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Comment: PARAFAC in Three-Way Land

Pieter M. Kroonenberg

1. INTRODUCTION

The purpose of this comment is to provide a somewhat
wider background to the PARAFAC model discussed
in Leurgans and Ross’ paper on three-way methods in
spectroscopy.

First of all, I would like to express my appreciation
for the paper by Leurgans and Ross. It seems to me
that the opening up of a methodology to a new area of
application is one of the more demanding, but also one
of the more necessary tasks for statisticians and data
analysts. When it goes hand in hand with further
clarification and extension of the methodology, it is the
more commendable.

In the present discussion, I will not so much attempt
to provide a discussion of the content of the paper
itself, but try to supply a wider perspective of the basic
model presented in the paper. In particular, I will
briefly sketch the literature on the PARAFAC model.

2. THREE-WAY ANALYSIS

Three-way multivariate analysis started with the
seminal work of Tucker (especially 1966), and much
work in this area including the development of the
PARAFAC model is in one way or another derived
from his basic ideas. As mentioned by Leurgans and
Ross, the so-called PARAllel FACtor model (PARA-
FAC) is primarily due to.Harshman (1970, 1972; Harsh-
man and Lundy, 1984a, b), but within the field of
multidimensional scaling it was independently devel-
oped by Carroll and Chang (1970), who called it the
CANonical DECOMPosition model (CANDECOMP).
In a set of papers, Kiers (1988, 1991) showed how the
PARAFAC model fits into a hierarchy of component
models with increasing numbers of restrictions on the
components. Geladi (1989) is a tutorial for three-way
methods (including PARAFAC) with- special reference
to chemical applications such as spectrometry and
chromatography. Other papers which discuss relation-
ships between three-way component models are Carroll
and Arabie (1980), Kroonenberg (1983, 1988), Snyder,
Law and Hattie (1984), Kruskal (1984), Harshman and
Lundy (1984a), Arabie, Carroll and DeSarbo (1987) and
Smilde (1992).
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3. PARAFAC MODEL

The PARAFAC model, which is the basic method
discussed by Leurgans and Ross, is one of the general-
isations of the singular value decomposition to three-
way data. Several theoretical discussions about the
nature of such generalisations can, for instance, be
found in Kruskal (1984), Denis and Dhorne (1989),
Franc (1989), Yoshizawa (1987) and Kroonenberg
(1989). Other mathematical areas of interest are the
rank of a three-way array (see Kruskal, 1976, 1977,
1989; Franc, 1989; Ten Berge, Kiers and deLeeuw,
1988; Ten Berge, 1991; and their references), and opti-
mality properties of three-way methods (d’Aubigny and
Polit, 1989).

As is evident from the paper by Leurgans and Ross,
the model has generated much interest in chemistry
(for related applications, see, in addition, Smilde et al.,
1990; Ray and Cole, 1985). However, its roots lie with
psychometrics, and it has now reached areas like agri-
culture and environmental studies. There is also a Rus-
sian connection (Lipovetskii, 1984), as well as a Japanese
one (Hayashi and Hayashi, 1982; Hayashi, Yamaoka
and Terao, 1982). Harshman and Lundy (1984a, b) is
the most complete treatment of the model in psycho-
metrics.

3.1 Uniqueness

As indicated by Leurgans and Ross, the PARAFAC
model is identified under fairly general identification
conditions, and Carroll and Chang (1970), Harshman
(1972) and Kruskal (1984) have called attention to this
fact (see also deLeeuw and Pruzansky, 1978).

Harshman uses the uniqueness property (or “intrin-

.sic axis property” as he calls it) to search for “real”

psychological factors. Whereas in psychology the exis-
tence of such proportional factors is a question of
conjecture and empirical verification, in some sciences
such as chemistry, explicit physical models of the PARA-
FAC form exist. As formulated by Sanchez and Kowal-
ski (1990), there are “an abundance of instruments
that can automatically collect precise third-order data
arrays in a short time” (p. 33). In these areas, the
PARAFAC model (sometimes referred to as an exten-
sion of “generalized rank annihilation”; see Appellof
and Davidson, 1983) seems to be used more as a model
for parameter estimation than for discovery.

