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Comment

C. Jennison

I would like to .congratulate Professor Breslow on
his thought-provoking paper. The many and varied
biostatistical problems discussed serve to illustrate
the advantages, and sometimes the limitations, of the
Bayesian approach. The paper is typical of recent
trends in that it promotes Bayesian methods by dem-
onstrating their application to real and often complex
problems, a refreshing change from abstract justifi-
cations from first principles of the Bayesian paradigm.
While I do not subscribe to an all-embracing Bayesian
philosophy, I am happy to recognize the advantages
of Bayesian methods in many specific instances. But,
for readers like myself it is essential that the debate
addresses real examples; we need to be able to compare
other methods of analysis and to assess the suitability
of assumed prior distributions. This latter point is of
prime importance since doubt about the validity of an
informative prior weakens the credibility of any analy-
sis that depends strongly on its prior.

PROBLEMS WITH MANY PARAMETERS

The examples in Section 3 of the paper demonstrate
that the Bayesian approach has much to offer in
problems with many parameters, be they parameters
of interest or nuisance parameters. Introducing a joint
distribution for parameter values is a useful way of
incorporating prior information or expectations, and
the examples of Section 3 provide convincing illustra-
tions of this technique. Nonetheless, I am pleased to
see in the closing paragraph some healthy skepticism
about the use of arbitrary priors and warnings about
their possible ill-effects.

In some problems, similar models have been devel-
oped outside the Bayesian school, for example random
effects models are commonly used in classical analysis
of variance. However, the interpretations of such
_ models that different people are willing to recognize
can vary substantially. I am reminded of my own
experience in connection with work on the estimation
of treatment effects in agricultural field trials in the
presence of fertility trends (Green, Jennison and
Seheult, 1985). We proposed treatment estimates
which could be derived either as least-squares esti-
mates in the presence of a fixed but unknown smooth
trend or as general least-squares estimates in the
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presence of a random trend; the random trend model
has the advantage that it facilitates calculation of
standard errors for estimates of treatment differences.
My own view is that there is no real difference between
an unknown fixed trend and an appropriately defined
random trend, but these appear to be quite separate
concepts to many agricultural statisticians. Unfortu-
nately, the distinction is important, and the difficulty
of calculating standard errors has been a major factor
in the failure of “neighbour adjustment” methods to
challenge classical randomization methods for the
analysis of field trial data.

It is interesting to note the willingness of research-
ers working in problems with very many parameters
to embrace the Bayesian approach. Prior distributions
for regression functions have been proposed in the
context of nonparametric regression (see, for example,
Silverman, 1985); Bayesian models have been widely
adopted in statistical image reconstruction (see
Geman and Geman, 1984; Besag, 1986). In both these
areas, the Bayesian paradigm appears to be alone in
offering hope of progress toward formal inferences in
the presence of so many related parameters.

BIOEQUIVALENCE

The issue of bioequivalence testing is clearly an
important one with major financial implications for
pharmaceutical companies. While not disputing the
Bayesian approach to this problem (apart from pos-
sible doubts regarding the origins of prior distribu-
tions), I would challenge the suggestion that suitable
“frequentist” procedures cannot be found. I believe
the difficulties alluded to arise from unfortunate and
rather confused early formulations of the problem.

The repeated-sampling requirements of a fre-
quentist testing procedure are clear. It should accept
bioequivalence with high probability when two com-
pounds have the same response distribution, and it
should reject bioequivalence with high probability
when response distributions differ by some specified
amount. For many types of response, standard meth-
ods are available to construct a test meeting such
requirements. A problem that has arisen is a semantic
one, concerning the naming of hypotheses. To protect
the consumer, one must guard against wrongly ac-
cepting bioequivalence, and it is the probability of
such an error that will be the main concern of a
regulatory body. Under the usual convention, the
“more serious” form of error is called type I and this
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should correspond to wrongly rejecting the null hy-
pothesis; in order to achieve this in bioequivalence
testing, the null hypothesis must be set at a point of
nonequivalence, i.e., a “non-null” null hypothesis. If
this notion is unacceptable, the simple solution is to
retain a null hypothesis of exact equivalence and
express the bound on the probability of wrongly ac-
cepting bioequivalence as a power requirement. From
an operational point of view, the naming of hypotheses
is immaterial and the properties of a test can be
represented by its operating characteristic, a graph of
the probability of accepting bioequivalence against
treatment difference. Such a graph should suffice to
demonstrate the acceptability of a good frequentist
method and, in view of Professor Breslow’s experience,
I would suggest its inclusion as standard practice in
protocols for bioequivalence testing.

