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Comment

David J. Spiegelhalter and Laurence S. Freedman

We are grateful for the opportunity to contribute to
the discussion of this important paper, which is all
the more impressive for being written by someone who
is not already identified with “the faith.” Professor
Breslow describes a number of exciting developments
that are at last bringing Bayesian techniques into
mainstream biostatistics, and we would like to com-
ment on clinical trials. Here the increasing interest in
Bayesian methods is a reflection of dissatisfaction
with the established Neyman-Pearson methodology,
and where the Bayesian analysis appears to provide
both insight into the interpretation of frequentist
procedures and a qualitative improvement in the com-
munication of issues in the design and monitoring of
trials.

The author describes in Sections 5 and 6 the use of
Bayesian techniques in bioequivalence studies and
sequential clinical trials. The inferential problem un-
derlying each of these applications can be character-
ized by the superimposition of a distribution for the
parameter of interest on a domain in which regions of
different clinical implications have been displayed.
Figure 1 is taken from Freedman and Spiegelhalter
(1989), and shows how the distribution can be sum-
marized by the areas lying in each of three regions.

In bioequivalence testing, the range of equivalence
is generally taken to be +20%, and, as described in
Section 5, “equivalence” is declared if pc + pg < .05.
When a uniform prior.is assumed for §, this procedure
is equivalent to the symmetric confidence interval
procedure of Westlake (1976) (although the Bayesian
interpretation is much simpler). O’Quigley and
Baudoin (1988) show how other frequentist proposals
for bioequivalence testing are interpretable as analysis
of posterior distributions, which reveals, for example,
the rather unintuitive nature of the Hauck and
Anderson (1986) method.

In general clinical trials there is-a great advantage
in uysing pictures such as Figure 1 to explain to clini-
cians the essential difference between a treatment
difference that they would like to have in order to
recommend routine use of a new treatment (i.e.,
6 > Ag) and a difference they think it is reasonable to
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expect. In standard works on the design of clinical
trials, there is often great confusion between differ-
ences that are desired and those that are expected,
with both being cited as a basis for deciding an alter-
native hypothesis. A simple picture clarifies the issues
and can be used both before trial is started, and while
sequentially monitoring data.

Before a trial, it seems reasonable to obtain the best
possible assessment of the likely treatment difference,
either from past trials or from careful questioning of
trial participants, and to summarize that opinion as a
prior distribution superimposed on an assessment of
the range of clinical equivalence, where this range
takes into account the possible side-effects and other
secondary disadvantages of the treatments. The jux-
taposition of belief upon demands can be used for two
types of reassurance. First, neither pc nor pg should
be very large, otherwise it would appear unethical to
randomize patients when there was already substan-
tial belief in the clinical superiority of one or other
treatments. Second, the prior distribution can be used
to assess the predictive power of obtaining a convinc-
ing result, which is essentially obtained by averaging
the standard power curve with respect to the prior
plausibility of each value of §. Applications of such
analyses are reported in Spiegelhalter and Freedman
(1986, 1988), who found clinicians quite willing to
express their judgments and actually surprised that
they had not previously been asked to do so.

Once a trial is underway, the updated posterior
should be monitored for the ethical basis of randomi-
zation; the likelihood could also be monitored since
this will presumably be transmitted to regulatory au-
thorities and journal editors. Monitoring the tail areas
pc and pg appears appropriate, and it is possible for

* the range of equivalence to be adapted during the trial

provided it is done by an adverse event committee
ignorant of the current results on the primary outcome
measure. Professor Breslow illustrates an alternative
input to the decision of whether to stop: the predictive
probability of achieving a firm conclusion were the
trial to continue. In fact, it is remarkable that this
measure is so rarely used (one example being Frei,
Cottier, Wunderlich and Ludin, 1987), as Armitage
(1988, 1989) has shown that a Bayesian derivation is
unnecessary. If at an interim stage 6 is estimated by
do, say, then the final estimate dy will generally de-
pend on d, and the unobserved estimate d, to be based
on the future observations. Then d, — d, will be at
least approximately independent of §, and this will
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F1G. 1. Distribution of parameter § summarizing treatment differ-
ence, superimposed on regions of differing clinical implication.

allow us to calculate the unconditional chance of dy
achieving “significance.” When applied to the example
in Section 6, Armitage (1988) obtained a predictive
probability of .948 in contrast to our estimate of .946
using much more complex techniques. Armitage
(1989) does, however, express reservations about this
predictive approach, arguing that decisions to stop
should be based on current opinion, and that concen-
tration on attaining future “significance” understates
the value of a “nonsignificant” result.

The suggestion of monitoring a trial using posterior
tail areas will inevitably lead to accusations that we
are essentially advocating the use of “naive” signifi-
cance tests that do not take into account the repeated
looks at the data, and so can “sample to a foregone
conclusion.” Breslow cites Cornfield’s observation
that if one is concerned with this behavior, then it
must reflect some belief in the correctness of the null
hypothesis. Cornfield’s approach was thus to put a
lump of probability on the null and smear the rest
over the entire parameter range; such a mixture prior
should be a reasonable expression of a belief that
either the new treatment will have some effect, or
there is some mechanism that will make it irrelevant.
Alternatively, reasonable prior skepticism about the
existence of large treatment differences can be ex-
pressed by a smooth distribution centered on the null
hypothesis. Such a prior could be considered equiva-
lent to an implicit sample of patients whose observed
treatment difference is zero, and hence forms a “hand-
icap” that the data must overcome in order to convince
us that extreme differences observed early in the trial
are not just lucky events. Stapping can be based on
the posterior tail areas, with the prior opinion provid-
ing a degree of shrinkage toward the null hypothesis,
which will impose the type of conservatism sought in
frequentist sequential analysis.