3.2 Algorithms

The basic algorithm for the PARAFAC model is
based on an alternating least squares approach, in
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which all components are simultaneously searched for
and in which, within each step of a major iteration in
the simultaneous procediire, three regression problems
are solved, each for one of the ways, with the other
two ways fixed. Leurgans and Ross provide a proof
that the components cannot be found one by one (or
recursively) unless orthogonality conditions are im-
posed, because PARAFAC models with fewer terms
than are actually present cannot recover the parame-
ters of larger models. As reported by most authors,
convergence is rather slow and alternative routes have
been investigated. Appellof and Davidson (1981) re-
ported testing a Fletcher-Powell algorithm which was
anything but an improvement. They also investigated
the performance of the so-called Aitken extrapolation
method, which worked reasonably well in accelerating
convergence. Harshman uses in his program a similar
“overrelaxation method” (Harshman, 1970), and also
Leurgans, Ross and Abel (1992) report using “ad hoc
acceleration methods.”

The present iterative algorithms seem to be some-
what sensitive to local minima, so that one needs sev-
eral runs from different starting positions to evaluate
the “best” minimum. Harshman and Lundy (1984a, b;
Harshman and DeSarbo, 1984) discuss at length the
technical and interpretational possibilities and prob-
lems of analysing three-way data with the PARAFAC
model.

Kiers and Krijnen (1991) suggest, as a method for
improving the basic algorithm for the PARAFAC model,
estimating the parameters using variable-by-condition
covariance matrices rather than the raw profile data.
They report considerable decreases in computer time
for random data. It was shown that at each iteration
step the loss function is the same as that of the original
algorithm. The modified PARAFAC algorithm only
needs the (means and) covariances of two ways for the
basic computations, so that the largest way can be
eliminated. Therefore, given there is one stochastic
way, the first and second order moments can be seen
as sufficient statistics for the (nonincidental) parame-
ters of the model, just as in the two-way case. The
parameters of the eliminated way -can be computed
after the iterative solution for the other two ways has
been found.

Several other authors have provided algorithms for
estimating the PARAFAC model. Hayashi and Hay-
ashi (1982; Hayashi, Yamaoka and Terao, 1982) pro-
vided an algorithm based on estimating successive
differences in each iteration and solving sets of simulta-
neous equations to find the required parameters. Hay-
ashi, Yamaoka and Terao (1982) reported different
results than those of Harshman’s PARAFAC program,
but the paper in which the details are reported is un-
fortunately in Japanese. Lipovetskii (1984) discussed

the successive component solution that Leurgans and
Ross have shown to be suboptimal.

3.3 Algebraic Solution

Sands and Young (1980), using a suggestion by Yo-
shio Takane, presented a decomposition which will pro-
vide a solution to the PARAFAC model in the case of
a perfect fit. The basic idea of this decomposition goes
back to Schonemann (1972; see also deLeeuw and Pru-
zansky, 1978), who proposed an algebraic solution for
the scalar-product version of Carroll and Chang’s (1970)
INDSCAL model. Leurgans, Ross and Abel (1992),
Sanchez and Kowalski (1990) and Burdick et al. (1990)
independently developed a comparable procedure to
Sands and Young with minor variations (for a compari-
son, see Leurgans, Ross and Abel, 1992). In the case of
approximate solutions, the Sands and Young procedure
and its variants can be used as an initialization for an
alternating least squares algorithm.

3.4 Optimal Scaling

Sands and Young (1980) also developed an optimal
scaling version of PARAFAC (ALSCOMP3) within
the optimal scaling tradition of Takane, Young and
deLeeuw (e.g., 1977). The inclusion of an optimal scal-
ing phase allows for the treatment of data with differ-
ent measurement levels, and for data with row, column
or matrix conditionalities (see, e.g., Gifi, 1990, for a
discussion of these terms). Harshman and Lundy (1984a)
give their opinion on the relative merits of Sands and
Young’s ALSCOMP3 procedure and PARAFAC.

