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Modeling Publication Selection Effects
in Meta-Analysis

Larry V. Hedges

Abstract. Publication selection effects arise in meta-analysis when the
effect magnitude estimates are observed in (available from) only a subset
of the studies that were actually conducted and the probability that an
estimate is observed is related to the size of that estimate. Such selection
effects can lead to substantial bias in estimates of effect magnitude.
Research on the selection process suggests that much of the selection
occurs because researchers, reviewers and editors view the results of
studies as more conclusive when they are more highly statistically sig-
nificant. This suggests a model of the selection process that depends on
effect magnitude via the p-value or significance level. A model of the
selection process involving a step function relating the p-value to the
probability of selection is introduced in the context of a random effects
model for meta-analysis. The model permits estimation of a weight
function representing selection along the mean and variance of effects.
Some ideas for graphical procedures and a test for publication selection
are also introduced. The method is then applied to a meta-analysis of
test validity studies.
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Combining information across replicated research
studies is a fundamental scientific activity. In the last
15 years there has been a growing appreciation in
education, psychology and the medical sciences that
systematic procedures for combining evidence are criti-
cal to ensure the validity of conclusions drawn from
such evidence (Cooper, 1984; Glass, McGaw and Smith,
1981; Rosenthal, 1984; Peto, 1987). One aspect of these
systematic procedures is the use of explicit statistical
methods to combine estimates across studies—often
known as meta-analysis (e.g., Hedges and Olkin, 1985).

Statistical methods for meta-analysis usually are
estimation procedures. They are designed to have desir-
able properties (e.g., consistency and asymptotic effi-
ciency) when the sample of estimates available is an
unselected sample of those that could have been ob-
tained from experiments like those conducted in the
studies whose results are to be combined. The seem-
ingly innocuous assumption that the sample of results
(estimates of effect magnitude) available for combina-
tion can be considered a representative sample of an
unselected population of such estimates is often highly
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debatable, and sometimes is demonstrably false. If this
assumption is not met, statistical methods based on
the assumption can produce misleading results.

THE PROBLEM OF PUBLICATION SELECTION
BIAS IN META-ANALYSIS

Publication selection bias (and any other form of
selection) is difficult to document because of the nature
of the phenomenon. To do so we need information about

. the missing estimates which is usually unavailable.
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There is, however, some reasonably direct and other
indirect evidence about the existence of publication
bias. :

Failure to Report Nonsignificant Results

One readily demonstrable source of bias in reported
estimates of effect magnitude stems from the failure
to report the details of statistical analyses when mean
differences are not statistically significant. Calculation
of an effect magnitude estimate requires the values of
sample statistics. Authors sometimes fail to report
either the test statistics or descriptive statistics but
simply report “no significant difference.” This tendency
to report the details of statistical analyses only when
significant results are obtained is part of what has
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been labeled “prejudice against the null hypothesis.”
Although statisticians are unlikely to condone such
conditional reporting of statistical results, the practice
is prevalent in psychological and medical research.
Apparently, statistical indoctrination about null hy-
pothesis tests has led many researchers to believe that
it is incorrect to interpret the results of research when
the null hypothesis cannot be rejected. One conse-
quence of this practice is that the data needed to
calculate effect size estimates are sometimes selec-
tively omitted in research reports when insignificant
results are obtained. For example, in meta-analyses by
Eagly and Carli (1981) and Strube (1981), as many as
40% of the potential effect size estimates could not be
calculated because of incomplete reporting of nonsig-
nificant results.

Although the selective omission in published papers
of results that are statistically nonsignificant is rela-
tively easy to document, this practice no doubt leads
to failure to submit for publication entire research
reports that examine one principal hypothesis test. For
example, while 60% of psychological researchers in one
survey indicated that they would submit a research
report for publication if its results were statistically
significant, only 6% indicated that they would do so if
the results were not statistically significant (Greenwald,
1975). Similar results were obtained in a survey of
medical researchers who were authors of published
studies (Dickersin et al., 1987). They identified 125
studies that were completed but not published. The
vast majority (82%) of these unpublished studies were
not even submitted for publication. The lack of a bene-
ficial medical effect (i.e., nonsignificance), cited in 34%
of the cases, was the most frequent reason for failure
to publish.

Editorial Policy

There is evidence that editorial policy in many areas
intends to discourage the publication of research
reports that yield statistically insignificant results (Ba-

kan, 1966; Sidman, 1960). Perhaps the clearest state- °

ment of such a policy was made by the editor of the
Journal of Experimental Psychology, one of the most
prestigious journals in psychology:

In editing the journal there has been a strong
reluctance to accept and publish results related to
the principle concern of the research when those
results were significant at the 0.05 level, whether
by one- or two-sided test. This has not implied a
slavish worship of the 0.01 or any other level, as
some critics may have implied. Rather, it reflects
the belief that it is the responsibility of the investi-
gator in a science to reveal his effect in such a way
that no reasonable man would be in a position to
discredit the results by saying that they were the

product of the way the ball bounced. At least, it
was believed that such findings do not deserve a
place in an archival journal, even though they may
be proper fare for symposia, scientific meetings,
and dittoed handouts (Melton, 1962).

