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model if Swendsen-Wang were not better still. More
work will be required before we learn how useful these
methods are, but they do seem to be worth investi-
gating.

How Safe Is Markov Chain Monte Carlo? Racine-
Poon “remains quite worried” about convergence of
Markov chain Monte Carlo, and this seems appro-
priate. So long as there are many problems in spatial
statistics, expert systems and statistical genetics for
which no one knows how to construct rapidly mixing
samplers, the worries will remain. Even ignoring these
areas and sticking to what Raftery and Lewis call
~ “standard statistical models,” it is not clear that rapidly

Rejoinder:

mixing samplers can be constructed for all such prob-
lems.

If one has a sampler that mixes too slowly, multiple
starts and diagnostics cannot save the situation. It is
necessary to change the sampling scheme so that it
mixes more rapidly. Fortunately, the Metropolis-Hast-
ings algorithm offers an enormous scope for experi-
mentation. Experience shows that for many problems
standard schemes such as one-variable-at-a-time Gibbs
updating work well. Experience also shows that some
very hard problems have been cracked using clever
sampling schemes.

Replication without Contrition

Andrew Gelman and Donald B. Rubin

We thank all the discussants and congratulate the
editorial board for providing the readers of Statistical
Science with multiple independent discussions of our
article, which surely provide a better picture of the
uncertainty about the distribution of positions on itera-
tive simulation than one longer article by us, even
though we might have eventually presented all possible
theoretical positions had we been allowed to write ad
infinitum. Even so, the readers would have obtained a
more accurate impression of what users of iterative
simulation actually do in practice had the discussants
focused more on this pragmatic topic and less on theo-
retical advice concerning what others should do; after
many public presentations and personal conversations,
we know of no one who uses iterative simulation to

obtain posterior distributions with real data and es- °

chews multiple sequences, despite possible theoretical
contrition at doing so. For a specific example, an anony-
mous reviewer of one of our research proposals wrote:
“The convergence tests he has helped to develop for
Gibbs sampling are certainly straightforward to imple-
ment. Moreover, the multiple starts upon which they
are based appear to me to be essential in practical
applications. Nonetheless, they are by no means widely
accepted.” To help disseminate our ideas, we summarize
our recommendations in Table 1.

It is difficult to overstate the importance of replica-
tion in applied statistics. Whether dealing with experi-
ments or surveys, the heritage beginning with Fisher
(1925) and Neyman (1934) and followed by a host of
other contributions and contributors is that, for statis-
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tical inference, a point estimate without a reliable as-
sessment of uncertainty is of little scientific value
relative to an estimate that includes such an assess-
ment, and the most straightforward path to this objec-
tive is to use independent replication. This conclusion
is also true in the context of iterative simulation where
the estimand itself is a distribution rather than a point.
Multiple sequences of an iterative simulation provide
replication, whereas a single sequence is analogous to
a systematic design. Although systematic designs can
produce more precise estimates for equivalent costs
and hence be useful especially in pilot investigations
(e.g., for exploring efficient stratification schemes) or
in very well-studied settings where sources of variabil-
ity are easily controlled (e.g., some routine laboratory
situations), in general scientific practice where variabil-
ity is not fully understood and valid inferences are
critical, systematic designs are far less attractive than
those with independent replication. Of course, essen-
tially all relevant statistical inferences are subject to
some unassessed uncertainty (e.g., extrapolation into
the future), and so “validity” of inference is relative,
referring to the substantially larger class of problems
successfully handled by replicated rather than system-
atic designs.

