ironically,
it is the applications that point the way to such
improvements.

Since 1978, relatively few researchers have ventured
in the direction of proposing and evaluating empirical
process applications, particularly ones concerning in-
ferences involving multidimensional data. David Pol-
lard has been one of the most successful through his
contributions to applications involving kernel density
estimators, U-statistics, econometrics, regression,
k-means clustering, and location estimators.

In the present paper, both problems used by Pollard
to illustrate aspects of these asymptotic methods in-
volve statistics that are expressible in terms of the
translates of a fixed function h; i.e., f(x,t) = h(x — t)
where in the first problem, h(y) = |y|, and in the
second problem, h(y) = min{l, |y|?2}. (As an aside, I
wonder if h(y) = |y|%/(1 + |y|?) is a reasonable
smooth substitute, or even h(y) = 1 — exp(—|y|?);
this is of course not an implied criticism, since criti-
cism was forestalled by the legitimate caveat stated in
the introduction of the second problem!) Although the
family of all functions that can be obtained as trans-
lates of a fixed function might seem to be rather
restrictive and uninteresting, it might be well to
emphasize that in many natural cases it is actually
full enough to determine the underlying probability
measure itself. Let me elaborate.

Procedures based on empirical processes can be
thought of as goodnéss-of-fit procedures; P, — P is
indeed the difference between the observed and the
expected. In particular, if A is a subset of the sample
space, P,(A) — P(A) is in fact the difference between
the observed proportion of observations in A and its
expected value under P. Similarly, for an integrable
function f, P.(f) — P(f) is the difference between the
observed sample average n” (f(x;) + - -+ + f(X,)) and
its expectation Ef (x). If the sample space were to be
partitioned into a finite number of sets A, the classical
Chi-square statistic would give one measure of the
distance between P, and P. If the data is Euclidean,
other distance measures can be considered, including
the usual Kolmogorov-type distance

D, = sup | P,((—%, x]) — P((—, x]) |
and the Cramér-von Mises distance

Wi = f | Pa((=%, x]) — P((=, x]) |* dP(x).

Each of these involves the family of lower orthants
and this family is simply the family of sets one gets

by translating a particular orthant, say (—o, 0]. If we
write || P, — P | for the supremum over A € & of
| P,(A) — P(A) |, then D, is just this sup-metric when
& is the family of lower orthants. However, in multi-
dimensional situations, orthants are far from natural,
and other more attractive possibilities exist. The
Cramér-Wold result states that | P, — P . is a dis-
tance when .7 is the family of half-spaces; this family
is formed from a single half-space by making all trans-
lations and rotations. Recent work by Beran and
Millar (1986) shows the applicability and value of this
family for obtaining confidence sets for multidimen-
sional distributions.

Less well known is the fact due to Sapogov (1974)
(cf. Pyke, 1984) that the collection of all translates of
a fixed bounded set of positive Lebesgue measure is
also a determining class; that is, if two probability
measures agree on the class, they must be equal. For
example, if two probability distributions agree on
every ball of radius 1, then the two distributions are
equal. In such cases, | P, — P | would again be an
appropriate Kolmogorov-type statistic for measuring
the goodness-of-fit of P to the data represented by P,.
A fairly extensive simulation study of tests based on
these “scanning” statistics has been reported in Pyke
and Wilbour (1988).

By identifying sets with their indicator functions, a
family of sets formed by the translates of a fixed set
becomes a special case of the class of translates of a
given function. Suppose h is a given real valued func-
tion defined on R? and let .7, = {h(- — x): x in R%} be
the family of all of the translates of A. For many useful
functions h, these translation or scanning families are
determining classes in the sense that knowledge of all
of the expectations determines the underlying distri-
bution. Here is an example: If h is non-negative and
its Fourier transform, namely,

h(u) = [ exp(iu - x)h(x) dx,

is nonzero for a dense set of u in R¢, then whenever X

- and Z are any two r.v.’s in R? for which

Eh(X — x) = Eh(Z — x) for dall x in R¢,

we have that X and Z are identically distributed.