Melton certainly implies that articles with more
highly significant results are more likely to be accepted.
Although unusually explicit in his views, Melton’s posi-
tion on the importance of statistical significance is
widely shared in education, psychology and the behav-
ioral sciences. This is verified both by empirical studies
(e.g., Coursol and Wagner, 1986) and by surveys of
journal editors and reviewers. For example, a recent
survey of reviewers for major journals in psychology
revealed that statistical significance of results is an
important criterion used in evaluating studies for publi-
cation (Greenwald, 1975).

Proportion of Significant Results
in the Published Literature

The published research literature in the social and
behavioral sciences contains a very high proportion
of statistically significant results. A survey of three
psychology journals by Sterling (1959) and a more
extensive survey of psychology journals by Bozarth
and Roberts (1972) showed that 97% and 94%, respec-
tively, of the articles examined that used statistics
rejected the statistical null hypothesis at the o = 0.05
significance level. If the studies examined by Sterling,
and Bozarth and Roberts are representative of all stud-
ies conducted in psychology, their results imply either
a large number of Type I errors, an average power in
excess of 0.90, or some combination of these possibili-
ties.

The overwhelming proportion of articles rejecting
the null hypothesis in these surveys is indeed remark-
able, given the results of studies of the power of statis-
tical tests in psychological research (Chase and Chase,
1976; Cohen, 1962). These surveys of statistical power
suggest that the average power of statistical tests
in psychological research is between 0.25 and 0.85,
depending on the assumed magnitude of effects. There-
fore, the surveys of statistical power suggest that
between 25% and 85% of the studies in psychology
journals would be expected to yield statistically sig-
nificant results. The larger than expected proportion
of significant results in the published literature may
be evidence of selection bias favoring publication of
statistically significant results.

Comparison of Published and Unpublished Studies

One direct means of studying publication bias is to
compare samples of published and unpublished studies
that presumably estimate the same treatment effect.
Because statistically significant results tend to be asso-
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ciated with larger effects, a tendency of unpublished
studies to have a smaller effect magnitude than pub-
lished studies would suggest the presence of publi-
cation bias. Several authors have found just such a
pattern of smaller effects in published studies (Smith,
1980; Devine and Cook, 1983; Dawes, Landman and
Williams, 1984; White, 1982).

Comparisons of Studies with Different Sample Sizes

Another method of determining the existence of pub-
lication bias is to compare the distributions of effect
magnitude estimates obtained in studies with different
sample sizes. If sample size is unrelated to the true
effect magnitude (which seems quite plausible) and
. there is no publication bias, then a plot of the sample
size versus effect magnitude estimates should resemble
a funnel —estimates with smaller sample size should be
“spread out” over a wider range, but the center of the
distribution should be the same for each sample size
(Light and Pillemer, 1984). If there is publication bias,
the funnel is distorted with fewer small effect estimates
for small sample sizes and a tendency for the center of
the funnel to be tilted (since publication bias distorts
the mean estimate most for small sample sizes). Appli-
cations of this technique to data on the effects of
psychoeducational care (Light and Pillemer, 1984) and
to data from clinical trials (Berlin, Begg and Louis,
1989) also suggest the existence of publication bias.

Consequences of Publication Bias

If effect magnitude estimates corresponding to sta-
tistically insignificant results are less likely to be sam-
pled (or to be available for sampling), then the sample
of effect size estimates will be biased. Because test
statistics are usually monotonically related to effect
magnitude estimates, studies that produce statistically
significant results tend to have effect sizes that are
larger in absolute magnitude. Thus, for positive popula-
tion effect sizes, overrepresentation of studies produc-
ing significant differences will tend to bias the sample
toward larger effect sizes. Hence each effect size esti-
mate or average of estimates from such a sample will
overestimate the absolute magnitude of the population
effect size.

Lane and Dunlap (1978) studied an extreme form of
bias toward significant results: the situation in which
only experiments yielding statistically significant re-
sults are observed. They simulated the results of a
large number of two-group experiments and selected
for further study experiments that yielded statistically
significant mean differences. Hedges (1984) studied the
same problem analytically. As expected, both studies
found that the mean difference estimated from experi-
ments yielding significant results overestimated the
population mean difference.