Somewhat surprisingly, many of the discussants’
comments suggest an abandonment of this heritage,
and some even appear to recommend reversing the
accepted practice by using multiple sequences, with
their independent replication and consequent superior
inferential validity, for a pilot phase, and a systematic
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TaBLE 1
Summary of advice for inference from iterative simulation using multiple sequences

Steps State of the art Usually adequate Works in simple problems
1. Create a Overdispersed approx. Samples from each mode Systematic samples at
starting based on modes scattered about extreme points of
distribution Importance resampling parameter space parameter space

(Sections 2.1, 4.2
of our article)

2. Simulate Iterative simulation
multiple algorithm tailored to
sequences problem at hand

Possibly use auxiliary
variables (i.e., data
augmentation)

Metropolis-Hastings

Many replications using
various algorithms

3. Monitor Use potential scale
convergence reduction for all

estimands of interest,
based on simple-
sequence and multi-
sequence variances

(Tables 1-4)

4. Inference Multiple samples of
about the simulated sequences
target that are very close
distribution to convergence

(Sections 4.6, 4.7
last five columns
of Table 2)
5. What to do Several options:

next if current
inference is not
sharp enough

(Section 4.8)

Metropolis or Gibbs
on the natural
space of random
variables

Several replications

Compare inferences from
separate sequences
and see how much
they overlap

Distributional estimates
that account for
simulation variability
based on simulations
not far from convergence

(Sections 3.4-3.6,

(e.g., Gelman and Rubin,
1991, for Ising model)

Approximations (e.g.,
Gibbs on approximate
conjugate model)

Correction via rejection
or importance sampling

2 or 3 replications
for each mode

Examine time-series
plots of multiple
sequences overlaid

(Figures 3, 4)

Distributional estimates
based on simulations
that are not close
to convergence

(Tables 3, 4)

first three columns
of Table 2)

¢ Run simulations longer, perhaps using the time series of potential scale
reductions as design information
* Restart using draws from a new estimate of the target distribution

o Alter the iterative simulation algorithm(s)

If potential scale reductions are already near 1, continue the science.

single sequence without replication for the final infer-
ence, almost as if the initial exploration using multiple
sequences were so informative that uncertainty was
reduced to that of a laboratory setting (e.g., Tierney,
and Raftery and Lewis). When actually performing
iterative simulations with real data, however, it ap-
pears as if at least some of the same discussants actu-
ally do use multiple-sequence methods to avoid errant
conclusions and obtain valid final inferences [e.g., the
presentation at the 1992 ASA meeting of Lange, Carlin
and Gelfand (1992) and the two examples in Wakefield
et al. (1992)]. Other recent public examples of the use
of multiple sequences to avoid possibly invalid conclu-
sions obtained from a single “convergent” sequence
include a variety of presentations in July 1992 at the
University of Nottingham on Applied Bayesian Statis-
tics (e.g., L. I. Pettit’s “Inferences about ordered param-
eters—an astronomical problem” used two sequences

that nicely converged to different answers after 10,000

_ iterations; C. E. Buck, C. D. Litton and D. A. Stephens’

“Detecting changes in the shape of prehistoric corbelled
tombs” successfully monitored slow convergence using
twenty sequences of 150,000 iterations; C. Ritter’s “The
analysis of electron spectroscopy data for chemical
analysis” used 100 sequences and a week of CPU time
on a DEC station to find adequate convergence for
many parameters but more uncertainty in the distribu-
tion for others). Further examples of multiple se-
quences working with single sequences exhibiting local
convergence appear in McCullogh and Rossi (1992),
Gatsonis et al. (1992), Gelman and Rubin (1992), Rubin
and Stern (1992), and Wakefield (1992). For all these
examples, lack of convergence is immediately apparent
from multiple sequences while being difficult or impos-
sible to detect from a single sequence.

Even our example, initially labeled “too simple to
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provide a test of methods” by Geyer, illustrates the
futility of the single-sequence approach. First, as
shown by Table 4 and Figure 4 in our Section 4.8,
starting from a minor mode leads to “locally conver-
gent” behavior in the sense that standard single-
sequence methods claim convergence even though the
sequence has not visited most of the target distribu-
tion. Second, Geyer’s own single-sequence simulation
of our example was incorrect; as stated in his note
added in proof: “. . . my simulation of Gelman and
Rubin’s example was wrong . . . the Gibbs sampler
apparently converged when there was no stationary
distribution for it to converge to. A run of a million
iterations gave no hint of lack of convergence . . .
a different starting point might have diagnosed the
problem. . . .”