3.5 Constraints

As in most other models, one may impose constraints
on the parameters of the PARAFAC model. Much work
in this area has been done by Carroll and co-authors
(Carroll, Pruzansky and Kruskal, 1980; Carroll and
Pruzansky, 1984; Carroll, De Soete and Pruzansky,
1989). Their first two papers deal with finding solutions
for the case that the constraints that various parame-

* ters are linearly related to prespecified variables or a

design matrix have to be satisfied. The solutions are
found by using the basic PARAFAC algorithm but
now applied to a reduced problem which results from
applying the design matrices to the components. This
procedure was christened CANDELINC (CANonical
DEcomposition with LINear Constraints). Carroll, De
Soete and Pruzansky (1989) developed an algorithm
using iterative reweighted least squares to produce
best asymptotically normal estimates for the model
parameters, which incorporated nonnegativity require-
ments at the same time. One may also put orthogonal-
ity constraints on PARAFAC components (see, e.g.,
Harshman and Lundy, 1984a), for instance to prevent
certain kinds of degenerate solutions (Harshman,
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Lundy and Kruskal, 1985; Kruskal, Harshman and
Lundy, 1989; Lundy, Harshman and Kruskal, 1989).

Krijnen and Ten Berge (1991) developed variants of
the basic PARAFAC algorithm to put nonnegativity
constraints on the solution by using special least
squares regression algorithms from Lawson and Han-
son (1974). Durrell et al. (1990) refer to programs for
three-way and four-way PARAFAC models (Lee, 1988)
which also included nonnegativity constraints.

3.6 Additional Issues

In the above sections, the general focus has been on
models and algorithms, but there are several issues in
connection with these models which have not been
mentioned so far. Very prominent, for instance, in
Harshman’s work, has been the question of prepro-
cessing (i.e., centering and standardisation) of the data
before the three-way analysis. Harshman and Lundy
(1984b) discuss this issue in great detail touching on
both algebraic and practical aspects (see also Kroonen-
berg, 1983). Ten Berge and Kiers (1989) and Ten Berge
(1989) provide some theoretical results with respect to
the iterative centering and standardisation proposed
by Harshman and Lundy.

Another issue in this context is the postprocessing
of output, that is, representation, graphing and trans-
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Multilinear models are fascinating because of the
richness of their mathematical structure and the use-
fulness of their applications. The authors have done a
fine job of presenting both of these features. I welcome
their paper and hope that it has the effect of stimulat-
ing interest in this important topic.

Having said that, I must add my opinion that it is
a mistake to shy away from tensors. The geometry of
tensor products can be a source of valuable insight
when struggling with the complicated details of multi-
linear algebra. The geometric perspective is especially
useful when trying to make sense out of the nonunique-
ness that occurs when model parameters are not identi-
fiable.

For example, the concept of tensor products of vector

Donald S. Burdick is Associate Professor, Institute
of Statistics and Decision Sciences, Duke University,
Durham, North Carolina 27706.

formations of the basic output of the programs to
enhance interpretability (see especially Harshman and
Lundy, 1984b; Kroonenberg, 1983).

Smilde (1992) raises the issue of variable selection
for three-way data, as well as the problem of nonlineari-
ties in the data and their effect on the solutions. These
issues can also be seen as a serious concern in such
areas like ecology where nonlinearities are the rule
rather than the exception (see, e.g., Faith, Minchin and
Belbin, 1987).

A final point is that within the framework of the
analysis of covariance structures, McDonald (1984) has
discussed the PARAFAC model, cited its limitations
and proposed an altogether different (stochastic) ap-
proach to the kind of three-way data psychologists
often encounter.

4. CONCLUSION

With the above comments, I have attempted to give
a rough outline of research on the PARAFAC model.
The model itself is only one of several conceivable
models for three-way data, but a fully fledged exposé
is not feasible here. What makes the PARAFAC model
special is that it has a unique solution, a situation
which is fairly unique in three-way land.

spaces can shed light on the structure of the T3 model.
Let Y denote an I X J X K data array and write

Y=u+e

where u is given by (19). The data array Y is uncon-
strained, which is tantamount to saying that Y is an
arbitrary vector in R ® R/ ® R¥, the tensor product
of real Euclidean spaces of dimensions I, J and K,
respectively. The array u, however, is constrained by
expression (19). What is the nature of that constraint?
Expression (19) stipulates that u liein @ ® & ® C,
where @, ® and C are the respective subspaces of R/,
R’ and RX spanned by the columns of A, B and T,
respectively. The least squares fit of 4 to Y is the
projection of Y on @ ® & ® C. From a geometric
perspective, the nonidentifiability is obvious, because
the projection of a data vector on a subspace is un-
affected by changes in the basis spanning the subspace.
Replacing A by AM amounts to no more than a change
of basis for Q.