Hedges (1984) and Hedges and Olkin (1985) studied

the effects of the same extreme model of publication
bias on estimates of the standardized mean difference
and Hedges (1989) studied its effects on estimates of
the mean and variance. They demonstrated that the
bias induced by selection is a function of both sample
size and the true. effect magnitude and that the bias
can be very large when either the true effect magnitude
or the sample size is small. Begg and Berlin (1988)
obtained similar results under a slightly different
model of publication selection.

While these theoretical analyses have tended to ex-
amine rather extreme models of publication bias in
which no statistically insignificant results are reported,
they demonstrate that publication bias can have sub-
stantial effects.

CORRECTING FOR PUBLICATION BIAS

Research on corrections for publication bias has
taken one of three principal approaches. The first
approach is to investigate the sensitivity of the conclu-
sions obtained by meta-analytic procedures to the pos-
sibility that there are other unpublished results lurking
“in the file drawer” of researchers (Rosenthal, 1979;
Orwin, 1983; Iyengar and Greenhouse, 1988). A second
approach is the use of invariant sampling frames, such
as registries of studies. By restricting attention to
studies that are registered prior to the collection of
data, biases on study results due to selection can be
eliminated (Simes, 1986a, b; Begg and Berlin, 1988).
The third approach, the one taken by this paper, is to
model the selection process and develop estimation
procedures that take that selection process into ac-
count.

Hedges (1984) presented methods for estimation of
the standardized mean difference under a truncation
model of selection. In this selection model, estimates
are observed (selected) only if they are statistically
significant at the o = 0.05 level. Champney (1983)

_treated estimation in random effects analyses under

the same selection model. Iyengar and Greenhouse
(1988) extended earlier models for selection by intro-
ducing the general use of weighted distributions (Rao,
1965, 1985) to model selection effects. This perspective
is a generalization because it includes earlier work on
selection modeling as a special case in which the weight
function is an indicator function (i.e., a function taking
the value 1 if the result is statistically significant and
0 if it is not). Iyengar and Greenhouse examined esti-
mation under two weight functions with prespecified
parametric form.

In this paper we generalize the weight function
method of Iyengar and Greenhouse (1988). Instead of
specifying a parametric form for the weight function,
we approximate the weight function by a step function
and estimate the value of the weight function on each
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interval. The method described in this paper is quite
similar to that described by Dear and Begg (1992). It
differs only in that we rely on external information
(from psychological studies of the interpretation of
p-values) to specify the location of the discontinuities
in the weight function while they estimate the points
of discontinuity directly from the data.

MODEL AND NOTATION

A Model for Study Results in the Absence of Selection
Let X, . .., X, be variables such that

X; ~ NG, 0?)

where o? is known and § is an unknown parameter
distributed such that

&~ N(A, o9,
where A and ¢? are both unknown. Thus
(1) X; ~ N(A, o? + d?).

The observed statistic X; is used in study i to test the
hypothesis Hy: §; = 0 using the test statistic

Z;= 'X,V i
and the (two-tailed) p-value associated with this test is

(2) pi=1—®Z)+ ¥—Z) = 29(—Z).

A Model for Selection Bias

Selection bias arises as a consequence of researchers’,
reviewers’ and journal editors’ interpretations of re-
search. Researchers’ own interpretations of the conclu-
siveness of a research finding, and their belief about
the likely interpretations of reviewers and editors,
influence their decisions to report in detail or to at-
tempt publication at all. Similarly, reviewers’ and edi-
tors’ interpretations determine their decisions about
whether space will be allotted to provide detailed re-
porting of any particular (e.g., nonsignificant) result.

Thus models of publication selection bias must be -

based on models of the interpretation of research re-
sults. Studies of the interpretation of research findings
are therefore a promising source of ideas for models of
selection bias.

Interpretative considerations such as the perceived
importance of a research question or the perceived
adequacy of a research paradigm undoubtedly affect
the probability of selection. However, meta-analyses
are unlikely to combine studies of fundamentally
different research questions or use markedly different
research designs. Consequently, the effects of these
variables on selection are likely to be relatively
constant across studies in any particular meta-analysis.
Because selection effects that are unrelated to study
outcomes (e.g., are constant across studies) do not

introduce bias, selection effects due to these interpreta-
tive considerations do not have important implications
for meta-analysis.