Applied statisticians with experience in designing or
analyzing either experiments, observational studies or
surveys understand the value of replication for avoiding
inappropriate conclusions and for creating valid infer-
ences. It is also clear to applied statisticians that the
relative costs of obtaining replications in computer
simulations are far less than the analogous costs in
scientific investigations and that these relative costs
will become even more disparate in the future, espe-
cially with the proliferation of parallel computing. We
know of no statistician who calls for the total abandon-
ment of replication when collecting real data despite
the extra costs involved; so should it be for the collec-
tion of data from iterative simulations, where costs
tend to be trivial relative to those involved in collecting
the real data being modeled by the target distribution
of the iterative simulation.

EXTENDED DISCUSSION

At this point, our rejoinder could end, because we
feel that we have communicated, at least to applied
statisticians, the fundamental benefits of multiple se-
quences for drawing valid inferences for target distri-
butions. Most of the discussants, however, addressed

~more theoretical topics, which also warrant our atten-

tion to promote closure. We first emphasize some im-
portant general points that apply to more than one of
the discussions and then respond to those individual
discussants’ points not adequately addressed pre-
viously.

The Relation between Statistical Theory and Practice

Fortunately, underlying much statistical practice,
there exists mathematical theory. In particular, a spe-
cific mathematical theory based on Bayesian inference
underlies our proposals, which comprise a principled
approach to the analysis of data from iterative simula-
tion. The theorems state that under certain conditions,
our procedure is essentially optimal within a class of

procedures and, under more general conditions, still
leads to valid statistical inferences. Just as when imple-
menting other mathematical results in statistical prac-
tice (e.g., Gauss-Markov and normal theory for the
analysis of variance), the fact that the “required” math-
ematical conditions do not exactly hold in practice does
not obviate the utility of the procedure. Deviations
from our conditions (e.g., overdispersed starting distri-
butions) do not relegate our methods to irrelevancy,
any more than deviations from normality make the
analysis of variance worthless. If strict adherence to
such regularity conditions were required for statistical
theory to be relevant to statistical practice, profes-
sional statisticians would be essentially irrelevant to
empirical science.

“Iterative Simulation” versus “Markov Chain
Monte Carlo”

We specifically chose the more general title “iterative
simulation” so as to include all methods that iteratively
converge to a target distribution [e.g., non-Markovian
iterative importance sampling; Gelman (1992)]. In addi-
tion, Markovian methods such as the Metropolis algo-
rithm can lose that property in practice because of
various convergence-enhancing schemes such as repa-
rameterization, adaptive sampling rules and impor-
tance reweighting. Finally, even if the wvector of
parameters being simulated forms a Markov chain,
subvectors of individual components (or other lower-
dimensional estimands) do not in general form Markov
chains.

Inference and Diagnostics versus A Priori Analysis

The word “diagnostics,” when applied to iterative
simulation, typically implies assessing the distance, in
some sense, between the estimated distribution at time
t and the target distribution (or perhaps between the
distribution of the simulations at time ¢ and the target
distribution), with the assessment based on the ob-
served simulation results up to that time. We use the
word “inference” rather than “diagnostics” throughout
to emphasize the unity of estimating the target distri-
bution and estimating the distance from convergence
when conducting statistical analysis on the results of
the iterative simulation.

Some of the discussants (notably Rosenthal, Polson
and, to some extent, Geyer) seem uncomfortable with
“diagnostics” and statistical analysis, and apparently
would prefer that the assessment of convergence be
done a priori and theoretically, before the simulations
have begun. Eschewing statistical analysis essentially
means drawing inferences about the result of an experi-
ment by ignoring the observed data and instead using
only the theory underlying the design of the experi-
ment; there is certainly no theoretical advantage in
throwing away information, either theoretical or empir-
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ical, when making a decision or forming an estimate,
even if the experiment is well designed. A strategy of
shunning diagnostics because they might not work
seems analogous to driving a car with a blindfold, after
studying maps and traffic flows, because the strategy
of looking at the road cannot ensure an accident-free
journey.