SEQUENTIAL CLINICAL TRIALS

Most of my reservations about Professor Breslow’s
paper concern the discussion of sequential clinical
trials. The initial example of a trial in which the study
committee changed the end point in the middle of the
study is interesting, but it should usually be possible
to avoid such problems through detailed discussion at
the planning stage. A related problem is the shifting
during the course of a study of the point at which two
treatments are deemed to be equivalent with respect
to the primary response, for instance as a result of
observed outcomes of a secondary response; the re-
peated confidence interval approach of Jennison and
Turnbull (1989) is designed to allow frequentists suf-
ficient flexibility to cope with such mid-study changes.
Professor Breslow’s remarks about the difficulty of
evaluating operating characteristics of sequential tests
are outdated since direct calculation by repeated nu-
merical integration is straightforward and fast, both
for group sequential designs and for quite fine discre-
tizations of continuous time procedures; however,
given the large number of papers and books on ana-
lytic approximations to these quantities, one might be
forgiven for assuming that no simple direct solutions

- exist! I am surprised that the suggestion to discard
observations in order to comply with a group sequen-
tial design is given such prominence. Pocock (1977)
noted the robustness of his group sequential designs
to small fluctuations in the group sizes and, for larger
fluctuations, the Lan and DeMets (1983) “error spend-
ing function” provides an exact adjustment; also, Jen-
nison (1987) has adapted the error spending function
approach to one-sided tests.

Before addressing the troublesome question of
whether inferences on termination should depend on
the stopping rule used to collect data, I think it is
important to consider the choice of the stopping rule

itself. The motivation behind any sequential design is
the need to weigh the cost of collecting further data
against the reduction in the probability of an incorrect
decision gained thereby. If costs of sampling and loss
functions for incorrect decisions are specified, a formal
decision problem results but, even if this is not done
explicitly, the notional existence of a common
underlying framework suggests that good frequentist
and Bayes stopping rules should not be too
dissimilar. This idea is confirmed by the complete class
theorems for sequential tests of Brown, Cohen and
Strawderman (1980) which state that all “admissible”
frequentist rules are Bayes for some combination of
prior and loss function. This equivalence is exploited
by Eales and Jennison (1990), who use dynamic pro-
gramming solutions of Bayes decision problems to
compute optimal frequentist tests. In practice, formal
decision theory is rarely, if ever, used to determine
stopping rules; to specify a loss function as well as a
prior appears to be too daunting a task. Perhaps some
progress could be made by approaching the problem
from the opposite direction: it would certainly be an
interesting exercise to determine a decision problem
for which a proposed sequential test is optimal or
near-optimal and ask the study committee to check
that the loss functions and prior involved are at least
reasonable.

A major difference in the description of frequentist
and Bayes tests is that the error probabilities of a
frequentist test are quoted at a small number of pa-
rameter values while the error probability of the Bayes
test is quoted, if at all, as an integral over the param-
eter space with respect to the prior distribution. The
fact that these probabilities are sometimes numeri-
cally equal can be the source of some confusion since
they are really very different items. Suppose, for ex-
ample, normal observations Y;, Y;, --- with mean 6
and known variance o2 are available and it is desired
to test between # < 0 and # > 0; suppose also that a
flat generalized prior for # is assumed in the Bayes
analysis. After collecting n observations with mean Y,
the posterior distribution of 6 is normal with mean Y
and variance o2/n. One possible Bayes test is to reject
=0if

(1) PO =<0]|Y) < 0.05,

i.e., if Y = 1.645v(c2/n). As it happens, this test also
satisfies the frequentist property

(2) P(reject 6 =0]60) =0.05 forall §d <0,

with equality when § = 0. Note, however, that the
probability in (1) is with respect to random 6 for fixed
Y, while the probability in (2) is with respect to
random Y for fixed . The apparent similarity between
the frequentist and Bayesian properties disappears in
a sequential setting. If observations are collected in
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up to K groups of size n, a sequential version of the
Bayes procedure stops and rejects § < 0 after k groups
of observations if