More important for meta-analysis is the issue of
interpretation of the results of statistical analyses.
Systematic research on the interpretation of statistical
analyses by psychological researchers has led to sev-
eral findings (e.g., Rosenthal and Gaito, 1963, 1964;
Nelson, Rosenthal and Rosnow, 1986). One finding is
that researchers’ perceptions about the conclusiveness
of research results is strongly related to the p-value.
A second and rather surprising finding is that the
magnitude of the estimated effect is unrelated to the
perceived conclusiveness of the result. Given two re-
sults with the same p-values, the one with a larger
sample size (and hence a smaller observed effect magni-
tude) is typically perceived to be more conclusive. A
third finding is that the relationship between perceived
conclusiveness of results and p-values is not smooth
but is subject to “cliff effects” near conventionally used
a priori levels of significance such as o = 0.05 and
o = 0.01. In particular, there is a large change in per-
ceived conclusiveness for a smaller change in p-value
near 0.05. Thus a result with a p-value of 0.045 is
perceived as much more conclusive than a result with
a p-value of 0.055, but a pair of results with p-values
of 0.045 and 0.035 (or 0.055 and 0.065) are perceived
as about equally conclusive.

Researchers, reviewers and editors presumably se-
lect research results for potential publication in part
on the basis of their perception (interpretation) of the
conclusiveness of the findings. The model of interpreta-
tion and hence selection that emerges from the research
findings above is one in which conclusiveness and hence
the probability of selection is a function of the p-value
rather than the effect size. Moreover, in this model the
relation between p-value and conclusiveness is subject
to jump discontinuities or “cliff effects.” We introduce
both of these features in the selection model given
below.

Weight Function

Suppose that the observation associated with each
study has a weight function w(X;) which determines
the probability of being observed. As mentioned above,
it is reasonable to posit that the weight function
depends on X; through the p-value. It is probably
unreasonable to assume that much is known about the
functional form of the weight function. Consequently,
it is desirable to estimate the weight function using a
very flexible functional form that permits the data to
reveal the shape of the function. We posit that the
weight function is a step function with discontinuities
(steps) at points determined a priori. Suppose there are
k steps. Denote the left and right endpoints of the jth
step by a;-1 and a;, respectively, witha, = 0 and a;, = 1.
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Then, w(p,) is constant on the interval ¢;—1 <p < a;
Denote the value of w(p;) on the ith interval as w;,. We
expect the weight function, as a function of p, to be
the same for all studies. That is,

w1, if0<p; < ay,

w(p) =1 wj, ifa,i_1<p; < q;

Wk, ifak_l <pi <1.

Note that in the absence of information other than
just the X; values, we can only determine the relative
weights. Thus it is convenient and consistent with our
model of publication bias to assign one of the w; values.
A logical choice is to set w; = 1.0. This constraint

- implies that the w; values represent the chance that an
estimate with a given p-value is observed relative to
the chance that studies with p <a, is observed. Al-
ternatively, if the most highly significant results are
essentially always observed, the w; values may be inter-
preted as the chance that estimates with a given
p-value would be observed.

In estimation, it is necessary to define the weight
function as a function of the X;. The weight function
as a function of X; depends on the study index i because
the p-value depends on both X; and ;. Hence

~

wy, if—0;® 1 (a1/2) < X; <
and X; >0,
wj, if —0; @71 (aj/2)<X; < —o &1 (a;-1/2)
and X; >0,
wp, f0<X; < —0; @7 (ar—1/2),
wy, if —o < X;<0;®7(a1/2)
and X; <0,
w, if o; @ (@;-1/2) < Xi < 0; @ (a;/2)
and X;<0,
\wh, ifo; 87 (@r—1/2) = X;<O.
The assumption that the discontinuities are known
a priori, while strong, does not seem unreasonable
given what is known about the social psychology of
the interpretation of statistical hypothesis tests. Social
conventions in research communities dictate that
p-values such as 0.05, 0.01, 0.005 and 0.001 have partic-
ular salience for interpretation. Because publication
bias depends on interpretation, these values are impli-
cated as points of discontinuity in the weight function.

(8)  w(Xi )= 1

Likelihood

The weighted probability density of X; given the
weight function w(X;, o) a1_1d parameters A, 0 and w =
(w1, . .., wr) is

Ni

w(X;, o)) ¢<£_—é>

(4) f(Xi|A, 0, w) = AL, 0;, w)

(7)

where

Y

—A

ni

Ai(A’ 0y (.0) =/ nl—l w Xi’ Ui) ¢<Xl )Xm ’

—oo

and n? = ¢ + o%. Note that A; is the sum of normal
integrals over the regions where w(Xj, 0;) is a constant.
Thus

k
AfA, 0,0) = D wi B (A, 0)

Jj=1

where Bjj(A, o) is the probability that a normally distrib-
uted random variable with mean A and variance »? is
assigned weight value w;, that is,

B; =1 — ®[(bi — Ay + ®l(— b — A)ni],
& B;j = ®[(b;j—1 — AVn:] — ®[(by — Ani]
+ &[(—b; — A)n] — ®[(—bsj—1 — AVl
Bir = ®[(bix—1 — AVmi] — ®l(—bir—1— Aln],

1<j<k,

where the b; are the left endpoints of the intervals of
positive X values assigned weight w; in the ith study,
that is,

bij = —0; $! (a,~/2).
The joint likelihood for the data X = (X, ...