Where’s the Theorem?

The goal in Bayesian iterative simulation is inference
about a target posterior distribution, and so judgments
concerning the theoretical and practical efficacy of in-
ferential procedures must be based on the quality of
the inferences about this target distribution. Some of
the discussants, notably Polson, offer theoretical re-
sults on the convergence of point estimates rather than
on the convergence of distributional inferences from
an iterative simulation as it proceeds from the starting
to the target distribution. No one has offered nor even
alluded to a theorem implying that single-sequence
methods are optimal or even more efficient than multi-
ple-sequence methods for distributional inference, al-
though some have invoked the word “theory” to
support this view (e.g., Raftery and Lewis state “The-
ory suggests that Markov chain Monte Carlo inference
be based on a single long run,” and Geyer seems to go
even further, apparently citing “all the theory” for this
claim). In our specific rejoinder to Geyer, we explicate
the contrast between the attained objective of the
single-sequence theorists and the real objective of itera-
tive simulation in applied statistics.

Perhaps some of the theoretical confusion arises from
the incorrect assumption that a multiple-sequence in-
ference must use only the last iterate from each se-
quence, a practice analogous to performing cluster
sampling, then basing an inference on just one unit
from each cluster. Any inference created using the
iterations from a single sequence can be replicated and
improved using the iterations from each of two, or
three, or m independent sequences; in fact, every sur-
vey practitioner would prefer having m clusters avail-
able rather than one. As in cluster sampling, it is
straightforward to base inference about a distribution
on samples that are identically distributed but not
independent by using information about the between-
within structure, and there are theorems confirming
that there is more information in all the data than just
in one cluster (one sequence) or in m observations, one
from each cluster (the last draw in each sequence).
Our inferences use both within- and between-sequence
information.

The Role of a Starting Distribution in Helping to
Detect Modeling and Programming Mistakes

In our example, the additional work expended to
construct the starting distribution was more than re-

paid with confidence in our results, including confi-
dence that there were no errors in our iterative
simulation code itself. In addition, constructing the
starting distribution took substantially less effort than
programming the Gibbs sampler; for example, we ob-
tained the ECM modes essentially by running the
Gibbs program with all the random draws replaced by
closed-form calculations of conditional means (E steps)
or modes (CM steps).

In nearly all the applications of iterative simulation
we know, establishing the statistical reasonableness of
the model and debugging the simulation programs
have been more difficult than running and obtaining
inferences from the simulations. Certainly, in our own
work, poor convergence of iterative simulations (i.e.,
large potential scale reductions for parameters of inter-
est that do not decline after running the simulations for
along time) has often been caused by our programming
or modeling errors. Even experts can make mistakes
in programming, as well as, of course, in modeling (e.g.,
see Geyer’s note added in proof), and it pays to design
data collections and analyses, including of simulations,
to detect such mistakes, not hide them. Having even
a rough starting distribution for comparison can be
very helpful.

Optimistic and Pessimistic Attitudes toward
Iterative Simulation

Especially in his initial discussion, Geyer appears to
be an optimist in the sense that he recommends using
any “reasonable starting point,” simulating “long
enough,” and then relying on asymptotically valid infer-
ential techniques to estimate everything of interest.
Also, there he appears to be an optimist because he
is not worried about bugs in his computer code or
underlying model. Raftery and Lewis appear nearly as
optimistic; they recognize that some starting points
can be bad but believe that trial and error is sufficient
to find a single good starting point. Like Geyer, they

appear convinced that their single sequence will not

miss important parts of the target distribution, at
least “in standard statistical models.” The same sort of
optimism supports the call for systematic instead of
replicated sample surveys and experiments because
they are good enough in “standard settings.” Such
optimism can easily lead to overconfident and false
inferences when collecting real or simulation data, as
we have already shown for the Ising model (Gelman
and Rubin, 1992) and the random-effects mixture model
(Section 4 of our article). As Geyer states in his note
added in proof, the single sequence he obtained from
his improper version of our model entirely missed all
the mass in his posterior distribution, which is all
concentrated about 62 = 0. Although Geyer discovered
his error in modeling through theoretical insight, a
practitioner could have discovered it with multiple
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sequences with at least one starting near ¢z = 0 or
simply using a preliminary search for multiple modes,
as we have recommended.

