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Comment

David A. Harville

The publication of Robinson’s article is very
timely. As related by Robinson, BLUP is a statisti-
cal methodology that has been used extensively in
animal breeding, with great success. Robinson has
brought to our attention the similarities between
BLUP and various other methodologies, like krig-
ing and the Kalman filter, and has noted that,
while BLUP was developed via a frequentist ap-
proach to statistics, it has a Bayesian interpreta-
tion. In doing so, he has performed a valuable
service to those interested in the development and
application of BLUP (and the related methodolo-
gies) and to the statistics community as a whole.

The main theme of my discussion, which is devel-
oped in Sections 1, 4, and 5, is that BLUP and the
related methodologies should be discussed in the
common framework of a general prediction prob-
lem, that BLUP has some deficiencies that could be
eliminated by a more extensive use of Bayesian
ideas and that a unified, yet flexible, approach to
prediction is desirable and achievable. My discus-
sion includes (in Sections 2 and 3) some compar-
isons between work on BLUP and related work on
empirical Bayes inference and some comments
about some long-standing misconceptions regarding
the use of mixed-effects linear models.

1. BLUP FOR A GENERAL PREDICTION
PROBLEM

It is instructive to consider BLUP in the context
of the general problem of predicting the value of an
unobservable random variable w based on the value
of an n X 1 observable random vector y, where the
joint distribution of w and y has first and second
moments to be denoted by u, = E(w), u, = E(y),
v, = var(w), v,,, = cov(y,w), and V, = var(y). It is
assumed that x, belongs to a known vector space .«
and that p, is a known linear combination of the
elements of y,, or equivalently, that u, = X8 and
B, = NB, where 8 is a p X 1 vector of unknown
parameters, X is an n X p known matrix of rank
p* (any matrix whose columns span .#), and Ais a
p X 1 known vector that is expressible as A = X'k
for some vector k. The quantity v, and the ele-
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ments of v,,, and V, are assumed to be known
functions of an unknown parameter vector 6 =
6y,...,0,), whose value is restricted to a known
set Q, and V, is assumed to be nonsingular (for all
0 € Q). Note that, aside from the linearity of the
mean structure, the primary limitation imposed by
these assumptions is that v,, v,,, and V, are unre-
lated to u,, and u,. Note also that, in the special
case where v,, = 0, w = N8 (with probability one),
and the problem of predicting the value of w is
essentially equivalent to that of inference about
XB.

Clearly, the problem of predicting a linear combi-
nation of the fixed and random effects in Robinson’s
model (1.1) can be formulated as a special case of
the general prediction problem. Moreover, many of
the problems considered by Robinson in his Section
6, which come from quality assurance, geostatistics
and various other fields, can likewise be formulated
as special cases of the general prediction problem.
For many of these problems, it may seem more
natural to formulate them (directly) in terms of the
general prediction problem than to follow Robin-
son’s approach of recasting them in terms of fixed
and random effects.

In introducing the BLUP—I use BLUP as an
acronym for the best linear unbiased predictor as
well as for best linear unbiased prediction—and in
establishing its BLUPness, I prefer an approach
that differs somewhat from any of those presented
by Robinson. This approach, which I now describe
in the context of the general prediction problem,
clearly reveals the intuitive appeal of the BLUP
and takes advantage of some well-known results on
statistical estimation and on the MVN distribution.

Let w = p, + v}, V,(y — n,) =71+,V, 1y,
where 7= p,, — v}, V;u, = (N - v, V, ' X)B. If 7
and v}, V;! were known and if the joint distribu-
tion of w and y were assumed to be MVN, then the
best (minimum MSE) predictor of the value of w
would be E(w| y) = w, as is well known. Since w
is linear (in ¥), it is clear that even if the normality
assumption were dropped, @w would be the best
linear predictor of the value of w.

Now, let 3 represent any solution to the Aitken
equations X'V, 'XB = X'V, 'y. If (X - v}, V,'X)
(X'V;'X)"X'V;! and v}, V, ! were known, then
the BLUE (best linear unbiased estimator) of ~
would be 7= (N - v;wa‘lX)ﬁ, and a “natural”
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predictor of the value of w would be the predictor
(1) W=7F+0,,V, "y

obtained from @ by substituting 7 for 7. In fact, @
would be the BLUP.