» WX, o) (X"_A>

A, 0,0 |X)= i
1X) i1=11 7: AdA, ni, w)

and the log likelihood is

, Xn) is

’

n n _ 2
L=logit) = ¢ + S loguiX, o) — 5 52 (K= 2]
i=1 i=1 M

(6)

n n k

- Z lOg(m) - Z lOg |:Z wj Bi]{A, U)].
i=1 i=1 j=1

Recalling that «; =1, the likelihood equations for

w2, ..., Wp are

AL _Ief) 5 Bi __g j=9,... &
dwj =1 @ o1 i1 By

where I(;,j) is an indicator variable taking the value 1
if X; is given weight w; and zero otherwise. Alterna-
tively, the first sum can be written using n;, the number
of X values taking weight j which gives

aL _n < BU =0

ST T Adw g/

3wj wWj =1 Li=1 wlBil

The likelihood equations for A and o® are slightly

more complex because the B; depend on both A and
o2. The likelihood equation for A is
AL _ SXi—A < Ik, wiBY;
aa o} 51 =10 By
where B is the derivative of Bj; with respect to A,
given by

8) =0,
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B = 0 {ol(ba — AVmi] — ol(— b — AVmi]}
§ = 0" {ol(by — Al + Sl(—bij—1 — A)in]
= [bij-1 — Alni] — ¢l(—by — A)mil},
Bj, = 97 {ol(— bip—1 — AVmi] — ¢l(bip—1 — AV}
The likelihood equation for ¢? is

1<j<E,

30'2 2,':1 ﬂ:} ,2
=0’

where the By are the partial derivatives of B; with
respect to o? given by

n k I
Z Ej:l ijij

AL _ 13 (Xi—APF &1
Z 21: 29 i=1 z:;5’=1 ijij

(10)

Bﬁ=%wﬂhmmo—%wﬂm,

1
By = 3 72 [ey ley) + dij—1 dldij—1)
— cij—1 Plcij—1) — dij dldi)],
Bj, = L 0 2 [dip—10(dip—1) — Cip—1 lcir—1)],

(11)
1<j<k,

2
where
(12) cij = (b — A
and
(13) dij = (—by — Aln;.

The second derivatives of the likelihood, useful for
computing solutions to the likelihood equations and
the information matrix, are only slightly more compli-
cated. They are given in the Appendix.

Estimation

One approach to parameter estimation is the simulta-
neous estimation of A, ¢ and w via the Newton-Raphson
method. This involves the inversion of a (& + 1) X
(¢ + 1) Hessian matrix at each iteration, but is quite
feasible as long as (¢ — 1), the number of steps in the
weight function, is not too large.

An alternative approach to estimation of A, ¢ and w
is the use of the EM algorithm. The first (E) step is as
follows. Given initial values of &%, compute estimates
(the expectation A" and ¢'") of A and ¢ given ' and
the data. The first (M) step involves computing an
estimate w'” of w given the estimates A” and ¢'® com-
puted in the E-step. Subsequent E and M steps of
the algorithm follow the same pattern. The jth E-step
consists of computing estimates AY and o'? given the
estimate wY~! from the previous step. The jth M-step
then consists of computing the estimate w'? from AY,
o' and the data. This EM algorithm requires numerical
computation of the estimates in each step, but the
computations are less demanding than direct estima-
tion of all parameters because the (¢ — 1) X (¢ — 1)
Hessian matrix to be inverted at each step is smaller
than that required for direct estimation. However, con-

vergence has been very slow in practice, which effec-
tively cancels the computational advantages of this
method since many more iterations are needed.

Graphical Procedures for Exploring
the Weight Function

One way to explore the likelihood of publication bias
is to examine the observed distribution of p-values and
to compare that distribution with the distribution that
would be expected given no publication bias. Such a
comparison also provides insight about the likely shape
of the weight function. For example, regions where the
observed and expected frequency of p-values differ
substantially correspond to regions where the value of
the weight function departs from one. Such compari-
sons can also be the basis for testing the hypothesis
that there is no publication bias (i.e., that w; =

- = w = 1) assuming that the random effects speci-
fication of the model is correct.

The probability density function of the p-value from
study i depends on the distribution of the test statistic
z under null and alternative hypotheses (Pearson,
1938). In particular, the probability function of the p
from study i is given by

0; ¢{[sign(X,)a, &1 (p/2) + A]/?]i}
Ni qb{[sign(X,) 0; ‘1>_1 (p/2)]/0,}

where sign(X;) takes the value +1 if X; is nonnegative
and —1 if X; is negative. A p-value picked at random

ﬁ'(p|0i, A» 0) =

’

from pi,..., p, has a probability density that is a
mixture of the probability densities of pi,..., pn,
namely

(14)  fploy ..., 0mA, o) = %Zfi(p]ai, A o).
i=1

Expression 14 gives the theoretical probability density
for the p-values that would be expected if there is no
publication bias. It provides a reference density against
which to compare the empirical frequency distribution

" of observed values, and it can be integrated numeri-

cally to yield the expected proportion of responses in
any particular interval of p-values.