At the other, pessimistic, extreme are Rosenthal and
Polson, who are, in Polson’s words, “skeptical about the
potential for any empirical diagnostics in the MCMC
setting,” apparently believing that inference about con-
vergence should be based on theory alone. The obvious
problem with this pessimistic position is that iterative
simulation is designed for precisely those problems
that are too hard to solve theoretically. After all, physi-
cists have usefully studied the Ising model using Me-
tropolis’ algorithm [even with multiple sequences, as in
Ehrman, Fosdick and Handscomb (1960)] for decades
before the Swendsen and Wang (1987) algorithm ap-
peared.

Most of the other discussants lie somewhere be-
tween; Racine-Poon may be typical of the applied
Bayesian community in being willing to use iterative
simulation when simpler methods fail but without com-
pletely trusting the results. Lewis (1992) and Taylor
and Segal (1992) show similar concerns. Unlike theoret-
ical optimists or pessimists, typical applied statisti-
cians are concerned not only about whether a perfectly
coded program will work for a properly formulated
model but also about the effects that errors—in mathe-
matics or coding—can have on complicated iterative
simulation programs. Multiple independent over-
dispersed sequences address the concerns of practical
users about detecting poor convergence—in Tierney’s
words, they “aid in detecting problems with the simula-
tion.”

INDIVIDUAL RESPONSES

Geyer

We appreciate the extensive comments offered by
Geyer and especially value his note added in proof,
which we hope will bring our positions to convergence.
Though we agree with many of his specific comments,
we disagree strongly with his general plan for the use
of single-sequence methods and are puzzled by some
of his adversarial comments in his initial discussion.
For example, we agree with this comment near the end
of his Section 1 that importance sampling and Markov
chain methods are complementary; this is why Sections
2.1 and 4.2 of our article discuss the point. But then
why does he label our proper dismissal of the aberrant
sequence of Figure 4, using importance resampling, as
an “inadequate justification”? Also, we cannot help but
agree with his tautology that “there can be no valid
inference from runs that are too short and that if runs
are long enough, one run suffices,” but what is added by
such a statement? Not tautological but quite obviously
true are the facts that (1) multiple sequences can reveal
that a simulation is “too short” in problems where a

single sequence can mislead, and (2) for many applica-
tions, m sequences, each of length n, can be “long
enough,” with one run of length n (or even mn) being
“too short.” Geyer’s note added in proof provides an
explicit example of this fact.

Despite Geyer’s error, he assures us that his simula-
tion is essentially correct for our distribution; hence-
forth, we will regard his final simulation as error-free
for our model, which is a plausible assumption since
his resulting inferences are in agreement with ours.
The reason that his simulation, under a model with an
improper posterior distribution, can accurately repre-
sent a simulation of our model with its proper posterior
distribution, is that the two models differ only in their
prior distributions for (62, 62), and if the singularity
around o2 = 0 is excluded, the prior distributions are
nearly identical in the regions of parameter space where
the likelihood is substantial, thereby implying nearly
identical simulated posterior distributions if no draws
are made from near o2 = 0. A brief review of his analy-
sis of our example, presented in his Section 3.4, never-
theless dramatizes differences between our goals with
iterative simulation.

Geyer has reanalyzed our model and data but does
not provide a complete description of his procedure. In
particular, where did he start his simulation run? Since
his answers agreed with ours, he must not have started
near ¢2 = 0 or near any of the minor modes for our
model; had he started near the mode corresponding to
the dotted graph on our Figure 4, his time-series meth-
ods would have declared convergence, despite being
wildly incorrect. He further notes that “the samples
seem so close to multivariate normality that Markov
chain Monte Carlo does not seem necessary.” This is
nearly true for our model, but only in hindsight, and
not if the single-sequence start were poorly chosen with
the sequence locally convergent near a minor mode.
Gibbs sampling was done for the original applied prob-
lem precisely because the adequacy of the normal ap-