To verify the BLUPness of i, observe that a
predictor (of the value of w) is linear and unbiased
if and only if it is expressible in the form r'y +
v}, Vy 'y, where r’y is a (linear) unbiased estima-
tor of 7, that is, where r' X = X — v}, V; ' X. More-
over, the MSE of a predictor of this form is

E[(r’y + v,V ly - w)2]
=var(r'y + v}, V, 'y — w)
= var(r'y) + var(v),V; 'y - w),

implying (since 7 is the BLUE of 7) that @ is the
BLUP. A further implication is that the MSE of @&
is

vy =V Vy tuy, + (X — v,V 1X)

yw "y

(2) -
(XVIX) (A= XV hy,).

Robinson (in his Section 1) has chosen to define
the BLUP (and to express its MSE) in terms of the
mixed-model equations. Thus, his definition is spe-
cific to mixed-model prediction. I prefer to start
with the more widely applicable representations (1)
and (2) and to use them (together with well-known
matrix identities) to derive the representations
given by Robinson. The value of the latter repre-
sentations is that, in the special case of mixed-model
prediction, v,, v,,, and V, have a relatively simple
structure, and these representations indicate how
(for computational purposes) to exploit that struc-
ture. In much the same way, the Kalman filter can
be regarded as an algorithm for efficiently comput-
ing BLUPs in the special case of ‘“time-series”
prediction.

2. EMPIRICAL BLUP VERSUS EMPIRICAL
BAYES

To account (in the general prediction problem)
for 0 being unknown, it is common practice to
adopt an even, translation-invariant estimator 6 of
6 and, for purposes of the (point or interval) predic-
tion of the value of w, to act as though 8 is the true
value of 0. In particular, a point predictor, say @,
can be obtained from the BLUP & by substituting
6 for 6. It seems natural to refer to this predictor as
the empirical BLUP.

Empirical BLUP, as applied to mixed-effects lin-
ear models with normally distributed random ef-

fects and errors, is equivalent to PEB (parametric
empirical Bayes) inference, as applied to one very
important class of problems. This equivalence is
discussed by Robinson in his Section 5.7, but only
briefly and in rather general terms. It may be
worthwhile to examine the equivalence in one rela-
tively simple setting.

Consider first PEB inference about the means

K1, - - - » by Of I “groups” based on the one-way cell-
mean model y,;=p,+e; (i=1,...,I; j=
1,..., d;), where ey, e, . . ., €;;, are normally and

independently distributed random variables with
mean zero and common, unknown variance orf. Itis
instructive to describe PEB inference by relating it
to HB (hierarchical Bayes) inference. HB inference
about u,,...,u, is essentially Bayesian inference
based on a prior distribution that is assigned to
k1s- .-, kg, and o2 in stages, say by (1) specifying
that, conditional on o2 and “hyperparameters” u
and v, the means u,, ..., u; are independently and
identically distributed as N(u,y02), (2) assigning u
a distribution conditional on 62 and 7, (3) assign-
ing o2 a distribution conditional on y, and (4)
assigning vy a distribution. In PEB inference, the
prior distribution might only be specified up to the
values of u, v, and ¢2, and the evaluation of point
or interval estimators may be based on criteria
such as PEB risk that are defined in terms of the
conditional distribution of y,y, ¥15,..., s, and
Bis- .-, 0y given pu, vy, and ¢2. The (parametric)
empirical Bayesian may use frequentist methods
(i.e., methods based on the conditional distribution
of Y11, Y125+ - -» Y15, &iven p, v, and o¢?) to obtain
estimates fi, 4, and 62 of pu, v, and ¢2, and then,
acting as though f, 4, and 62 are the true values of
#, v, and o2, use what would, if the true values
were known, be the posterior mean of u; and a
credible set for p; as point and interval estimators.
Thus, letting 6,= (1 + J;9)" (i=1,...,I) and
taking p = 2,J,8,%,./ 3, J,5,,

(B) Ai=a+QQ-8)(7-n)=56a+(1-35)7.

is a PEB (point) estimator of ;. PEB point and
interval estimators may be modified to account for
the estimation of y, v, and o2.