The distribution (14) of the p-values depends on A
and o, the mean and variance of the random effects,
which are unknown. To use these results in practice, it
is therefore necessary to estimate A and o and to
substitute the estimates for the parameter values in
(14). Simple, consistent estimates of A and ¢*> (Hedges
and Olkin, 1985) are

no "(Xi—f)z_ c 0_1'2_
(15) 08_;':21—"_1 > o
and

A E X683+ o)
(16) o UGt )
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where X is the unweighted mean of X, . . ., X,. Graphi-
cal procedures may be used for comparing the empirical
and the expected density f(p|ai, ..., o, Ao, 60) or the
empirical and expected cumulative distribution func-
tion. For example, plotting the observed versus the
expected density or cumulative distribution functions
provides a way of determining ranges of p-values that
occur more frequently than would be expected if there
were no publication bias.

Testing for Publication Bias

The comparison of observed and expected distribu-
tions of p-values provides the basis for conditional
tests of publication bias. We emphasize that the tests
- are conditional in that they depend on the assumption
that the random effects are normally distributed and
that the true weight function can be adequately
approximated by a step function with the steps that
were specified a priori. The specification of the distribu-
tion of the random effects is critical because it affects
the computation of the expected distribution of the
p-values in the absence of publication bias. If the ran-
dom effects have a nonnormal distribution, the tests
would not be valid.

Test Based on Grouped Frequencies. One test is
simply a chi-squared test of goodness of fit of the ob-
served p-values to the expected p-value distribution.
Given k intervals defined by the cutpoints 0=
ay<a; < - - -<a; =1, tabulate the observed number
O; of p-values in the jth interval [a;-), ;] and compute
the expected number of p-values in the jth interval via

e a
f(plaly e ooy Opy AO’ &O)dp

aj—1

Ej=n

) .
= Z Bij'(AOy &O) ’
i=1

where B;; (A, o) is given by (5).
Then compute the chi-squared goodness of fit statis-
tic X? via

(0, — E,)2

(18) Z E,

If ws = - - - = wp = 1 (that is, if there is no publication
bias) and if the number of studies 7 is large compared
with k&, then X2 will have approximately a chi-squared
distribution with 2 — 1 degrees of freedom. We reject
the hypothesis of no publication bias at significant
level o if X2 exceeds the 100(1 — «) percent critical
value of the chi-squared distribution.

Note that the ratio OjE; for the jth interval of
p-values is a crude estimate of the weight w; for the
interval. Intervals in which O,/E; departs substantially
from 1 would be identified as p-value intervals in which
selection effects are evident.

Test Based on the Likelihood Ratio Criterion. The
conditional test described above is easy to implement

and is a natural extension of graphical procedures
to compare observed and expected distributions of
p-values. Another, more elegant, conditional test is
based on the likelihood ratio criterion. This test uses
the likelihood ratio test statistic

(19) G2 =2[L(A, 8, &) — L(Aq, 6o, 1)]

where L(A, o, w) is the log likelihood (6), A, 6 and & are
the maximum likelihood estimates of A, o and w with
no constraints, Ao and 6, are consistent (e.g., maximum
likelihood) estimates of A and o under the assumption
of no publication bias and 1 is a vector of 2 — 1 ones.
If

Ho:w2= '=wk=1

is true (that is, if there is no publication bias), G? has
approximately a chi-squared distribution with 2 — 1
degrees of freedom. We reject Hy at significance level
a if G exceeds the 100(1 — o) percentage point of the
chi-square distribution with 2 — 1 degrees of freedom.

The likelihood ratio test statistic is easy to compute
in conjunction with computation of the likelihood esti-
mates of A, o and w and the estimates A, and 6 given
in (15) and (16) of A and o assuming no publication
bias.

APPLYING THE RESULTS OF THIS PAPER

Indexes of Effect Magnitude

Research synthesis in the social and behavioral sci-
ences typically have used either the standardized mean
difference (Glass’ effect size) or the product-moment
correlation as the index of effect magnitude. The results
of each study are typically expressed as estimates of
one of these parameters and combined across studies
in the meta-analysis. The results in this paper can be
applied to either of these indexes of effect magnitude
because estimates of both correlation coefficients and
standardized mean differences, after suitable transfor-

- mations, are approximately normally distributed with

known variance.