(B PO=0|Y) =005 k=1, K,

ie, if Y, = 1.645v(c%/nk), where Y, is the mean of
the first kn observations; if Yx < 1.645v(c?/nK),
6 = 0 is not rejected. Rules similar to this have been
proposed by Mehta and Cain (1984), Berry (1985) and
Freedman and Spiegelhalter (1989). On termination
at analysis k, the posterior distribution for 8 is normal
with mean Y, and variance o2/kn, even though a data-
dependent stopping rule is used and, thus, (3) implies
that in the Bayesian analysis 95% confidence of not
having wrongly rejected § < 0 is preserved. However,
if the repeated-sampling properties of this test are
evaluated at specific values of 8, we find that (2) is
not preserved, for example P(reject 6 < 0] = 0) =
0.17 for K = 10; qualitatively similar results are found
if the flat prior is replaced by a proper normal prior
with mean 0 and moderately high variance while a
positive prior mean leads to even higher rejection
probabilities. In contrast, frequentist group sequential
tests, for example those of Pocock (1977) and O’Brien
and Fleming (1979), maintain a specified type I error,
(2), by raising the boundary for rejection of § < 0 at
each analysis.

It is tempting to ask which is the “correct” adapta-
tion of the fixed sample test to the sequential problem.
However, I do not think there is enough information
in the question to allow a clear answer. There is an
element of arbitrariness about both the frequentist
and Bayes fixed sample tests and the sequential ver-
sions are produced simply by preserving a particular
familiar property in-either the frequentist or Bayes
setting. One route to a definitive answer would be to
note the Bayes decision problem implicit in the fixed
sample test, find the optimal sequential procedure for
this problem and compare this with the frequentist
and Bayes sequential tests. However, it turns out that
the same fixed sample test results from a multitude
of different decision problems, combining different
priors and loss functions; moreover, there is further

- freedom in choosing the cost of sampling function in
the sequential problem. Depending on the choice of
prior, loss function and cost of sampling function, one
of a whole range of different optimal sequential tests
can result and, so, the original question remains un-
resolved. My conclusion is that, without further infor-
mation, it is not possible to make an absolute
judgment between the two types of test in question
and it would be foolish to try to do so. Comparison
must, therefore, be based on properties of the tests
such as their operating. characteristics and expected
sample size functions, measured either at individual
values of 6 or integrated with respect to a prior.

I still have strong reservations about specifying the
properties of a sequential test only after integrating
out the prior distribution for #. If members of an
external audience with different prior beliefs are to be
convinced by a Bayes test’s outcome, some conserva-
tism must be built into the test; with this in mind, the
results of Rosenbaum and Rubin (1984) that proper-
ties of Bayes sequential tests are very sensitive to the
chosen prior are a serious cause for concern. In many
medical applications trial organizers have vested
interests, either as physicians hoping to demonstrate
the efficacy of a treatment they have pioneered or
drug manufacturers seeking approval for a new prod-
uct. The traditional role of phase III trials is to test
the efficacy of promising new treatments in as con-
trolled and impartial a way as possible, but it is
difficult to imagine how anything like an impartial
prior could be agreed upon for many such studies.
Finally, if Bayes tests are to be employed, I would
stress the importance of examining their repeated-
sampling properties at individual parameter values;
with reference to my previous example, even if I
believed the relevant prior for 6, I would find a test
with a “false positive” error probability of 0.17, in the
usual frequentist sense, very worrying. Perhaps regu-
latory bodies and skeptical observers in general con-
centrate too much on worst case situations, but in
drug testing, and especially in drug safety, such cau-
tion seems only prudent.

Having identified myself as an advocate of frequen-
tist sequential tests specified in terms of repeated-
sampling properties, I must now defend some of their
peculiarities. It is undeniable that adherence to strict
limits on repeated-sampling error probabilities can
lead to some awkward problems. Professor Breslow
notes the problem that arises in Lan and DeMets’
(1983) method and which also occurs in Jennison and
Turnbull’s (1989) method of computing repeated con-
fidence intervals, that no further data can be used
once all the type I error has been “spent.” The diffi-
culty can be largely alleviated by careful experimental
design and by taking full advantage of the flexibility
afforded by the Lan and DeMets approach. However,
the underlying problem must still remain for any test
with limited type I error. Although, at first sight,
Bayes methods appear to provide a convenient solu-
tion to this sort of problem, that they do so is also
further evidence that they do not guarantee repeated-
sampling type I error rates and, if the repeated-sam-
pling properties of the Bayes test described above are
representative, this may not be so desirable after all!