_proximation was not trusted for this complicated

mixture model, especially with the small samples in-
volved. To say that iterative simulation was not neces-
sary because it didn’t change our answer much is
analogous to saying that getting the brakes tested on
my car was a waste of money because they were defec-
tive only in the rain, and it did not rain yesterday.
To see the difference between our goals and Geyer’s,
note that the typical results of our method, displayed
in our Table 2, provide interval estimates for the param-
eters (a, B, 7, etc.) in the target distribution, whereas
his analogous Table 2 provides only point estimates (in
this case, posterior means) of the parameters. As n —
o, our estimate approaches the target distribution,
whereas his approaches a point. Although his emphasis
is understandable in the context of his research on
maximum likelihood estimation (Geyer, 1992), it is in-
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complete for any applied statistics problem. An applied
researcher wants to know, given this model and these
data, that 7, the shift parameter for schizophrenics’
delayed responses, is, for example, 95% likely to be in
the range [0.74, 0.96], as provided by our Table 2, not
simply that its posterior mean is in the range [0.845,
0.848], as provided by Geyer’s Table 2.

To summarize the competing analyses of our exam-
ple: We created an overdispersed starting distribution,
sampled ten starting points by importance resampling
(SIR) and ran ten sequences in parallel for 200 steps,
thereby automatically obtaining distributional infer-
ences for all parameters of interest, along with a good
deal of confidence that further simulations would not
appreciably change our inference. Geyer chose one
starting point in an unknown fashion, simulated 10,000
steps, examined some covariance functions (which re-
quired looking at graphs) and obtained point estimates
and six different variance estimates for each posterior
mean examined; he used one variance estimate and
discarded the other five (it is not clear why they were
computed) and still obtained inference only about the
posterior means, not the distribution of the parameters
themselves. Geyer concluded in his initial discussion
that his inferences were fine on the basis of his Figure
1, not realizing that had his starting point been differ-
ent, he could have obtained a vastly different answer,
and not recognizing that his answer, consisting of pos-
terior means, is statistically deficient for the scientific
problem being addressed by the iterative simulation.
Moreover, our comparisons with starting distributions
lead us to believe in the correct coding of our simulation
algorithm —did Geyer’s misplaced confidence in his first
simulation emanate from some feature of his single-
sequence simulation or from the comparison with our
multiple-sequence results? Furthermore, the same
question may be asked of his current confidence in his
simulation of the correct model.

Finally, in this practical example, multiple sequences
are far more “efficient” than Geyer’s single sequence:
our 10 X 200 iterations yielded an immediate summary
of all our substantive inferences (Table 2) with no

-additional thought—we just plugged the simulation
results into our little S program—whereas Geyer ini-
tially simulated five or fifty times as many iterations
(depending on whether parallel computing is available),
had to examine correlation graphs and relied on asymp-
totic variance estimates. Moreover, he subsequently
simulated a million iterations without a “hint of lack
of convergence,” even though “there was no stationary
distribution for it to converge to.” The evidence here
supports the contention that, in practice, multiple-
sequence methods yield. useful inferences in less time
and with.less effort than single-sequence methods.

Racine-Poon

We believe that most of the practical concerns raised
in this discussion are addressed in Table 1 and in our
earlier comments here. In particular, the effort required
to create an approximately overdispersed starting dis-
tribution (1) is typically less than required for success-
fully implementing rejection or importance sampling;
(2) can often be reduced by adapting the routines used
for iterative simulation, replacing simulation by max-
imization and conditional expectation to yield ECM;
and (3) is useful for debugging. We share Racine-Poon’s
skepticism about Geyer’s variance estimates (which
fail in the Ising model and in our example) but are
confident that following our prescription in her prob-
lems will lead to valid inferences about her target
estimands, with high potential scale reductions when
the simulations are far from convergence. In addition,
much effort that would otherwise have been expended
looking at sample sequences, correlation plots, spectra
and so on is avoided by simply producing tables analo-
gous to our Table 2, with a row for each estimand of
interest, and stopping when inferences are sufficiently
precise for practical purposes, as indicated by the po-
tential scale reductions.