Correlation Coefficient. Suppose that the m; inde-
pendent observations (X, Ya), . .., (Ximy Yim) within
the ith study are sampled from a bivariate normal
distribution with unknown correlation coefficient p;.
Then the sample product-moment correlation coeffi-
cient r; is an estimate of p; and the Fisher z-transform
of r;, given by

2= 2(r) = 0510 g{l + "]

is approximately normally distributed about

G=2z(p) =0.5 logE + ’; ']

with variance 1/(m; — 3). The results of this paper are
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applied in meta-analyses using the correlation coeffi-
cient as the index of effect magnitude by defining

1

Xi=z, of =
m; — 3

and letting
G~V N4, 6?).

Standardized Mean Difference. Suppose that the m;
independent observations in the experimental and con-

trol groups of the ith study are Y%, ..., Y%, and
Y4, ..., Y5, respectively. Then if
YE~VN@E, o),  Y§~oNwE o), Jj=1,...,m,

the population effect size §; and its sample estimate d;

are given by
E_ ,C YE—7¢
=K K  g=r -
a; Si

’

where Y7, Y? and s? are the experimental and control
group sample means and the sample estimate of the
within-group variance, respectively. If m; is not too
small (e.g., m; = 10), then d; is approximately normally
distributed about §; with variance

2
2 (144,
m; 4

If the effect size is small, then d; will have little effect
on the variance and the variance can be treated as

essentially known. In this case, the results of this paper
can be applied by defining

2
Xi=d;, 0125£<1+g1‘>
m; 4
and letting
o; v N(A, 02) .

Alternatively, a more elegant approach is to use the
variance stabilizing transformation given by Hedges
and Olkin (1985):

T: = 2 sinh™ (di/2/2),

Then T; is approximately normally distributed with a
mean of §; and a variance of 1/m;. The results of this
paper can then be applied by defining

XiET’i, 01251/mz

6; = 2 sinh™! (6,/2v2) .

and letting
0,‘ ~ N(A, 0’2) .

EXAMPLE

The methods described in this paper were applied to
the data from a meta-analysis of 755 studies of the
validity of the General Aptitude Tests Battery (GATB),
a cognitive test measuring several mental abilities.
These studies were carried out by the United States

Employment Service (USES) to determine whether the
GATB was a useful predictor of job performance in a
wide variety of employment settings. Analyses of this
data set have been the basis for the policy decision to
use the GATB for referral of job applicants for job
placement in the USES offices nationally. That decision
proved controversial and ultimately led to a lawsuit
against USES on the grounds that the data from the
studies were insufficiently conclusive to warrant the
national policy. A National Research Council panel was
convened to study the problem (Hartigan and Wigdor,
1989). One of the questions that emerged was whether
there was a systematic tendency to selectively report
GATB validity studies.

The data reported for each study consists of a corre-
lation coefficient between a GATB ability scale and a
measure of job performance. Although the GATB has
nine ability scales, only results for the general ability
scale are examined here. (General ability and composite
ability scales that rely heavily on it figure most promi-
nently in the controversy over the validity of the
GATB.) The analysis was performed on the Fisher
z-transformed correlations.

Assuming no selection, the estimate of the average
(z-transformed) correlation A would be Ao = 0.26 and
the estimated variance component of the population
correlations would be 63 = 0.012 corresponding to
6o = 0.11. We implemented the selection model by us-
ing 10 p-value intervals defined by ao = 0.0, a; = 0.001,
az = 0.005, a3 = 0.01, a4 = 0.02, as = 0.05, ag = 0.01,
a; = 0.20, as = 0.30, ag = 0.50 and ayp = 1.0. We began
the analysis by comparing the observed and the ex-
pected number of reports in each interval. Table 1
presents the number of observed p-values falling into
each interval and the number expected if there were
no publication bias. Note that the observed number
corresponds closely to the number expected in each
interval but that of the largest p-values 0.5 < p < 1.0,
where only about 70% of the expected number of p-

TaBLE 1
Number of observed p-values falling
into each interval and the number expected
if there were no selection bias

Observed Expected
Interval Number %  Number %  Chi-square
0.0-0.001 179 23.7 187.4 24.8 0.38
0.001-0.005 80 10.6 75.0 9.9 0.34
0.005-0.01 43 5.7 41.6 5.5 0.05
0.01-0.02 44 5.8 48.0 6.4 0.33
0.02-0.05 81 10.7 73.9 9.8 0.69
0.05-0.10 80 10.6 63.8 8.5 4.14
0.10-0.20 68 9.0 70.0 9.3 0.06
0.20-0.30 45 6.0 43.7 5.8 0.04
0.30-0.50 61 8.1 58.3 7.7 0.13
0.50-1.0 T4 9.8 93.4 12.4 4.04