To prove this, simply multiply both sides of the
identity by exp(iu - x) and integrate over x. This gives
the Fourier transform of a convolution and results in
the identity

h(—uw)E(e™Y) = h(—u)E(e™?), for all u in R%

Thus when the assumption about A holds, we can
factor it out and conclude, as desired, that Y and Z
have the same characteristic function, and hence the
same distribution.

Translation families of functions arise, for example,
in kernel function density estimation, in which the
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kernel is often a density function itself (e.g., the nor-
mal kernel) that satisfies the assumption in the above
proposition. One should also note that the translations
of h(x) = min(1, | x| %), used in Pollard’s second prob-
lem, form a determining class. This can be seen by
applying the above proposition to 1 — h; the constant
function is invariant, under translation. In fact, Pol-
lard’s problem seems to be easier to describe in terms
of g(x) =1 — h(x) = max(0, 1 — |x|?) as a sort of
“shell game.” The function g is a parabolic shell and
the game is to move it over the data in the plane until
one finds the place where the score (the sum of the
heights of the shell above the data) from the points
covered by the shell, is a maximum. Pollard assumes
that P is such that the expected score is itself approx-
imately a parabola. By weak convergence, the differ-
ence between the observed and expected scores is
approximately n~'/? times a Gaussian process. So as
the observed score hugs the parabola-shaped expected
score, the maximum observed score will appear near
the place where the maximum expected score occurs,
namely 0, and the difference between the two locations
will depend on the behavior of the Gaussian process
in the neighborhood of 0.

The example is exceptionally good. There are sev-
eral approaches that can be used to obtain limiting
distributions of statistics which are defined explicitly
in terms of empirical processes. Different approaches
are best in different situations; the more techniques
one knows the better. One useful approach is to
replace weak convergence by strong convergence but
this approach also has its problems in this case. As
more general weak convergence results (CLT’s) for
empirical processes have evolved, results showing that
“weak implies strong” have kept pace. These results
enable one to replace weak convergence by strong
(pointwise) convergence, a substitution that has the
effect of replacing many problems of a probabilistic
nature with more standard problems in analysis.
However, in this example, even though the non-
zero part of g has a Taylor’s expansion, g(x — t) =
g(x) — tVg(x) + remainder, in which most of the time
the gradient, Vg(x), and the remainder are elementary
functions, namely, —2x and |¢|? respectively, the
problem is far from straightforward. If the mark of a
good example is the degree to which it probes the
applicability of theory and leads to reformulations
that either expand or facilitate this applicability, then
high marks are indeed in order here.

At the end of the paragraph preceding (3), the
author “explains in part why traditional methods have
difficulty with this (second) problem.” I sense an
implicit challenge here. Write g(x) = (1 — | x|?)* and

dnp(x) = n?{g(x — n7%) — g(x)}.

The minimizing of H,(t) over ¢ is equivalent to the

maximizing over b of
L.(b) = n{H,(0) — H,(bn™"?)}
= n{H,(0) — H(0) + H(0) — H(bn™"7?)
+ H(bn™'2) — H,(bn~'?)}
(v + n?P) d,p.

The author postulates that the second part is a quad-
ratic, namely, n*?Pd,, = —%|b|%1 + o(1)). If we
also assume with the author that it suffices to consider
the maximization over | b| < M for each M, we can
partition the sample space into

By =[lx| <1-n""M],

B:=[|x|>1+ n"2M]

and
B;=[|1-|x|| =nYM].

When |b| <M,d,, =00n By, =2x - b+ n2|b|?
on B; and is bounded by 4M on the annulus B; whose
probability converges to P[| X | = 1] = 0. Thus

La(b) = 2Y, - b— |b]%/2 + o(1)
where
Y, = va(xlp) — Y, a N0, EX?Lx1<y) TV,

and where the remainder is uniform for |b| < M.
Thus b,, the value for which L,(b) is maximized,
and 2Y,, the value for which the quadratic Q(b) =
2Y, - b — | b|?/2 is maximized, converge to the same
limit, as desired. I leave to the reader the challenge of
identifying where further details are needed and which
traditional methods could be invoked, making use of
direct analysis of d,, ;.