Cui et al.

This discussion, along with the work of Kong, Liu
and Wong (1991), Gelman et al. (1992), Liu and Liu
(1992) and Roberts (1992), shows that importance ra-
tios have the potential for aiding the monitoring of
iterative simulation. Under Markov chain simulations,
the basic idea is that, if a sequence is started by
sampling from the stationary distribution, it should
look just as “likely” backward as forward; a related
idea appears in Besag and Clifford (1989). Before sta-
tionarity, under appropriately strong conditions, a sort
of second law of thermodynamics should hold, with the
forward path of any chain looking more likely than the
reverse path, just as a dropped dish often breaks into
pieces, but the pieces of a broken dish are unlikely to
fall into place.

Of course, as Cui et al. point out themselves, their
statistic can be computed for several parallel sequences
and monitored automatically using our methods,
thereby eliminating the need for looking at graphs.
Furthermore, the theoretical analogy to statistical me-
chanics suggests that their method would be improved
by generalizing it to monitor the distribution of several
parallel sequences at once. We would not trust their
convergence diagnostic when based on only a single
sequence, since it would have no hope of detecting that
a simulation is locally convergent near a minor mode,
as in our Figure 4 or as in Geyer’s original, improper
model.
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The witch’s hat example is brought up by several
other discussants, as well as Cui et al., and is, as
Racine-Poon points out, a good example of the pitfalls
of single-sequence estimation. The maximum of the
distribution can easily be found by stepwise ascent,
and one can then start multiple sequences with some
starting at the mode and several scattered about the
sparser parts of the distribution. Slow convergence of
an iterative simulation will immediately be revealed by
high potential scale reductions.

Gelfand

~ The discussion extends the “Rao-Blackwellization”
idea of Gelfand and Smith (1990) with more sophisti-
cated ways of estimating the target distribution, given
some samples (presumably obtained by an iterative
simulation that is close to convergence) and some
knowledge of the target density function. Not surpris-
ingly, we suggest that the method be applied to indepen-
dent sequences simulated from overdispersed starting
points, thus combining the advantages of multiple se-
quences with the additional information used in Gel-
fand’s monitoring statistics.

Madras

We completely agree with this discussion, especially
the first four sentences. We are pleased to learn about
dimerization —yet another application for iterative sim-
ulation. In this situation, we suggest simulating multi-
ple samples from the exact distribution, so that valid
inference may be obtained from iterative simulations
of any length, even lengths that would be “too short”
for single-sequence methods. Deciding how many iid
variates to simulate at the beginning is really a prob-
lem of experimental design—determining if the addi-
tional precision afforded by a new simulation is worth
the cost.

Schmeiser

Most of Schmeiser's comments are already ad-
dressed, especially by our response to Geyer. We wish
to point out, however, that Schmeiser may fundamen-
tally agree with us about the utility of multiple se-
quences, because in problems of Bayesian simulation,
it is typically easy (i.e., requiring much less effort than
the iterative simulation itself) to obtain overdispersed
starting points, which are effectively, in Schmeiser’s
language, “stratified or antithetic initial states.”

Rosenthal

We agree with Rosenthal that iterative simulation
“can be used with greater confidence if it is more auto-
mated and requires less ‘poking around’”; in fact, this
concern was a primary motivation for our effort. More

specifically, our Table 2, which summarizes the infer-
ence for our example, was automatically created by
our little S program; no “poking around” was required,
except for the creation of the starting distribution,
which, as we discussed previously, was certainly worth
the effort. Rosenthal may “share Geyer’s concern about
the difficulty of obtaining useful starting distributions
in the first place,” but even a single sequence must be
started somewhere, and finding a realistic approximate
starting distribution is made no easier by restricting
oneself to Dirac delta functions.

