EXACT INFERENCE FOR CONTINGENCY TABLES

cases, is there any reason that conditional coverage
should be desired? )

In summary, for the first model, pr(Y | S) is the
reference distribution for model checking and
pr(S; ¢) is the reference distribution for inference
about the parameter ¢. For the second model, pr( A),
where A represents the ancillary component of
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1. INTRODUCTION

Professor Agresti is to be congratulated for a
well-written and timely survey on exact conditional
inference for contingency tables. At this point in
time, 8 to 10 years after some of the key initial
advances in computing strategies (Pagano and
Halvorsen, 1981; Mehta and Patel, 1983; Pagano
and Tritchler, 1983a, 1983b), it is instructive to
take stock of both where the field is presently and
where the field may be headed. For practitioners
and applied statisticians, Agresti offers a practical
introduction to currently available exact methods.
For researchers in methodology and in statistical
computing and algorithms. Agresti offers directions
for possible future research.

Exact conditional inference for contingency ta-
bles involves assessing the exact (discrete) sam-
pling distribution of test statistics and parameter
estimates of interest after conditioning on the suffi-
cient statistics for nuisance parameters. The suffi-
cient statistics for nuisance parameters correspond
directly to certain margins in the corresponding
contingency table; as long as one operates within
the arena of loglinear models, conditioning on these
margins will eliminate the nuisance parameters.
The exact sampling distribution of interest is then
the distribution over all possible tables that could
be observed with certain fixed margins (i.e., those
margins fixed by the sampling design plus those
margins fixed by the conditioning). I will refer to
this set of tables as the conditional reference set. It
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S =Y, is the reference distribution for model
checking and pr(S| A; =) is the reference distribu-
tion for inference about the parameter =. For the
third model, model checking is not possible, and
pr(Y; a) is the reference distribution for inference
about any parameter of interest (i.e., any function
of a).

is worth noting the following correspondence be-
tween conditional and unconditional problems: the
conditional reference set for a problem with a set
S; of margins fixed by the sampling design and a
set S, of margins fixed by conditioning is identical
to the sample space for a (different) problem in
which margins in both S; and S, are fixed by the
sampling design. For example, the conditional ref-
erence set for testing independence in a 2 X 2 table
under product binomial sampling (one-fixed mar-
gin) is equivalent to the sample space for a 2 x 2
table with both margins fixed.

In this commentary, I would like to expand on
two areas that offer challenges for future work.
Throughout this discussion, I adopt Agresti’s nota-
tion as described in his Section 1.2 in toto, and I
refer to points in his paper by simply giving his
name and the section number.

2. BAYES AND RELATED INFERENCES

The existing literature on Bayesian methods for -

" analyzing contingency tables dates at least to Lind-

ley (1964). One way to categorize the proposed
methods is through the choice of prior. The sim-
plest methods are those for 2 x 2 tables under prod-
uct binomial sampling with beta priors; see Altham
(1969, 1971) for examples. Generalizations to full
multinomial sampling and to I X ¢J tables for I or
J > 2 lead to Dirichlet priors on the cell probabili-
ties. These are discussed in Good (1967, 1975, 1976),
Good and Crook (1974), Gunel and Dickey (1974),
Crook and Good (1980), and Albert and Gupta (1982,
1983a, 1983b). Normal priors on logarithmic func-
tions of the cell probabilities are discussed in
Leonard (1975) and Nazaret (1987). Empirical
Bayes analogs of the Dirichlet and normal ap-
proaches are described in Albert (1987) and Laird
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(1978), respectively. In most of these cases, the
emphasis is on noninformative priors (although the
work of Albert and Gupta is a notable exception).
The issue of the sampling design and which mar-
gins are fixed by it is raised from the beginning by
Lindley (1964) and figures very prominently in the
work of Crook and Good.

In general, Bayesian analysis involves modeling
prior knowledge about parameters, updating this
knowledge in light of the observations, and making
inferences based on the resulting posterior distribu-
tion for the parameters. In this context, nuisance
parameters are not a nuisance conceptually—one
simply integrates them out of the joint posterior
distribution to produce a marginal posterior distri-
bution for the parameters of interest. Practically,
however, nuisance parameters may indeed be a
nuisance if it is difficult to obtain a prior distribu-
tion for them or if it is difficult to integrate them
out of the posterior. (The first difficulty, i.e., ob-
taining a prior distribution, may be overcome by
choosing a suitable noninformative prior.)