Let me be quick to emphasize that the value of the
second example did not lie in its inability to be solved
by traditional methods, but rather in the ease with
which it can be handled by the new methods discussed
in the paper; c.f. the short conclusion in (5.4). The
value is really much greater since the particular prob-
lem is intended only to provide a simple illustration
of the newer methods’ broad applicability.

When A is such that the translation family 9, is
a determining class of functions, a metric on the
space of probability measures can be defined in terms
of the sup-norm over .9, namely, |P — Q| s, =
sup{| (P — Q)f|: f € F,}. This in turn enables one to
consider the Kolmogorov-type statistic

D,(h, P) := | P, — P||s, = S\fpl (Pn— P)h(- —¢t)|
as a measure of the distance between P, and P. As

an example, let me phrase the author’s second prob-
lem more explicitly as an estimation problem for a
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translation parameter 6, and make use of the Kolmo-
gorov-type statistic D,(g, P) based on the shell func-
tion g(x) = (1 — | x|®™. Let 2 = {P’: 6 € R?} be the
translation family of probability measures defined by
P’(A) = P(A — 0). Suppose one wishes to estimate 0
by the minimum distance estimator, 5n, defined as
that value of § € R? which minimizes the distance

D.(g, P’) = sgpIPng(- —t)—Pg(- —t-0)].

Under the assumption that the true parameter is 6, =
0, it appears that the asymptotic distribution of 4,
may be the same as that for Pollard’s estimate, 7,, the
value of ¢ at which P,g(- — t) is maximized, even
though the minimization problems are different. Let
me offer as a third test of the author’s methodology
the question of determining the limiting distribution
of n'/24,,. This type of problem is similar to one con-
sidered by Blackman (1955), except that he used a
Cramér-von Mises distance rather than a Kolmogorov
one; in Pyke (1970) this simpler problem was used to
illustrate the applicability of the “weak implies strong”
methodology mentioned above.

Although I have directed my comments on the paper
towards statisticians as users of this theory, I would
stress that the paper is also of great value to those
doing research in the area. From both viewpoints I

Comment

Miklos Csorg6 and Lajos Horvath

It is a pleasure to congratulate David Pollard on his
masterly glimpse into the theory of empirical proc-
esses. His artful development here of the technique of
Gaussian symmetrization, of the resulting maximal
inequalities for Gaussian processes and their applica-
tion in the empirical process context leaves us no
room for comment on his methods, which extend the
concept of a Vapnik-Cervonenkis class of sets. He
"demonstrates the efficiency of these methods by use
of ‘two motivating, nontrivial asymptotic problems
and succeeds very well in conveying the look and feel
of a powerful tool of contemporary mathematical
statistics.
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greatly appreciate the efforts of David Pollard for
preparing this valuable exposition.
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There are also other powerful contemporary tools
available for tackling asymptotic problems of mathe-
matical statistics. The ones we have in mind are strong
and weak approximations (almost sure and in proba-
bility invariance principles) for empirical and partial
sum processes based on various forms of the Skorohod
embedding scheme, or on various forms of the Hun-
garian construction. The quoted book of Shorack and
Wellner (1986) is also an excellent source of infor-
mation on these methods. For further references on
the methods and their applications, we mention the
books of Csorg6 and Révész (1981), Csorgd (1983),
and Csorgd, Csorgé and Horvath [CsCsH] (1986). For
an insightful overview of strong and weak approxi-
mations we refer to Philipp (1986) (cf. also the review
of Csorgd (1984)). Concerning Hungarian construc-
tions, for those who are really interested, the papers
of Bretagnolle and Massart (1989), and Einmahl
(1989) are most recommended readings.

Here we make use of the first problem discussed by
David Pollard to illustrate what we mean by strong