Polson

Rosenthal and Polson both refer to a vigorous and
expanding theory of Markov chain simulation that has
the promise of leading us to more effective simulation
algorithms and expanding the class of distributions
that we can simulate in practice. We agree that this is
an exciting area for research that promises to create
many useful suggestions for practical application.

Although important for the design of simulation
algorithms, Polson’s arguments, like theoretical con-
vergence results in general, have an asymptotic empha-
sis that can be misleading if applied in practice to
the problem of inference. For example, in his second
paragraph, the phrase “approximate . . . to any specified
level of accuracy” is too strong a condition in many
practical examples (e.g., distributions with minor
modes). In the example in our Section 4, multiple se-
quences and “diagnostics” (or a lucky starting value)
greatly facilitate valid inference about our estimands,
and, although Polson’s condition (1) is not strictly satis-
fied (because of the minor modes with negligible, but
nonzero, probability), we are confident that we esti-
mated the target distribution to the specified degree
of accuracy. For our example, the stated asymptotic
result would only apply if we were interested in proba-
bility masses in the target distribution smaller than
one in a billion, based on the relative masses of the

~ major and minor modes.

Raftery and Lewis

Raftery and Lewis propose to run a single sequence
until their specific criterion (possibly based on a shorter
pilot simulation) says to stop, then use the iterates
after a specified “burn-in” time for distributional infer-
ence. Unfortunately, this approach fails in many real
examples, including the one in our Section 4 and too
many of the other examples in the recent literature
previously referenced. For example, notwithstanding
the claim in their discussion, their computer program
falsely diagnoses convergence when applied a single
Gibbs sampler sequence for the Ising model. We ap-
plied their computer program separately to the two
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Gibbs sampler sequences, each of length 2,000, from
Gelman and Rubin (1992) and obtained the recommen-
dation that either 1,148 or 995 iterations is sufficient,
following a “burn-in” period of either seven or five
iterations, to have a 99% chance of estimating the 95%
quantile of the distribution to within an accuracy of
2%. A glance at Figures 1 and 3 from Gelman and
Rubin (1992) shows immediately that the two se-
quences, which have widely dispersed starting points,
are still far apart after 2,000 iterations, and there is
no possibility that they can both yield accurate esti-
mates of the 95th percentile point of the target distri-
bution. It is also obvious from the two sequences
considered together that at least one of the sequences
requires a “burn-in” period alone of more than 2,000
iterations. Furthermore, restarting and using single-
sequence methods cannot be as informative as compar-
ing multiple sequences; at best, restarting leaves the
analyst with some sequences that individually look
fine, but, as in our Figure 4, a between-series compari-
son is still necessary to tell whether the sequences are
in agreement.

Although Raftery and Lewis may have obtained ac-
ceptable results for their own problems (possibly aided
by multiple sequences as in their own Figures 1 and
2), we distrust their general prescription, because it
gives wrong answers in many problems—a high price
to pay for the largely hypothetical convenience of simu-
lating only one sequence. Perhaps their approach may
prove more useful when combined with multiple se-
quences, as they suggest themselves in Raftery and
Lewis (1992).

Tierney

At the end of our Section 2.4, we point out that more
accurate within-sequence estimates than ours can be
constructed using time-series information, and we are
pleased that Tierney also notes this possibility; also
see Gelman et al. (1992). However, Tierney’s claim
that “the resulting variance estimates [from multiple
sequences] are very inefficient unless the number of
chains is quite large” is incorrect. In our example,
relatively efficient variance estimates are obtained us-
ing ten independent sequences, with far more than nine
“effective degrees of freedom.” The variance estimate
62 uses both B and W, not just B alone, and the
precision of 6% is what the Satterthwaite (1946) approxi-
mation for the effective degrees of freedom (from our
Equation 4) addresses. If each of m sequences has, say,
100 effective degrees of freedom, and the sequences are
close to convergence, then the estimate 6 based on m
sequences together will have nearly 100m + (m — 1)
degrees of freedom. If the m sequences are far from
convergence, then 6? will have little more than m de-
grees of freedom, but, in this case, W << 62, and the

single-sequence inferences are all falsely precise
anyway.
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