Philosophical issues (completely) aside, it is cer-
tainly possible to consider a conditional Bayesian
analysis in which nuisance parameters are first
dealt with by conditioning and then a prior distri-
bution is chosen for the remaining parameters.
Although such an approach does mix apples and
oranges to some extent, it may offer an interesting
perspective, particularly in the current context due
to the aforementioned correspondence between the
conditional reference set for a given problem and
the sample space for another problem. The fol-
lowing simple example serves to illustrate a pos-
sible conditional Bayesian approach to testing a
hypothesis in a,two-way table.

Under full multinominal sampling, the condi-
tional reference set for a test of the model (X)
versus the model (X, Y) in a 2 X 2 table is based
on the distribution of {n,,, n ,} given {n,,, n,, }.
This distribution depends on the conditional proba-
bilities of falling in the first column for each of the
two rows, that is, on 7, = p;;//p;, and wy, =
P21 /P24, and is given by

Pr(n+1 =x|nyy,n9,, 7y, 7"2)

(1) = ;(x)bin(nu'nuﬂﬁ)
11

‘bin(x — ny; | nyy, 75)

for 0 < x < n, where bin(y | n, p) denotes the usual
binomial density and where T'(x) = {¢ integer:
max(0, x — ny,,) < ¢t < min(n,, x)}. The null hy-
pothesis is H,: m; = 7, = 0.5 and the alternative
hypothesis is unrestricted. For a conditional
Bayesian test, one starts by modeling prior belief in
m, and w,. Given the form of (1), one is tempted to

consider a product of independent beta distribu-
tions, one for each of 7, and w,, because the beta is
the natural conjugate prior for the binomial. In this
context, however, one cannot simply put beta priors
on 7, and w,, as these priors put zero mass on the
null hypothesis. Instead, a prior probability for H,,
is chosen, and the remaining probability is spread
out over values of w; and 7, not satisfying H,, (see
Berger, 1985, pages 149-150). Given an appropri-
ate prior distribution, the test is conducted by
calculating the posterior probability of the null
hypothesis. In this case, the null hypothesis con-
cerns both 7; and w,, so that the posterior proba-
bility of the null is calculated directly from the
joint posterior distribution. [The reader may note
the similarities between the above example and the
problem considered by Altham (1969) and described
by Agresti, Section 8.3. There are, however, two
key differences. First, Altham’s null and alterna-
tive hypotheses are different and permit the use of
simple beta priors. Second, Altham’s test is an
unconditional test under a product binomial sam-
pling model, whereas the test described above is a
conditional test under full multinomial sampling.
These two problems both lead to consideration of a
2 X 2 table with one fixed margin and illustrate
the aforementioned correspondence between cer-
tain conditional reference sets and sample spaces.]

The conditional Bayesian test previously de-
scribed can be compared to the usual (uncondi-
tional) Bayesian test for the same problem. For this
test, the null and alternative hypotheses are given
by: Hy: pyy = P1g; Po1 = P and Hy: p;; = p;, p;.
There are at least two possible approaches to the
choice of a prior distribution. One can model prior
opinion in terms of the two parameters p;, and
P.1; these parameters determine the cell probabili-
ties through the equations p,; = p;, p.1, P12 =
P1+(1 = pi1), poy = @A —p1)pyy and py=(1 -
p.1)A — p,,) and range (independently) over [0, 1].

" Again, independent beta distributions for p,, and

P, are conjugate, but give zero mass to the null
hypothesis that is equivalent to p,, = 0.5 (and,
thus, cannot be used outright). Alternately, one can
model prior opinion in terms of the parameters in
the loglinear representation of the cell probabili-
ties. Let /;; = log(p;;) and recall that the alterna-
tive hypothesis is equivalent to [,; = N\ + N+ )\3-
with the identifiability constraints N, = X = 0. In
order to ensure that the cell probabilities sum to 1,
it is standard to set A = log[l + exp(N)) + exp(})
+ exp(N; + N)]. This leaves two free parameters,
N, and )\21, each of which ranges on R. The null
hypothesis is equivalent to X = 0, and any prior
giving positive mass to the set of {N, ¥ = 0} can
be considered. In either case, the null hypothesis
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concerns just one of the parameters, so that the
relevant marginal posterior distribution is used to
compute the null posterior probability.