Note: The total chi-square is 10.19 with nine degrees of freedom,
p = 0.25.
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TABLE 2
Maximum likelihood estimates of the parameters
under the selection model

Interval Q@j SE(a;) Oj/E;
0.0-0.001 1.0 - -
0.001-0.005 1.03 0.16 1.10
0.005-0.01 0.98 0.19 1.03
0.01-0.02 0.86 0.17 0.92
0.02-0.05 1.00 0.18 1.09
0.05-0.10 1.13 0.22 1.25
0.10-0.20 0.86 0.19 0.97
0.20-0.30 0.91 0.22 1.04
0.30-0.50 0.91 0.22 1.05
0.50-1.0 0.68 0.18 0.79

Note: In this analysis, the maximum likelihood estimates of A and
- o®are A = 0.25, 2 = 0.011 with standard errors computed from
the information matrix as SE(A) = 0.012 and SE(6%) = 0.0013.

values are observed. However, computing the overall
chi-square test we see that the observed pattern of
p-values does not differ significantly from that ex-
pected if there were no publication bias (given the
random effects model and the choice of p-value inter-
vals). Computing the statistics (18) and (19), we obtain
the values of X2 = 10.19 and G? = 10.17, respectively.
Comparing these values with the percentage points of
the chi-square distribution with nine degrees of free-
dom, we see that values this large would arise due to
chance more than 25% of the time.

Computing the maximum likelihood estimate of w, A
and o? under the selection model, we obtain

A=0.25,62=0.011and 6 = 0.11

which do not differ appreciably from the values ob-
tained under the model, assuming no selection bias.
The maximum likelihood estimates of the weights are
given in Table 2 along with their standard errors ob-
tained as the square root of the diagonal elements of
the inverse of the information matrix. All but one of
the weights are estimated as near 1.0. Thus the selec-
tion model would not be expected to greatly influence
the estimates of A and o2 It is interesting that the
weights are so poorly estimated. Each has an estimated
standard error of approximately 0.2, which suggests
that the data contain relatively little information about
selection. It is also interesting that the crude estimates
of the weights given by O;/E; (at least in this example)
are quite close to the maximum likelihood estimates of
the weights.

This analysis suggests that there is little evidence
that substantial publication selection bias exists in
these data. The chi-square test suggested only very
meager evidence of selection bias. Perhaps more im-
portant is the fact that the estimates of A and ¢” under
the selection model were essentially identical to those
obtained from an estimation procedure that assumed
no selection.

3Ad0* =1 M

CONCLUSIONS

The methods described in this paper provide one way
of examining a set of data to determine if it is consis-
tent with the pattern of observations that might exist
when publication selection is operating. While the meth-
ods provide a model-based correction for the effects
of publication bias on estimates of effect size, such
estimates should be interpreted cautiously when there
is evidence of substantial selection. The validity of any
model-based correction depends on the accuracy of
the model. While the model proposed seems generally
sensible it may not be accurate in detail. Thus these
methods are probably best used to provide a broad
indication of whether selection is operating and, if so,
what its gross effects have been on estimation.

APPENDIX

The second partial derivatives of the likelihood (6)
for computing the information matrix are

2%2L iy (] - BBy
= — i D + ij i ,
dw;j duy (i=21 o} i=Zl [Ek=1 wm Bin)
where
: 1, ifj=4¢
) =
ot {o, i+

°L _ iu:';:l wm Bim) B — Bij (Eh=1 @ Bim)
9w 88 (Zh =1 wm Bim)? ’

a%’L _ i (Z:,—1 wm Bim) B§ — Bij (Th=1 wm BY,)

3wj dg? i=1 (Efn=1 meim)2
2L 1
—_— = — Z —
aa? =i}

_ i (Efu=l meim)(Efn=1 Wm BiArﬁ — (Ek =1 ‘-"mBiAm)2
i=1 (E;’};:l Wm Bim)2 ’

9%L _ iXi_A

4

_ (Th—y Wm Bim(Zh=1 wm Biy)
(Eﬁ,:l meim)2

(Ek=1 0m Bg)(Zh=1 wm B
(Efu=l Wm Bim)z

+

9’

’

_ i (Efn=l meim)(E?n=l mef,‘,’,) - (Efn=1 me}'m)Z
i=1 (Ek =1 meim)2

where

I
By = —n' By~ 5o By,
Bj* = 2B,

ij s

and By is given by
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3 _ 1 _
By = — 5’7»‘ By — i d, oldi) — ¢ dlea)l,

3 _ 1 _
i 2B — — it [e} -, dleij-1) — cf dley)

By=-7 ;
+d} oldy) — d¥ oy pldij-1)],  1<j<E,

3 _
By = P 2Bylcd, -, dlein—1) — diy—; dldir-1)].
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