For purposes of comparison, consider now the
empirical BLUP approach to the prediction of the
values of p + a,,..., pu + a;, based on the one-way
random-effects model

(4) yij=”'+ai+eij(i=17"”I;j=1""’Ji)’

where p is an unknown parameter and where
a,...,a; and ey, ey,..., €, are normally and
independently distributed random variables with
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mean zero and common, unknown variances ¢2 and
02, respectively. Upon setting vy = ¢2/¢2, we find
that the joint distribution of y,,, ¥15,..., ¥75, and
g+ ay,...,pu+ a; under the one-way random-ef-
fects model is the same as the conditional joint
distribution of y1, Y12, -, ¥15; @and pg, ..o, py
(given u, v, and 0?2) obtained in the PEB approach
to the one-way cell-mean model. Thus, the criteria
adopted by the empirical BLUPer in the (point and
interval) prediction of the valuesof u + a;,...,u +
a; under the one-way random-effects model are
equivalent to those adopted by an empirical
Bayesian in the estimation of pu,, ..., y;. In partic-
ular, the definitions of MSE and probability of
coverage adopted by empirical BLUPers are equiv-
alent to those adopted by empirical Bayesians. Ac-
cordingly, the (point and interval) estimators of
K15 - -, ¢y that have been proposed by empirical
Bayesians tend to be similar or identical to the
predictors of the values of p + a,,...,u + a; pro-
posed by empirical BLUPers, especially the point
estimators and predictors. For example, it is easy
to show (say by using the mixed-model equations)
that the PEB estimator ji; is an empirical BLUP
predictor of the value of x + a;.

While the work of empirical Bayesians has much
in common with that of empirical BLUPers, there
are some notable differences. In particular, in de-
vising modifications to account for the estimation
of v and ¢2, empirical Bayesians tend to pay more
attention to conditional (given the values of various
of the quantities y,1, ¥12,- .., ¥1g; @a0d py, ..y py—
or of functions of those quantities—in addition to
the values of u, v, and 02) properties and relatedly
to make greater use of HB ideas. Further, much of
the work on PEB inference has been carried out
by professional statisticians and has been theoret-
ical in nature. This work has tended to focus on
relatively simple models, like the balanced
(Jy = -+ = J;) one-way cell-mean model, since it
is only these models that are tractable from a
theoretical standpoint. Moreover, this work is often
carried out under simplifying assumptions’(e.g., an
assumption that ¢2 is known). As a consequence,
the impact of this work on statistical practice, while
significant (Morris, 1983), has been restricted. By
way of comparison, much of the work on empirical
BLUP has been carried out by individuals in ani-
mal breeding and other fields of application, is
applicable to relatively complex models (which may
be intractable from a theoretical standpoint but
which are often needed in practice), has focused on
the problems (e.g., computational problems) en-
countered in applications and has had tremendous
impact on statistical practice.

3. RANDOM EFFECTS

It is widely believed that the adoption of a
mixed-effects linear model is appropriate only if
interest centers on fixed effects and components of
variance. A related and equally widespread belief
is that, if inferences are to be confined to the effects
of only those levels of a factor that are represented
in the data, then those effects should be treated as
fixed. As discussed by Robinson, both beliefs are
incorrect. It seems ironic that Searle, who received
a Ph.D. degree in animal breeding under the direc-
tion of C. R. Henderson, helped perpetuate these
beliefs (through his highly influential book Linear
Models). It may be worth mentioning that Searle
partially redeemed himself by pointing out (on
pages 461-462 of Linear Models) that the second
part of the solution to the mixed-model equations
(& in Robinson’s notation) “is, in many situations,
of interest also.”

For the one-way random-effects model (4), the
empirical BLUP of the value of u + a; is given by
expression (3). If the effects q,, .. ., a; were treated
as fixed rather than random, the empirical BLUP
would be ¥,.. It would seem that the ultimate goal
in deciding whether to treat effects as fixed or
random should be to obtain the most useful
methodology. Robinson suggests that effects should
be treated as random only if they ‘“come from a
probability distribution.” The results of James and
Stein (1961) suggest that this requirement may be
overly stringent. Moreover, if strictly interpreted,
it would never be satisfied. A less restrictive and
perhaps more satisfactory requirement would be
that the anticipated values of the effects be values
that might “likely” arise in sampling a distribu-
tion.