Figure 2 is taken from Freedman and Spiegelhalter
(1989) and shows the stopping boundaries obtained in
a trial of 200 patients with 5 interim analyses, in
which the classical boundaries of Pocock and O’Brien
and Fleming are contrasted with those derived from a
Bayesian stopping rule based on a prior equivalent to
22 pairs of patients who on average showed no treat-
ment difference. The Bayesian stopping rule assumes
a zero range of equivalence and recommends stopping
if either of the posterior tail areas pc or pg are < .025.
It can be seen that the Bayesian stopping boundaries,
expressed in terms of the naive fixed-sample Z-statis-
tic, are fairly conservative at the start of the trial and
then approach the nominal value of 1.96 as the data
overwhelm the prior. Thus the qualitative behavior of
frequentist sequential stopping rules can be imitated
by a Bayesian procedure based on an explicit decla-
ration of prior skepticism. (The prior can even be
juggled until the Bayes procedure has exactly the
correct size of 5%, but that appears rather sacreligious;
alternatively, specific sampling characteristics might
be achieved by adjusting the number of looks at the
data.)

The domain of clinical trials appears to be distin-
guished from others described by Professor Breslow
by the fact that the Bayesian approach is not intended
to provide a more sophisticated statistical analysis.
Rather, explicit representation of beliefs and demands
provides a qualitative improvement in the tools avail-
able in the complex collaborative process of designing
and carrying out a trial. We and others have found it
extremely valuable to elicit beliefs and demands before
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F1G. 2. Stopping rules for two classical and one Bayesian procedure,
where Z is the standard fixed-sample classical test-statistic for zero
treatment difference.
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the start of a trial, even if they are only to be used
informally. Contrasting prior beliefs with accumulat-
ing data can provide a means of identifying over-
optimistic expectations, but this can only take place
if those expectations have been explicitly recorded.
Sometimes prior expectations can be dead on: the
Beta-blocker hea}rt attack trial (BHAT) was designed
around an expected 28% drop in mortality derived
from previous studies (BHAT Research Group, 1984);
after 3837 patients had been randomized the observed
improvement was exactly 28%! (See BHAT Research
Group, 1987.) It would be rather optimistic to think
that all prior judgments will be so accurate, especially

Comment

M. Zelen

Bayesian methods have influenced our thinking
about the foundations of statistical inference but have
not enjoyed widespread popularity in applications.
Professor Breslow’s paper is a fine summary of some
of the settings in which Bayesian methods have been
applied with success to real data problems. The paper
serves as a reminder that Bayesian methods are begin-
ning to be utilized in the analysis of data arising in
the health sciences. I would expect this trend to in-
crease as Bayesian software becomes more available.
However, even with access to appropriate software,
the increased use .of Bayesian methods will be damp-
ened by the sensitivity of these methods to model
specificity. A widely prevailing view is that inferences
should rely on reasonably robust procedures. As a
result, one is likely to see Bayesian methods applied
to situations which have insufficient data to make
frequency-based inferences or to situations which

directly arise from Bayesian considerations. It is this A

latter remark on which I will comment further.

The Bayesian philosophy seems particularly ap-
. pealing and appropriate in case-control settings. This
methodology is aimed at inferring whether exposure
to a potential causal factor is associated with the
incidence of a particular disease. Starting from a col-
lection of cases and controls, one must infer if the
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when similar studies have not been carried out and
one is reliant on purely subjective opinion.

An encouraging sign is the willingness of established
researchers in clinical trials to take the Bayesian
approach seriously: Armitage (1988, 1989) illustrates
many of the points made in this discussion, while
Pocock and Hughes (1990) provide details of Bayesian
estimation following early termination of a trial in
order to overcome the excessive bias of the standard
estimate. We feel confident that slow but steady prog-
ress toward Bayesian design and monitoring will con-
tinue to be made in the future, and feel sure that
Professor Breslow’s paper will help in this regard.

case exposure to a causal factor is “unusual” when
compared to controls. One can use the information
from a control group to calculate the posterior distri-
bution of exposure. In many instances, there may be
so much prior information available about exposure
of a population (e.g., lifestyle habits of smoking and
drinking, etc.) that the limited information available
from a sample of controls may generate a posterior
distribution of exposure which is nearly the same as
the prior distribution. In such situations, one can carry
out an analysis of the cases and their exposure without
even generating data on a control group. The frequen-
tist view of case—control studies does not permit stud-
ies without controls. This represents a serious
shortcoming of the frequentist methodology for case-
control studies. To cite an extreme example, suppose
one has a potential causal factor which is rare in the
population, yet the available cases all have been ex-
posed to the causal factor. It would be ludicrous to
carry out a case—control study. Yet this is what the
frequency point-of-view dictates.

The frequentist model for case-control studies is
that random samples are drawn from a population of
cases and controls. In practice, this assumption is
unrealistic and is rarely met in practice. Data on cases
are usually drawn from hospitals, registries or what-
ever data collection mechanism would yield a conven-
ient set of cases. Controls may be gathered in a variety
of ways, but often it is not at all clear if the controls
are from the same population as the cases. Various
matching techniques are used to attempt to make
cases and controls comparable, but there is no way
to account for unknown factors which can influence