I shall now turn to the thorny issue of making
inferences on termination of a sequential test. I would
first note that it is essential to take account of the
stopping rule when computing frequentist confidence
intervals or p-values, if they are to satisfy their usual
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repeated-sampling definitions. It may be tempting to
try to avoid complications by proceeding as if the final
data had arisen from a fixed sample size study, but
this can only lead to greater problems; examples can
be constructed where this method leads to guaranteed
arbitrarily small p-values under the null hypothesis
and where confidence intervals fail to contain the true
parameter value with probability one.

In defending frequentist analyses which take ac-
count of the stopping rule, I start from the assumption
that the sequential test is closely linked with a decision
problem. As an example, consider a study comparing
a new drug against the current standard treatment
and let 6 denote a measure of the improvement
offered by the new drug. Suppose a sequential test is
conducted to test Hy: § = 0 against the one-sided
alternative § > 0 with type I error probability « and
rejection of H, will be used to justify the efficacy of
the new treatment to a regulatory body. In such a
situation, the role of a p-value against H, or a confi-
dence interval for § upon termination is to provide
additional information over and above the result of
the formal test. A basic requirement, then, is agree-
ment with the outcome of the test: the p-value should
be less than « and a 1 — 2« equal-tailed confidence
interval for § completely above 0 if and only if the test
rejects Hy. Such agreement will be obtained if one
uses standard frequentist methods and any sensible
ordering of the sample space when computing the
p-value or the confidence interval (see, for example,
Fairbanks and Madsen, 1982; Jennison and Turnbull,
1983; Tsiatis, Rosner and Mehta, 1984). Given the
close interconnections with the underlying decision
problem, it might be argued that p-values and confi-
dence intervals on termination should be termed
“decisions” rather than “inferences,” although I am
not convinced that this is a very useful distinction,
anyway.

The major argument against frequentist inferences
upon termination seems to revolve around the possi-
bility that two statisticians faced with the same set of
data may report different p-values. There is no doubt
that the apparent seriousness of this problem is mag-
.nified by the undue emphasis frequentist statisticians
have placed on the p-value as the single summary of a
set of data. The p-value is defined with respect to a
sample space, and there is no reason that different
sampling rules should not lead to different p-values
for the same final set of data; this does not necessarily
imply that different decisions should ensue although
this possibility cannot be excluded. Suppose in the

above example of a comparison between a new drug
and a standard, a repeated significance test is used
and this fails to reject H, but a “fixed sample” p-value
on termination is less than «. The manufacturers of
the new drug will doubtless feel disappointed that they
had not chosen a fixed sample study with the same
sample size as their completed sequential design; how-
ever, they would then have risked the complementary
outcome of a final p-value greater than « but interim
results that crossed the repeated significance testing
boundary. If a regulatory body lays down limits on the
acceptable type I error, these possibilities have to be
balanced one against the other, just as increased power
has to be weighed against the cost of greater expected
sample size. It is an inescapable consequence of spec-
ifying frequentist error rates that such things can
happen; however, once a frequentist accepts that a p-
value is only one convenient summary of a set of data,
the apparent paradox is not too hard to live with. As
I have argued earlier, it is eminently reasonable that
statisticians should choose to steer clear of introducing
priors into what are intended to be impartial and
definitive studies; the price to be paid, namely, the
problem of dealing with a rather peculiar sample space
and the need to examine critically the interpretation
of familiar methods of inference, is far from prohibi-
tive.

CONCLUSION

Bayesian methods have much to offer in the many
biostatistical applications where substantial prior in-
formation is available. I am particularly interested in
the prospect of Bayesian strategies for drug develop-
ment, where sequences of experiments are carried out
on many, often related, compounds. However, I retain
my reservations about the practicality of obtaining an
impartial prior for a final phase III trial, the results
of which must convince the wider external audience.

Bayesians do not have a monopoly on good ideas,
and many of the benefits of Bayesian methods have
also been obtained by frequentists working with ex-
tended, sometimes hierarchical, models. The intent of
this remark is not to quibble over who should take the
credit for methodological advances but rather to note
the similarities in current directions of frequentist and
Bayesian research. Lively and constructive debate
about real applied problems is an excellent stimulus
to the flow of ideas between the various statistical
schools, and I repeat my congratulations to Professor
Breslow for his contribution to this discourse.