I am not sure that the distinction between varia-
tion and uncertainty is as clear-cut as Robinson’s
discussion (in his Section 7.5) would seem to indi-
cate, nor am I convinced that “classical statistics
can be distinguished from Bayesian statistics by its
refusal to use probability distributions to describe
uncertainty.” I believe that many classical statisti-
cians are willing to use probability distributions to
describe uncertainty anytime they feel their distri-
butional assumptions will be acceptable to those to
whom they wish to communicate their results.

4. BAYESIAN PREDICTION

The empirical BLUP @ has an unappealing fea-
ture, which is explainable in terms of the confine-
ment of 6 to Q. Suppose, for example, that the
model is the one-way random-effects model (4), and
consider the empirical BLUP {; of the value of
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u + a;. When 4 = 0, the empirical BLUP reduces
to y., which would be the BLUP of the value of
u + a; if it were known with certainty that y = 0.
This feature seems unappealing. The true value of
v can be larger than zero, but no smaller. Thus,
when 4 = 0, we may consider it “likely” that the
true value of v is larger than the estimated value,
and therefore be reluctant to act as though the
estimated value is the true value.

An appealing alternative to the empirical BLUP
can be obtained via the Bayesian approach. The
Bayesian approach, as applied to the general pre-
diction problem, consists of assigning 8 and 6 a
joint distribution (based on prior information), of
completing the specification of the (conditional)
joint distribution of w and y (given 8 and 6) up to
the values of 8 and 6, and of forming the posterior
distribution of w. In the event p* equals p, 8 and 6
are statistically independent, the density of 8 is
proportional to a constant, and the conditional dis-
tribution of w and y given 8 and 6 is MVN, the
posterior probability density function of w is

(6) flw]y)e Ag(wly,O)l(Bly)r(o)do,

where g(w | y, 0) is the probability density function
of a normal distribution whose mean is the BLUP
of w and whose variance is the MSE of the BLUP,
1(0 | y) is the likelihood function employed in REML,
and w(9) is the (prior) density of # (e.g., Harville,
1990). The posterior mean (i.e., the mean of distri-
bution (5)) is a weighted “average” (over 6) of the
BLUP, with weights proportional to (6| y)=(6).
Point predictors of the general form of the posterior
mean provide an appealing alternative to the em-
pirical BLUP.

The Bayesian approach is computationally inten-
sive—so much so that its use in many mixed-model
applications is at present unfeasible. Recently,
there has been increased interest in the computa-
tional aspects of the Bayesian approach (e.g.,
Kadane, 1990). More research should be directed
towards the solution of the computational problems
encountered in a Bayesian approach to mixed-model
prediction.

5. A UNIFIED APPROACH TO PREDICTION

Methodologies have been developed for a number
of special cases of the general prediction problem,
including mixed-model methodology, kriging and
the Kalman filter. These methodologies tend to be
identified with specific types of application such as
animal breeding, geostatistics and control theory,
and they have tended to evolve independently of

each other, with relatively little input from profes-
sional statisticians. To facilitate the exchange of
ideas and to avoid duplication of effort, it would be
desirable to develop a unified, but flexible, ap-
proach to prediction that accounts for the differ-
ences among the various special cases while ex-
ploiting the similarities. The terminology used in
this endeavor should be kept as free as possible
from highly specialized technical jargon.

Some thoughts related to the development of a
unified approach to the general prediction problem
are as follows.

1. It is useful to think of a model as a family of
(unconditional) joint distributions for w and y
obtained by (a) starting with the assumptions
implicit in the general prediction problem, (b)
possibly treating 8 and 6 as random vectors
having a completely specified distribution (as
in the Bayesian approach) or a distribution
that is specified only up to the values of un-
known hyper-parameters (as in the empirical
Bayes approach), and (c) possibly introducing
assumptions about the form of the (condi-
tional) joint distribution of w and y (given
and 6).

2. In formulating any particular prediction prob-
lem as a special case of the general prediction
problem—and in deciding on any assumptions
about the form of the (conditional) joint distri-
bution of w and y (given 8 and #)—it may be
helpful to express w and y in terms of other
random variables (e.g., random effects and
errors) or relatedly to proceed in stages by
introducing additional random variables and
conditioning on their values.