In the example considered in the previous para-
graphs, neither the conditional nor the uncondi-
tional Bayesian test admits a simple natural
conjugate prior distribution. This is clearly not al-
ways the case. For example, Altham’s (1969) un-
conditional test of 7; = w5, under product binomial
sampling makes use of beta conjugate priors. Al-
tham’s test corresponds to the null model (X, Y),
the alternative model (XY'), and a sampling design
that fixes the column totals (i.e., the Y margin). It
is interesting to note that a conditional Bayesian
test of this same model concerns the odds ratio 6
and the noncentral hypergeometric distribution
[Agresti, Section 1.3, equation (1.2)]. More specifi-
cally, with g(0) a prior density for 6 (supported on
[1, ) with atom at § = 1), the test of H,: § =1
against the one-sided alternative H;: 6 > 1 has
posterior probability for H, given by

g)f(ny1ln,nyy,n ;60 =1)
/1 g(o)f(nllln’ n1+yn+1;0) d0

@)

where the function f is given in Agresti’s equation
(1.2) and where the integral in the denominator is
understood to include the summand corresponding
to the atom at § = 1. Because of the complexity of
the noncentral hypergeometric distribution as a
function of 6, there is no natural candidate for the
prior g(0). The distribution on 6 induced by inde-
pendent beta distributions on #; and 7, is one
possibility (see Nurminen and Mutanen, 1987, for
the form of the distribution).

The previous paragraphs raise two interesting
questions. First, some of the Bayesian techniques
involve enumeration of a set of tables with certain
fixed margins (see, e.g., Good, 1976). Can any of
the sophisticated algorithms for calculating and
approximating exact p-values be adapted to aid
* Bayesian computations? Second, how do the condi-
tional Bayesian tests compare to the more standard
(unconditional) Bayesian tests and to the frequen-
tist tests, both in general and in the specific case
where noninformative priors are chosen? The work
of Good (1976) and Crook and Good (1980) indicates
that the Bayes factor for the test of independence in
a two-way table is not very highly dependent on
which margins are fixed when the prior is chosen
from the symmetric Dirichlet class. Does this lack
of dependence on fixed margins hold true more
broadly so that the very issue of conditioning or not
is less important in the Bayesian context? (Recall
that, in the classical context, conditional and un-

conditional analyses can lead to vastly different
conclusions; see Agresti, Section 8.2.) One might
begin to address some of these questions in the
simple context of testing independence in two-way
tables by comparing the Bayes factors that Good
(1976) and Crook and Good (1980) obtain for their
Model 3 (both margins fixed by sampling design) to
the Bayes factor resulting from (2) with some sort
of noninformative prior g(9).

3. SENSITIVITY ANALYSIS

As discussed by Dupont (1986) and noted by
Agresti in Section 2.1, the p-value for Fisher’s
exact test can be quite sensitive to small perturba-
tions in the observed data. In Agresti’s example,
adding one count to a 2 X 2 table with 200 counts
changes a two-sided p-value from 0.073 to 0.050.
This could well be a practically significant change
given the all-too-common practice of using 5% sig-
nificance cut-offs. Dupont generates nearly 1,000
tables, with total counts ranging from 60 to 498
that satisfy a certain set of criteria. He compares
each table to a table with one additional count (in a
specific cell) and shows both that this sensitivity of
the usual p-value for Fisher’s exact test is
widespread, and that the alternate method of dou-
bling the one-sided p-value to obtain a two-sided
test is considerably more robust.

One open question is the extent to which the
sensitivity noted for Fisher’s exact test is also pre-
sent for other exact p-values. One could expect
exact inferences to be highly sensitive to data per-
turbations whenever the sampling distribution is
highly discrete (i.e., it has most of its mass concen-
trated on a relatively few points). In situations
where high sensitivity is a concern, it is imperative
that analysts be able to assess the degree of sensi-
tivity present in their data. In a given application,
assessing the degree of sensitivity of an inference
to small perturbations of the data first requires a
defined notion of “small perturbations.” For exact
inferences in contingency tables, there are two ba-
sic levels of perturbation: those that do not change
the conditional reference set and those that do. For
example, in a test of independence in a 2 X 2 table,
perturbations that do not change the conditional
reference set are those that preserve both margins,
i.e., they add an amount x (possibly negative) to
both cells of one diagonal and subtract x from both
cells of the other diagonal. Any other perturbation
scheme in the 2 X 2 case involves changing the
conditional reference set. Schemes that do not
change the conditional reference set do not have
much appeal and are not considered further here.

Among possible perturbation schemes for con-
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tingency tables are: (i) jackknife-type perturba-
tions that decrease each count by one in turn, (ii)
perturbations that involve increasing or decreasing
each count by one in turn, (iii) perturbations loosely
based on a notion of misclassification that pre-
serves the total sample size but reallocates up to a
certain fraction of the observations, and (iv) more
general perturbations that need not preserve total
sample size and also permit more than one cell
count to alter. Schemes such as (i) and (ii) have a
certain natural appeal in moderate-to-large size
contingency tables—one would like to think that
changing just one cell by one count could not seri-
ously effect the p-value. In a context where protec-
tion against misclassification is desired, a scheme
of type (iii) is appropriate. A misclassification-based
scheme may differ depending on what, if any, mar-
gins are fixed by the sampling design. For example,
in a 2 x 2 table with fixed column margin, one may
be primarily concerned with potential errors in row
classification. In other words, one could want a
perturbation scheme that preserved the column
margin.

Working with a set of approximately one dozen
real examples of 2 x 2 tables culled from assorted
textbooks, the effects of perturbation schemes of
types (i), (ii) and (iii) on Fisher’s exact test were
studied. Denote the actual p-value by P and the
minimum and maximum p-values achieved over
the set of perturbations by P, and Py, respectively.
The following tentative conclusions rest on this
limited experience; in the interests of space, I will
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We would like to congratulate Professor Agresti
for his thorough review of the recent literature on
exact inference in contingency tables and for orga-
nizing it in a way that allows us to focus on some
key statistical issues. Our first observation relates
to the work “exact,” which has an everyday mean-
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illustrate the points exclusively with respect to the
table given by Agresti in Section 2.1 having counts
by row (10,90/20,80). Scheme (ii) may be prefer-
able to scheme (i), as there are cases where scheme
(i) alters the p-value in only one direction so that
one of P; or P, equals P, while scheme (ii) has
P, + P and P, + P. For (10,90/20,80), P = 0.073;
under scheme (i), P, = 0.043 and P, = P = 0.073;
under scheme (ii), P, = 0.043 and P, = 0.082. Un-
der scheme (ii), it is frequently, but by no means
always, the case that P, and P, are achieved by
increasing and decreasing the same cell. For
(10,90/20, 80), this is the case with P, arising from
the table (9,90/20,80) and P, arising from the
table (11,90/20,80). Scheme (iii) often leads to a
much wider range of p-values. For (10,90/20,80),
moving one count under scheme (iii), P; = 0.028
for (9,90/21,80) and P, = 0.117 for (11, 89/20, 80).
In the event that scheme (iii) is restricted to pertur-
bations that preserve the row margin, P, = 0.043
for (9,91/20,80) and P, = 0.117 is unchanged.

It is possible that further work on the sensitivity
of exact inference may lead to rough guidelines on,
say, the percentage change in p-value correspond-
ing to some set of perturbations for the data (see
Dupont, 1986). For the present time, however, it
would be helpful if software packages were setup to
easily permit sensitivity analysis based on these or
other perturbation schemes. Developing techniques
to permit efficient sensitivity analyses (i.e., with-
out repeating the computation for each perturbed
table) would be a useful area for research.

" ing that may not coincide with its technical mean-

ing in the present context. It is also a value-laden
descriptor that suggests that any statistical method
that is not exact may not be very good. As
the following comments imply, nothing could
be further from the truth.

The most widely studied problem involving cate-
gorical data, and seemingly the simplest, is that of
drawing inferences for the risk ratio and risk differ-
ence in 2 X 2 contingency tables. Yet, this simple
situation highlights many of the most controversial
aspects of statistical methodology and theory. Be-
fore discussing these issues, we note that there are
few practical statistical problems that come in the
simple form of a 2 X 2 table. Most investigations
involve a large number of variables, both continu-