3. A model may serve to suggest a methodology
(consisting, e.g., of point and interval predic-
tors) and also as a basis for evaluating that
methodology. Typically, the methodology
should be evaluated under more than one
model. The properties of the methodology con-
ditional on y, on various functions of y, on 8
and 6, or on other quantities—as well as its
unconditional properties—may be of interest.
The ultimate criterion for judging a methodol-
ogy is whether it possesses the characteristics
sought by potential users.

4. A distribution assigned to 8 and # may or
may not reflect a prior opinion. When prior
opinion is hard to quantify or when the results
of the analysis are to be communicated to
individuals with different prior opinions, it
may be preferable to assign to 8 and 6 a
noninformative prior distribution, in which
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case prior opinion may be incorporated infor-
mally, subsequent to the analysis. In any case,
the distribution assigned to 8 and 6 should be
regarded as part of the model.

5. The posterior distribution of w (i.e., the condi-
tional distribution of w given y) may suggest

suitable point and interval predictors. With
the possible exception of the term posterior
distribution, which might be used in referring
to any distribution that is conditional on Yy,
the use of Bayesian jargon should be avoided.

Comment: The Kalman Filter and BLUP

James C. Spall

1. INTRODUCTION

Professor Robinson has given a wide-ranging ac-
count of best linear unbiased prediction with an
impressive array of examples and applications. In
this discussion, however, I will restrict my atten-
tion to issues regarding the Kalman filter and
BLUP.

For ease of discussion, let us restate the random
effects model in state-space form as given in Robin-
son, Section 6. The unobservable random effects
(state) vector, u,, evolves according to

(1.1a)

where w, is a noise term with mean 0 and covari-
ance matrix W,, and G, is the state transition
matrix. The second equation in the model relates
the state vector to the vector of observables y,:

(1.1b)

where v, is a noise term with mean 0 and covari-
ance matrix V,, and F, is the measurement matrix.
Equations (1.1a,b) can be expressed in the random
effects model form of Robinson by writing

u,=Gu, +w,u,=0,t=1,2,...,n,

¥ =Fu,+ v,

y=2Zu + e,
where y = (y7, y3, Py g,'f )7, ZT=Tblock diag[F%‘,
F,,...,F), u=(uy, u3...,u,)", and e = (vq,
vZ,...,vD)T. The covariance matrix for u, G in the

notation of Robinson, is a function of G, and W,
t=1,2,...,n. The structure of this covariance ma-
trix allows for recursive algorithms of the Kalman
filter /smoother form to be used to form BLUP esti-
mates for the components of u. Incidentally, a
slightly confusing point in Robinson, Subsection
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6.4, is that it is a Kalman smoother, not filter, that
produces the BLUP estimate of u based on data y.
What Robinson had in mind, I presume, is the
common problem where one is interested in an
estimate of u, based only on data through time ¢
(not through some later time); the Kalman filter, of
course, is used for this problem. For the remainder
of this discussion, I will assume that the filtering
problem is the one of interest (although virtually
all of the ideas would also apply in the smoothing
problem).

A couple of other points are worth noting here.
First, Sallas and Harville (1988) address a slightly
broader problem than that considered above and by
Robinson: namely the estimation of random and
fixed effects via Kalman filter techniques. Second,
as noted by Robinson, the Kalman filter is not
entirely due to Kalman. The filter equations were
essentially derived by others prior to Kalman, but
it was Kalman who crystallized much of the think-
ing in the area and discovered several key relation-
ships to certain systems-theoretic concepts (see
Spall, 1988, for further discussion of this).

In the next two sections, I will discuss two prob-
lems that were given fairly light treatment in the
Robinson paper, but that are important from the

‘point of view of a practitioner. Section 2 describes

some problems associated with constructing uncer-
tainty bounds for the filter estimation error &, — u,,
when the noise terms have an unknown distribu-
tion (as in the general setting of Robinson, equa-
tion 1.1). Section 3 elaborates on the brief discus-
sion of Robinson regarding uncertainty in the model
parameters 6.

2. UNCERTAINTY BOUNDS FOR i, — u, IN
DISTRIBUTION-FREE SETTINGS

Robinson presents the formula for the covariance
matrix of the BLUP estimation error in Section 1 of
his paper, and it is well known that this covariance



